Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,106)

Search Parameters:
Keywords = reactive oxygen/nitrogen species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 554 KB  
Review
Oxidative and Glycation Stress Biomarkers: Advances in Detection Technologies and Point-of-Care Clinical Applications
by Hiroko Yamaguchi and Hiroshi Yamaguchi
Molecules 2025, 30(21), 4286; https://doi.org/10.3390/molecules30214286 - 4 Nov 2025
Abstract
Oxidative and glycation stress are interrelated pathological processes that significantly contribute to the development and progression of chronic diseases, including diabetes, chronic kidney disease, cardiovascular disorders, and neurodegenerative conditions. These processes alter biomolecules by generating reactive oxygen species (ROS), reactive nitrogen species (RNS), [...] Read more.
Oxidative and glycation stress are interrelated pathological processes that significantly contribute to the development and progression of chronic diseases, including diabetes, chronic kidney disease, cardiovascular disorders, and neurodegenerative conditions. These processes alter biomolecules by generating reactive oxygen species (ROS), reactive nitrogen species (RNS), and advanced glycation end products (AGEs), thereby amplifying cellular dysfunction. Therefore, precise monitoring of these biomarkers is essential for understanding disease mechanisms and for clinical assessments. Conventional methods, such as chromatography, mass spectrometry, and immunoassays, provide high sensitivity and specificity; however, their extensive clinical application is restricted owing to their high cost, labor intensity, and equipment requirements. In contrast, emerging electrochemical and optical biosensor technologies offer advantages in terms of rapidity, portability, and real-time analysis and hold promise for point-of-care (POC) testing and integration into wearable devices. This review systematically summarizes the detection principles and clinical applications of oxidative and glycation stress-related biomarkers and highlights the need for integrated monitoring systems that can simultaneously capture both processes. Advances in these technologies are expected to contribute significantly to early diagnosis, risk stratification, and implementation of personalized medicine. Full article
(This article belongs to the Special Issue Recent Advances in DNA/Protein Biosensors)
Show Figures

Figure 1

28 pages, 838 KB  
Review
The Status of Plasma Induced Acidification and Its Valorising Potential on Slurries and Digestate: A Review
by Bridget Kumi, Stephen Worrall, David Sawtell and Ruben Sakrabani
Nitrogen 2025, 6(4), 97; https://doi.org/10.3390/nitrogen6040097 - 30 Oct 2025
Viewed by 279
Abstract
This review examines the current status and future potential of plasma-induced acidification (PIA) as a sustainable method for managing nitrogen-rich organic waste streams such as livestock slurry and digestate. Conventional acidification using sulfuric or nitric acid reduces ammonia (NH3) emissions but [...] Read more.
This review examines the current status and future potential of plasma-induced acidification (PIA) as a sustainable method for managing nitrogen-rich organic waste streams such as livestock slurry and digestate. Conventional acidification using sulfuric or nitric acid reduces ammonia (NH3) emissions but raises concerns related to safety, cost, and environmental impacts. Plasma-assisted systems offer an alternative by generating reactive nitrogen and oxygen species (RNS/ROS) in situ, lowering pH and stabilizing ammonia (NH3), as ammonium (NH4+), thereby enhancing fertiliser value and reducing emissions of NH3, methane (CH4), and odours. Key technologies such as dielectric barrier discharge (DBD), corona discharge, and gliding arc reactors show promise in laboratory-scale studies, but barriers like energy consumption, scalability, and N2O trade-offs limit commercial adoption. The paper reviews the mechanisms behind PIA, compares it to conventional approaches, and assesses its agronomic and environmental benefits. Valorisation opportunities, including the recovery of nitrate-rich fractions and integration with biogas systems, align plasma treatment with circular economy goals. However, challenges remain, including reactor design, energy efficiency, and lack of recognition as a Best Available Technique (BAT). A roadmap is proposed for transitioning from lab to farm-scale application, involving cross-sector collaboration, lifecycle assessments, and policy support to accelerate adoption and realise environmental and economic gains. Full article
Show Figures

