Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (136)

Search Parameters:
Keywords = reactive red dye

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1623 KB  
Article
The Photodynamic Antibacterial Potential of New Tetracationic Zinc(II) Phthalocyanines Bearing 4-((Diethylmethylammonium)methyl)phenoxy Substituents
by Gennady Meerovich, Dmitry Bunin, Ekaterina Akhlyustina, Igor Romanishkin, Vladimir Levkin, Sergey Kharnas, Maria Stepanova, Alexander Martynov, Victor Loschenov, Yulia Gorbunova and Marina Strakhovskaya
Int. J. Mol. Sci. 2025, 26(19), 9414; https://doi.org/10.3390/ijms26199414 - 26 Sep 2025
Viewed by 230
Abstract
Photodynamic inactivation and antimicrobial photodynamic therapy (PDI/APDT) based on the toxic properties of reactive oxygen species (ROS), which are generated by a number of photoexcited dyes, are promising for preventing and treating infections, especially those associated with drug-resistant pathogens. The negatively charged bacterial [...] Read more.
Photodynamic inactivation and antimicrobial photodynamic therapy (PDI/APDT) based on the toxic properties of reactive oxygen species (ROS), which are generated by a number of photoexcited dyes, are promising for preventing and treating infections, especially those associated with drug-resistant pathogens. The negatively charged bacterial cell surface attracts polycationic photosensitizers, which contribute to the vulnerability of the bacterial plasma membrane to ROS. The integrity of the plasma membrane is critical for the viability of the bacterial cell. Polycationic phthalocyanines are regarded as promising photosensitizers due to their high quantum yields of ROS generation (mainly singlet oxygen), high extinction coefficients in the far-red spectral range, and low dark toxicity. For application in PDI/APDT, the wide range of possibilities of modifying the chemical structure of phthalocyanines is particularly valuable, especially by introducing various peripheral and non-peripheral substituents into the benzene rings. Depending on the type and location of such substituents, it is possible to obtain photosensitizers with different photophysical properties, photochemical activity, solubility in an aqueous medium, biocompatibility, and tropism for certain structures of photoinactivation targets. In this study, we tested novel water-soluble Zn (II) phthalocyanines bearing four 4-((diethylmethylammonium)methyl)phenoxy substituents with symmetric and asymmetric charge distributions for photodynamic antibacterial activity and compared them with those of water-soluble octacationic zinc octakis(cholinyl)phthalocyanine. The obtained results allow us to conclude that the studied tetracationic aryloxy-substituted Zn(II) phthalocyanines effectively bind to the oppositely charged cell wall of the Gram-negative bacteria E. coli. This finding is supported by data on bacteria’s zeta potential neutralization in the presence of phthalocyanine derivatives and fluorescence microscopy images of stained bacterial cells. Asymmetric substitution influences the aggregation and fluorescent characteristics but has little effect on the ability of the studied tetracationic phthalocyanines to sensitize the bioluminescent E. coli K12 TG1 strain. Both symmetric and asymmetric aryloxy-substituted phthalocyanines are no less effective in PDI than the water-soluble zinc octakis(cholinyl)phthalocyanine, a photosensitizer with proven antibacterial activity, and have significant potential for further studies as antibacterial photosensitizers. Full article
(This article belongs to the Special Issue New Molecular Insights into Antimicrobial Photo-Treatments)
Show Figures

Figure 1

16 pages, 6369 KB  
Article
Plasma–Liquid Synthesis of PLA/MXene Composite Films and Their Structural, Optical, and Photocatalytic Properties
by Nikolay Sirotkin, Anna Khlyustova and Alexander Agafonov
Catalysts 2025, 15(9), 890; https://doi.org/10.3390/catal15090890 - 16 Sep 2025
Viewed by 353
Abstract
This study addresses the need for sustainable, high-performance photocatalytic materials by developing novel polylactide (PLA)/MXene composites. A one-step plasma-liquid synthesis method was employed, utilizing a direct current discharge between metal electrodes (Ti, Mo) in a carbon tetrachloride and PLA solution. This single-step process [...] Read more.
This study addresses the need for sustainable, high-performance photocatalytic materials by developing novel polylactide (PLA)/MXene composites. A one-step plasma-liquid synthesis method was employed, utilizing a direct current discharge between metal electrodes (Ti, Mo) in a carbon tetrachloride and PLA solution. This single-step process simultaneously exfoliates MXene nanosheets (Ti2CClx, Mo2CClx, Mo2TiC2Clx) and incorporates them into the polymer matrix. The resulting composite films exhibit a highly porous morphology and significantly enhanced optical absorption, with band gaps reduced to 0.62–1.15 eV, enabling efficient visible-light harvesting. The composites demonstrate excellent photocatalytic activity for degrading a mixture of organic dyes (Methylene Blue > Rhodamine B > Reactive Red 6C) under visible light. The developed plasma-liquid technique presents a streamlined, efficient route for fabricating visible-light-driven PLA/MXene photocatalysts, offering a sustainable solution for advanced water purification applications. Full article
Show Figures