Figure 1

21 pages, 2349 KB  
Review
Scaling Up Non-Thermal Plasma Technology for Water and Wastewater Treatment: Opportunities and Challenges
by Benjamin Morenas, Sidra Saqib, Ahmad Mukhtar, Jonathan Stromberg and Sarah Wu
Energies 2025, 18(21), 5692; https://doi.org/10.3390/en18215692 - 29 Oct 2025
Viewed by 337
Abstract
Emerging contaminants such as per- and polyfluoroalkyl substances (PFASs) pose significant challenges for conventional wastewater treatment technologies. Non-thermal plasma (NTP) has gained attention as a promising advanced oxidation process capable of degrading persistent pollutants via hydrated electrons and reactive oxygen/nitrogen species under ambient [...] Read more.
Emerging contaminants such as per- and polyfluoroalkyl substances (PFASs) pose significant challenges for conventional wastewater treatment technologies. Non-thermal plasma (NTP) has gained attention as a promising advanced oxidation process capable of degrading persistent pollutants via hydrated electrons and reactive oxygen/nitrogen species under ambient conditions. This review summarizes recent progress in the application and scale-up of NTP for water treatment, with a focus on reactor configurations, degradation mechanisms, and energy efficiency. Key plasma reactor types—including dielectric barrier discharge, corona discharge, plasma jets, and gliding arc discharge—are evaluated for their suitability in large-scale applications. Pilot-scale studies addressing pharmaceuticals, dyes, and PFASs are reviewed to assess scalability, cost, and operational viability. Although NTP systems consistently achieve >80% contaminant removal, optimizing energy use and maintaining performance across complex water matrices remain critical challenges. Hybrid systems integrating NTP with ozonation, ultrafiltration, or cavitation show potential to improve treatment efficacy and reduce energy demands. Future research priorities include reactor design optimization, contaminant-specific plasma tuning, and technoeconomic analysis to support the translation of NTP technologies from lab-scale innovation to field-scale implementation. Full article
(This article belongs to the Special Issue Advances in Wastewater Treatment, 2nd Edition)
Show Figures

Figure 1

18 pages, 4375 KB  
Article
Study on the Changes of Antioxidant System and Respiratory Metabolism in Rice Grains Under Nitrogen-Modified Atmosphere Storage from the Targeted Metabolomics Perspective
by Ming Chen, Xia Ma, Wenhao Li, Feiyan Xue and Chenling Qu
Foods 2025, 14(21), 3643; https://doi.org/10.3390/foods14213643 - 25 Oct 2025
Viewed by 239
Abstract
Nitrogen-modified atmosphere technology, due to its effectiveness in pest control, is widely used in grain storage as an eco-friendly preservation method. This study compared the quality changes in unhulled rough rice (paddy) stored under nitrogen-modified atmosphere and conventional conditions. Fatty acid value (FAV), [...] Read more.
Nitrogen-modified atmosphere technology, due to its effectiveness in pest control, is widely used in grain storage as an eco-friendly preservation method. This study compared the quality changes in unhulled rough rice (paddy) stored under nitrogen-modified atmosphere and conventional conditions. Fatty acid value (FAV), reactive oxygen species (ROS) content, coenzyme levels, antioxidant enzyme activities, and concentrations of central carbon metabolism-related metabolites of paddy were monitored during storage under different storage conditions. The results revealed that compared to conventional storage, nitrogen-modified atmosphere resulted in lower FAV and ROS levels, as well as higher pyridine nucleotides contents and antioxidant enzyme activities, including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione reductase (GR). Metabolomic profiling demonstrated that N2-MAS induced metabolic changes characterized by the down-regulation of 2-hydroxyglutaric acid and the up-regulation of fructose 6-phosphate, glucose 1-phosphate, glycerol 3-phosphate, gluconic acid, fumaric acid, and malic acid, which collectively contribute to reduced oxidative damage and enhanced preservation quality. These findings elucidated the mechanism of N2-MAS-delayed quality deterioration and revealed the regulatory role of the antioxidant system and central carbon metabolism. Full article
Show Figures

Figure 1

16 pages, 18210 KB  
Article
Basic Study of Blood Coagulation by Microplasma
by Marius Gabriel Blajan, Anca Daniela Stoica, Cristian Sevcencu, Septimiu Cassian Tripon, Vasile Surducan and Kazuo Shimizu
Symmetry 2025, 17(11), 1786; https://doi.org/10.3390/sym17111786 - 22 Oct 2025
Viewed by 327
Abstract
Plasma medicine is a field of research that focuses on the sterilization of bacteria, wounds and cancer treatment, tissue regeneration and other biomedical applications using plasma. Dielectric barrier discharge microplasma was used for biomedical applications such as sterilization of bacteria and skin treatment [...] Read more.
Plasma medicine is a field of research that focuses on the sterilization of bacteria, wounds and cancer treatment, tissue regeneration and other biomedical applications using plasma. Dielectric barrier discharge microplasma was used for biomedical applications such as sterilization of bacteria and skin treatment for transdermal drug delivery. In this study, we investigated the feasibility of using microplasma for improving blood coagulation parameters. Blood samples collected from one dog and one cat were treated with microplasma, and the blood coagulation effect of this treatment was compared with the effect achieved by treating the blood with air flow only. The microplasma electrodes were energized using a negative pulse voltage power supply and environmental air was used as discharge gas. The microplasma treatment produced clear coagulation effects that increased proportionally with treatment time, discharge voltage and frequency. In contrast, the treatment with air flow only had no coagulation effects after the same treatment time as for the microplasma treatment. The observed blood coagulation effects induced by microplasma treatment could be attributed to the reactive oxygen and nitrogen species generated by microplasma. The blood sample subjected to microplasma treatment had a slight temperature increase (≈4 °C) confirming the nonthermal operation. In conclusion, this study shows promising results that suggest the potential of using microplasma treatment as a tool for improving blood coagulation parameters. Furthermore, microplasma’s suitability for portability and integration indicates the potential for developing a compact microplasma device tailored for use by first responders in cases of bleeding. Full article
(This article belongs to the Special Issue Advances in Plasma Physics with Symmetry/Asymmetry)
Show Figures

Figure 1

16 pages, 1248 KB  
Article
Redox Homeostasis and Antioxidant Response After Bariatric Surgery in Severe Obesity: Insights from a Controlled Clinical Cohort
by Razvan Marius Ion, Erzsébet Májai, Mircea Dumitru Croitoru, Oana Axina Rusti, Gabriela Beresescu, Ibolya Fülöp and Radu Mircea Neagoe
Medicina 2025, 61(10), 1884; https://doi.org/10.3390/medicina61101884 - 21 Oct 2025
Viewed by 319
Abstract
Background and Objectives: Obesity represents a major public health concern worldwide, particularly in economically challenged regions, and is often associated with metabolic comorbidities such as type 2 diabetes mellitus, hypertension, and metabolic-associated fatty liver disease. Oxidative stress plays a central role in obesity [...] Read more.
Background and Objectives: Obesity represents a major public health concern worldwide, particularly in economically challenged regions, and is often associated with metabolic comorbidities such as type 2 diabetes mellitus, hypertension, and metabolic-associated fatty liver disease. Oxidative stress plays a central role in obesity pathophysiology through the accumulation of reactive oxygen and nitrogen species. This study aimed to investigate changes in specific oxidative stress biomarkers in patients with obesity before and one year after bariatric surgery, with a lean control group as reference. Methods: This observational cohort study included 50 patients with morbid obesity undergoing bariatric surgery (laparoscopic sleeve gastrectomy or one-anastomosis gastric bypass) and 50 patients without obesity undergoing other surgical procedures. Plasma levels of malondialdehyde (MDA), reduced and oxidized glutathione (GSH and GSSG), nitrite (NO2), and nitrate (NO3) were measured preoperatively and one year postoperatively in the bariatric group, and once in the control group. Quantification was performed using HPLC-based techniques. Results: Postoperative analysis revealed a significant reduction in oxidative stress markers. MDA levels decreased from 21.58 to 16.62 ng/mL after surgery, while GSH levels increased significantly, although they remained lower than in the control group. GSH/GSSG ratio improved slightly, indicating enhanced antioxidant capacity. Nitrite and nitrate levels showed a marked reduction postoperatively, which may reflect both diminished NO production and complex metabolic adaptations following weight loss. Correlation analysis showed that reductions in BMI were significantly associated with increases in GSH levels and decreases in MDA. Conclusions: Bariatric surgery led to significant improvements in key oxidative stress biomarkers in patients with obesity, supporting the hypothesis that weight loss mitigates oxidative damage. However, the reduction in nitrite suggests potential trade-offs in nitric oxide metabolism that warrant further investigation. Long-term studies are needed to determine the clinical significance and sustainability of these biochemical improvements. Full article
(This article belongs to the Section Surgery)
Show Figures

Figure 1

16 pages, 4279 KB  
Article
Surfactin Structural Variants Differentially Modulate Plant Immune Responses
by Ning Ding, Hansong Dong, Romain Thomas, Guillaume Gilliard, Jelena Pršić and Marc Ongena
Biomolecules 2025, 15(10), 1479; https://doi.org/10.3390/biom15101479 - 21 Oct 2025
Viewed by 408
Abstract
Cyclic lipopeptides (CLPs), produced by beneficial rhizobacteria such as Bacillus and Pseudomonas species, are specialized metabolites retaining key functions for the plant protective activity of the producers, which shows their potential as biocontrol agents in agriculture. Beyond their strong antimicrobial properties, CLPs can [...] Read more.
Cyclic lipopeptides (CLPs), produced by beneficial rhizobacteria such as Bacillus and Pseudomonas species, are specialized metabolites retaining key functions for the plant protective activity of the producers, which shows their potential as biocontrol agents in agriculture. Beyond their strong antimicrobial properties, CLPs can act as potent elicitors of plant immunity and systemic resistance. However, the molecular mechanisms underlying these immune-modulatory effects and the role of CLPs’ structural diversity remain poorly understood. Here, we demonstrate that specific structural features of surfactin-type CLPs critically influence their ability to trigger early immune responses in plants, including reactive oxygen species bursts, nitric oxide (NO) production, calcium fluxes, and systemic resistance. In Arabidopsis thaliana roots, we show that surfactin-induced NO generation requires calcium signaling. Moreover, we reveal that contrasting immune effects of CLPs may stem from the ecological lifestyles of their microbial producers, shedding light on the evolutionary basis of plant–microbe interactions. Altogether, our findings underscore the importance of CLP structural variation in shaping plant defense responses and highlight the potential for structure-informed design of next-generation biosourced small molecules with broad-spectrum efficacy as plant protectants. Full article
(This article belongs to the Special Issue Probiotics and Their Metabolites, 2nd Edition)
Show Figures

Figure 1

29 pages, 7216 KB  
Article
Thymoquinone Protective Effect Against Mercury-Induced Reproductive Derangement in Rats: In Vivo and In Silico Investigation
by Solomon Owumi, Moses Otunla, Pelumi Akindipe, Uche Arunsi, Jesutosin O. Babalola, Chioma E. Irozuru, Ahmad Altayyar, Bayode Oluwawibe, Olatunde Owoeye and Adegboyega K. Oyelere
Toxics 2025, 13(10), 896; https://doi.org/10.3390/toxics13100896 - 19 Oct 2025
Viewed by 643
Abstract
Mercury exposure has been linked to male infertility. Given that mercury chloride (HgCl2) may promote an oxido-inflammatory milieu associated with pathophysiological derangements, it is hypothesised that Thymoquinone (TQ), an antioxidant and anti-inflammatory agent, may mitigate the gradual harmful effects of mercury [...] Read more.
Mercury exposure has been linked to male infertility. Given that mercury chloride (HgCl2) may promote an oxido-inflammatory milieu associated with pathophysiological derangements, it is hypothesised that Thymoquinone (TQ), an antioxidant and anti-inflammatory agent, may mitigate the gradual harmful effects of mercury exposure on rat testes, epididymis, and hypothalamus, as these organs are vital to reproductive function. To test this hypothesis, 40 rats (strain: Wistar; sex: male) were randomly assigned to five cohorts of eight rats each. After a 7-day acclimation, treatments were dispensed for 28 consecutive days accordingly: Cohort I: distilled water only, as control; Cohort II: HgCl2 only (20 µg/mL); Cohort III: TQ only (2.5 mg/kg); Cohort IV: HgCl2 + TQ (20 µg/mL + 2.5 mg/kg); and Cohort V: HgCl2 + TQ (20 µg/mL + 5 mg/kg). Co-treatment with TQ preserved the body and organ weight of the HgCl2 exposed animals. However, TQ did not reduce HgCl2-induced dysfunction in sperm function and morphology. The serum follicle-stimulating hormone (FSH), luteinising hormone (LH), and testosterone were increased significantly (p < 0.05) by TQ co-treatment, while decreasing the prolactin level. TQ administration also increased (p < 0.05) testicular enzymes, including alkaline phosphatase (ALP), lactate dehydrogenase (LDH), acid phosphatase (ACP), and glucose-6-phosphate dehydrogenase (G6PD) activities, which HgCl2 decreased. TQ administration increased (p < 0.05) HgCl2-induced decreases in catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione (GSH), glutathione-s-transferase (GST), and total sulfhydryl group (TSH) levels in the testes, epididymis, and hypothalamus of experimental rats. Further, TQ reduced HgCl2-mediated increases in RONS-reactive oxygen and nitrogen species; LPO–lipid peroxidation; PC–protein carbonyl formation; and XO–xanthine oxidase activity. Furthermore, levels of inflammatory biomarkers, including tumour necrosis factor alpha (TNF-α), nitric oxide (NO), interleukin-1 beta (IL-1β), and myeloperoxidase (MPO), were decreased (p < 0.05) in the co-treated groups, with a higher dose of TQ (5.0 mg/kg) showing a more pronounced protective effect. Additionally, TQ co-administration increased Bax and decreased Bcl-2 and p53 protein levels (p < 0.05), thereby protecting the rats’ testes, epididymis, and hypothalamus from HgCl2-induced apoptosis. Molecular docking simulation analysis revealed TQ interaction dynamics with PPAR-α and PPAR-δ to suppress NF-kB-mediated pro-inflammatory sequela as well as activate Nrf-2-mediated antioxidant defence system. These predicted biological effects of TQ resonate with the findings from the in vivo studies. Therefore, supplementation with TQ may help reduce chemical-induced toxicities, including HgCl2‘s reproductive toxicity. Full article
(This article belongs to the Section Novel Methods in Toxicology Research)
Show Figures

Graphical abstract

23 pages, 1539 KB  
Review
Sex Differences in Oxidative Stress Concerning Allergic Diseases
by Mattia Cristallo, Fabiana Furci, Marco Casciaro, Sebastiano Gangemi and Eustachio Nettis
Biomolecules 2025, 15(10), 1461; https://doi.org/10.3390/biom15101461 - 16 Oct 2025
Viewed by 610
Abstract
In recent years, the role of sexual hormones in the pathogenesis and progression of various diseases has progressively being established, which attempts to explain immune dimorphism. Whether physiological or pathological, variations in hormones influence the inflammatory response and adaptive systems to control increased [...] Read more.
In recent years, the role of sexual hormones in the pathogenesis and progression of various diseases has progressively being established, which attempts to explain immune dimorphism. Whether physiological or pathological, variations in hormones influence the inflammatory response and adaptive systems to control increased productions of reactive oxygen species, reactive nitrogen species, and free radicals. Primary allergic respiratory and skin diseases were taken into consideration, and possible biomarkers of oxidative stress related to sex differences in the onset and development of atopic diseases were analyzed. Understanding how these variables interact with each other, and evaluating the possible common targets, lays the foundation for the development of tailored therapies with an eye to precision medicine. Full article
(This article belongs to the Special Issue The Immune System and Allergies)
Show Figures

Figure 1

18 pages, 1307 KB  
Review
Boosting Seed Performance with Cold Plasma
by Mohamed Ali Benabderrahim, Imen Bettaieb and Mokhtar Rejili
Appl. Sci. 2025, 15(20), 10996; https://doi.org/10.3390/app152010996 - 13 Oct 2025
Viewed by 488
Abstract
In 2015, the global community set 17 Sustainable Development Goals (SDGs), with the second goal aiming to end hunger by 2030. In sustainable agriculture, seed treatment plays a crucial role and cold plasma (CP) has emerged as a promising, eco-friendly technology for improving [...] Read more.
In 2015, the global community set 17 Sustainable Development Goals (SDGs), with the second goal aiming to end hunger by 2030. In sustainable agriculture, seed treatment plays a crucial role and cold plasma (CP) has emerged as a promising, eco-friendly technology for improving seed performance. This review highlights CP as an innovative seed treatment method with significant potential to enhance seed vigor, germination, and crop yield, particularly under stress conditions such as drought, salinity, and biotic challenges. CP works by generating reactive oxygen and nitrogen species (RONS), which modulate key biochemical and physiological responses in seeds. These responses include improvements in water uptake, enhanced germination rates, and better stress tolerance. Moreover, CP exhibits strong antimicrobial properties, making it a chemical-free alternative for seed decontamination. Despite these benefits, the application of CP in large-scale agriculture faces several challenges. Also, this review critically examines the limitations of CP treatment, including the lack of standardized protocols and insufficient field validation. Additionally, it compares CP treatment with conventional chemical and microbial methods, offering insights into its potential advantages and remaining obstacles. This emerging technology holds promise for enhancing crop productivity while minimizing environmental impact, but further research and validation are essential for its broader adoption in sustainable agricultural practices. Full article
Show Figures

Figure 1

21 pages, 7032 KB  
Article
Non-Thermal Plasma Treatment of Dye-Contaminated Wastewater: A Sustainable Approach for Pollutant Degradation and Enhanced Plant Growth
by Subash Mohandoss, Harshini Mohan, Natarajan Balasubramaniyan and Sivachandiran Loganathan
Plasma 2025, 8(4), 40; https://doi.org/10.3390/plasma8040040 - 11 Oct 2025
Viewed by 435
Abstract
The win–win situation of dye degradation and nitrogen fixation in wastewater using non-thermal plasma (NTP) were investigated in this study. Specifically, the feasibility of utilizing plasma-treated dye-contaminated wastewater for seed germination and plant growth was explored. Crystal Violet (CV) and Rhodamine B (RhB) [...] Read more.
The win–win situation of dye degradation and nitrogen fixation in wastewater using non-thermal plasma (NTP) were investigated in this study. Specifically, the feasibility of utilizing plasma-treated dye-contaminated wastewater for seed germination and plant growth was explored. Crystal Violet (CV) and Rhodamine B (RhB) dyes were used as model pollutants, while Sorghum bicolor (great millet) seeds were used to assess germination rates and plant growth responses. In untreated wastewater containing CV and RhB, approximately 45% of seeds germinated after three days, but no significant stem or root growth was observed after 11 days. Plasma treatment significantly enhanced dye degradation, with efficiency improving as treatment time and input power increased. After 16 min of plasma treatment at 1.3 ± 0.2 W input power, about 99% degradation efficiency was achieved for both CV (0.0122 mM) and RhB (0.0104 mM). This degradation was primarily driven by reactive oxygen and nitrogen species (RONS) generated by plasma discharge. When sorghum seeds were germinated using plasma-treated wastewater, the germination rate increased to 65% after three days—20% higher than with untreated wastewater. Furthermore, after 11 days, the average stem length reached 9 cm, while the average root length extended to 7 cm. These findings highlight NTP as a promising and sustainable method for degrading textile industry pollutants while simultaneously enhancing crop productivity through the reuse of treated wastewater. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

31 pages, 10340 KB  
Article
Silencing the cyp314a1 and cyp315a1 Genes in the Aedes albopictus 20E Synthetic Pathway for Mosquito Control and Assessing Algal Blooms Induced by Recombinant RNAi Microalgae
by Xiaodong Deng, Changhao He, Chunmei Xue, Dianlong Xu, Juncai Li and Xiaowen Fei
Insects 2025, 16(10), 1033; https://doi.org/10.3390/insects16101033 - 7 Oct 2025
Viewed by 680
Abstract
As one of the key vectors for the transmission of Dengue fever, Aedes albopictus is highly ecologically adaptable. The development of environmentally compatible biological defence and control technologies has therefore become an urgent need for vector biological control worldwide. This study constructed and [...] Read more.
As one of the key vectors for the transmission of Dengue fever, Aedes albopictus is highly ecologically adaptable. The development of environmentally compatible biological defence and control technologies has therefore become an urgent need for vector biological control worldwide. This study constructed and used double-stranded RNA (dsRNA) expression vectors targeting the cyp314a1 and cyp315a1 genes of Ae. albopictus to transform Chlamydomonas reinhardtii and Chlorella vulgaris, achieving RNA interference (RNAi)-mediated gene silencing. The efficacy of the RNAi recombinant algal strain biocide against Ae. albopictus was evaluated by administering it to Ae. albopictus larvae. The results showed that the oral administration of the cyp314a1 and cyp315a1 RNAi recombinant C. reinhardtii/C. vulgaris strains was lethal to Ae. albopictus larvae and severely affected their pupation and emergence. The recombinant algal strains triggered a burst of ROS (Reactive Oxygen Species) in the mosquitoes’ bodies, resulting in significant increases in the activities of the superoxide dismutase (SOD), peroxiredoxin (POD) and catalase (CAT), as well as significant upregulation of the mRNA levels of the CME pathway genes in larvae. In the simulated field experiment, the number of Ae. albopictus was reduced from 1000 to 0 in 16 weeks by the RNAi recombinant Chlorella, which effectively controlled the population of mosquitoes. Meanwhile, the levels of nitrogen (N), phosphorus (P), nitrate, nitrite, ammonia and COD (Chemical Oxygen Demand) in the test water decreased significantly. High-throughput sequencing analyses of 18S rDNA and 16S rDNA showed that, with the release of RNAi recombinant Chlorella into the test water, the biotic community restructuring dominated by resource competition caused by algal bloom, as well as the proliferation of anaerobic bacteria and the decline of aerobic bacteria triggered by anaerobic conditions, are the main trends in the changes in the test water. This study is an important addition to the use of RNAi recombinant microalgae as a biocide. Full article
(This article belongs to the Special Issue RNAi in Insect Physiology)
Show Figures

Figure 1

16 pages, 629 KB  
Review
Alcohol-Induced Oxidative Stress and Gut–Liver–Brain Crosstalk: Expanding the Paradigm from ALD to MetALD
by Jeong-Yoon Lee, Young-Min Jee, Keungmo Yang and Tom Ryu
Antioxidants 2025, 14(10), 1196; https://doi.org/10.3390/antiox14101196 - 1 Oct 2025
Viewed by 1124
Abstract
Alcohol-associated liver disease (ALD) includes a spectrum from steatosis and steatohepatitis to cirrhosis and hepatocellular carcinoma driven by oxidative stress, immune activation, and systemic inflammation. Ethanol metabolism through alcohol dehydrogenase, aldehyde dehydrogenase, and cytochrome P450 2E1 generates reactive oxygen and nitrogen species, leading [...] Read more.
Alcohol-associated liver disease (ALD) includes a spectrum from steatosis and steatohepatitis to cirrhosis and hepatocellular carcinoma driven by oxidative stress, immune activation, and systemic inflammation. Ethanol metabolism through alcohol dehydrogenase, aldehyde dehydrogenase, and cytochrome P450 2E1 generates reactive oxygen and nitrogen species, leading to mitochondrial dysfunction, hepatocellular injury, and activation of inflammatory and fibrogenic pathways. Beyond hepatic effects, ALD engages the gut–liver–brain axis, where microbial dysbiosis, blood–brain barrier disruption, and neuroinflammation contribute to cognitive impairment and cerebrovascular risk. The emerging concept, metabolic dysfunction-associated steatotic liver disease and increased alcohol intake (MetALD), presents the synergistic impact of alcohol and metabolic comorbidities, enhancing oxidative injury and fibrosis. This review summarizes key mechanisms connecting oxidative stress to multisystem pathology and highlights the need for precision therapies targeting redox imbalance, immune dysregulation, and gut–brain–liver interactions to improve outcomes in ALD and MetALD. Full article
(This article belongs to the Special Issue Alcohol-Induced Oxidative Stress in Health and Disease, 2nd Edition)
Show Figures

Figure 1

22 pages, 5077 KB  
Article
Restoration of Enzymatic Activity of Energy-Related Proteins in Rats with Traumatic Brain Injury Following Administration of Gamma-Glutamylcysteine Ethyl Ester
by Brittany Rice, Jonathan Overbay, Andrea Sebastian, Patrick G. Sullivan and Tanea T. Reed
Brain Sci. 2025, 15(10), 1067; https://doi.org/10.3390/brainsci15101067 - 30 Sep 2025
Viewed by 438
Abstract
Background/Objectives: Biochemical processes such as the glycolytic pathway and Kreb’s cycle are important in producing ATP for the brain. Without a sufficient supply of glucose for energy metabolism, the brain cannot efficiently regulate or coordinate the actions and reactions of the body. It [...] Read more.
Background/Objectives: Biochemical processes such as the glycolytic pathway and Kreb’s cycle are important in producing ATP for the brain. Without a sufficient supply of glucose for energy metabolism, the brain cannot efficiently regulate or coordinate the actions and reactions of the body. It is well documented that traumatic brain injury (TBI) is associated with reduced energy metabolism through the production of reactive oxygen/nitrogen species. Antioxidants, such as glutathione (GSH), have been shown to combat the deleterious effects of oxidation by scavenging ROS/RNS, inhibiting propagation, and removing neurotoxic byproducts. Gamma-glutamylcysteine ethyl ester (GCEE), an ethyl ester moiety of gamma-glutamylcysteine, exhibits antioxidant activity by increasing GSH production. This therapeutic has protective effects against oxidative stress through the elevation of glutathione. Methods: This study investigates the enzymatic activities of several key energy-related proteins that have been identified as nitrated in treated Wistar rats with moderate TBI. To test the hypothesis that the elevation of GSH production upon administration of GCEE will normalize enzymatic activity post-TBI, adult male Wistar rats were equally divided into three groups: sham, saline, and GCEE. Rats were treated with 150 mg/kg saline or GCEE at 30 and 60 min post-TBI. Upon sacrifice, brains were harvested and enzymatic activity was measured spectrophotometrically. Results: An increase in enzymatic activity upon GSH elevation via GCEE administration in several key enzymes was observed. Conclusions: GCEE is a potential therapeutic strategy to restore energy-related proteins in the brain post-TBI via GSH elevation. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

20 pages, 3120 KB  
Article
Identification of Plasma-Generated Reactive Species in Water and Their DNA-Damaging Effects on Plasmid and Lymphocyte DNA
by Stanislav Kyzek, Sára Pišteková, Ivana Kyzeková, Andrea Ševčovičová, Dušan Kováčik, Anna Zahoranová and Eliška Gálová
Int. J. Mol. Sci. 2025, 26(19), 9385; https://doi.org/10.3390/ijms26199385 - 25 Sep 2025
Viewed by 377
Abstract
Non-thermal plasma has attracted strong interest in medicine and agriculture due to its ability to generate reactive oxygen and nitrogen species (RONS). These species can stimulate wound healing and seed germination, but at higher levels they induce DNA damage—useful in cancer therapy but [...] Read more.
Non-thermal plasma has attracted strong interest in medicine and agriculture due to its ability to generate reactive oxygen and nitrogen species (RONS). These species can stimulate wound healing and seed germination, but at higher levels they induce DNA damage—useful in cancer therapy but harmful when healthy cells must be preserved. Direct study of DNA damage in cells is difficult because of repair processes and protective barriers. To address this, we applied a dual-model system combining plasmid DNA and human lymphocytes exposed to plasma from the RPS40 device. Using selective scavengers, we identified hydroxyl radicals, ozone, and reactive nitrogen species as key mediators of DNA strand breaks and structural changes. Our results support a mechanistic model in which long-lived plasma-derived species (NOx, ozone, acids) dissolve in water and subsequently generate short-lived radicals such as hydroxyl radicals and peroxynitrite. These reactive molecules then directly attack DNA. This integrated approach—linking plasmid and cellular assays with scavenger-based identification of RONS—offers a novel and cost-effective method for dissecting plasma–DNA interactions. The findings provide mechanistic insight into how plasma-activated water damages DNA, guiding the safer and more effective application of plasma technologies in biomedical and agricultural contexts. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

Back to TopTop