Graphical abstract

20 pages, 3897 KB  
Article
From Pigment to Photocatalyst: CdSe/CdS Solutions Mimicking Cadmium Red for Visible-Light Dye Degradation
by Julia Łacic and Anna Magdalena Kusior
Catalysts 2025, 15(9), 883; https://doi.org/10.3390/catal15090883 - 15 Sep 2025
Viewed by 434
Abstract
This study explores the dual functionality of cadmium-based pigments (CdS, CdSe, and CdS1−xSex solid solutions) as historical colorants and visible-light photocatalysts. Synthesized pigments here replicated hues of traditional cadmium reds. At the same time, their photocatalytic efficiency was evaluated [...] Read more.
This study explores the dual functionality of cadmium-based pigments (CdS, CdSe, and CdS1−xSex solid solutions) as historical colorants and visible-light photocatalysts. Synthesized pigments here replicated hues of traditional cadmium reds. At the same time, their photocatalytic efficiency was evaluated using model dyes, such as indigo carmine (anionic) and fuchsine (cationic), as a representative of heritage materials. Structural and optical characterization confirmed tunable bandgaps (1.63–2.28 eV) and phase-dependent microstructures, with CdS1−xSex composites exhibiting compositional heterogeneity. Photocatalytic tests revealed specific degradation mechanisms. Indigo carmine degradation was dominated by superoxide radicals (O2•−), while fuchsine degradation relied on photogenerated electrons (e′). Scavenger experiments highlighted the synergistic role of reactive oxygen species (ROS) and charge carriers, with CdS and CdSe showing the highest activity. Intermediate composites displayed selective reactivity, suggesting trade-offs between phase homogeneity and surface interactions. Reduced photocatalytic efficiency in composites aligns with cultural heritage needs, where pigment stability under light exposure is critical. This work bridges material science and conservation, demonstrating how the compositional tuning of CdS1−xSex can balance color fidelity, photocatalytic activity, and longevity in art preservation. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Graphical abstract

16 pages, 1265 KB  
Article
Microheterogeneous Polymeric Solvent Systems
by Thomas J. Malinski, Ying-Hua Fu, Sopida Thavornpradit, Yu Ching Wong, Yunnuen Avila-Martinez, William Dow and David E. Bergbreiter
Liquids 2025, 5(3), 22; https://doi.org/10.3390/liquids5030022 - 8 Sep 2025
Viewed by 410
Abstract
This paper shows that low concentrations of either a low-molecular-weight or a recyclable polymeric cosolvent can be used to design recyclable, tunable alkane polymeric solvent systems. We have shown that dyes experience a microheterogeneous environment that is ca. 40–50% like that of a [...] Read more.
This paper shows that low concentrations of either a low-molecular-weight or a recyclable polymeric cosolvent can be used to design recyclable, tunable alkane polymeric solvent systems. We have shown that dyes experience a microheterogeneous environment that is ca. 40–50% like that of a polar solvent with as little as 0.1 M added cosolvent. Dyes like Nile red or a polyisobutylene (PIB)-bound dansyl fluorophore both detected microheterogeneity in macrohomogeneous mixtures of heptane or a poly(α-olefin) (PAO) with 0.1–2.0 M added polar solvents. H-Bonding cosolvents have greater effects than cosolvents that only interact with dyes by dipole–dipole interactions. Microheterogeneity was also seen when a PIB-bound version of a low-molecular-weight solvent is used as the added polar cosolvent. These microheterogeneous environments can advantageously be used in synthetic and catalytic reactions. This was demonstrated in transesterification and SN2 chemistry. Reactions in PAO solutions polarized by 2 M added THF or by 0.5 M of a PIB-bound HMPA analog both had enhanced reactivity versus reactions in a PAO solution without added cosolvent. In the latter case, the catalyst, the PAO solvent, and the PIB-bound cosolvent were all fully recyclable. Full article
(This article belongs to the Section Molecular Liquids)
Show Figures

Figure 1

17 pages, 5755 KB  
Article
CeO2-Cobalt Ferrite Composite as a Dual-Function Catalyst for Hydrogen Peroxide Decomposition and Organic Pollutants Degradation
by Tetiana Tatarchuk and Volodymyr Kotsyubynsky
Metals 2025, 15(9), 985; https://doi.org/10.3390/met15090985 - 4 Sep 2025
Viewed by 567
Abstract
This study reports the hydrothermal synthesis, characterization, and Fenton-like catalytic performance of CeO2–CoFe2O4 nanocomposites for degrading Congo Red (CR) dye and the oxytetracycline (OTC) antibiotic. A series of Ce-doped cobalt ferrite samples was prepared using a hydrothermal reaction. [...] Read more.
This study reports the hydrothermal synthesis, characterization, and Fenton-like catalytic performance of CeO2–CoFe2O4 nanocomposites for degrading Congo Red (CR) dye and the oxytetracycline (OTC) antibiotic. A series of Ce-doped cobalt ferrite samples was prepared using a hydrothermal reaction. Additionally, the 50Ce-CFO sample was further activated with H2O2 treatment. XRD, FTIR, and SEM analyses confirmed the formation of a spinel phase alongside segregated CeO2, which acts as a grain-growth inhibitor. The increased Ce content promotes particle amorphization. FTIR showed changes in the intensity of the M–O stretching band, indicating Ce-induced bond polarization in the spinel lattice. In H2O2 decomposition tests, the 50Ce-CFO catalyst fully decomposes H2O2 in 160 min, while the activated sample completes it in 125 min. Fenton-like degradation of CR and OTC by untreated and activated 50Ce-CFO sample followed pseudo-first-order kinetics. Catalyst stability was confirmed using post-reaction XRD, FTIR, and SEM analyses. Incorporation of CeO2 into CoFe2O4 refines the crystallite size, increases the BET surface area, and enhances adsorption capacity, while the Ce4+/Ce3+ redox couple promotes reactive oxygen species generation. Owing to this dual structural and catalytic role, the CeO2-CoFe2O4 composites exhibit significantly improved Fenton-like catalytic activity, enabling the efficient degradation of organic pollutants. Full article
(This article belongs to the Section Powder Metallurgy)
Show Figures

Figure 1

26 pages, 2097 KB  
Article
Use of Larch, Spruce and Pine Cones as Unconventional Sorbents for Removal of Reactive Black 5 and Basic Red 46 Dyes from Aqueous Solutions
by Tomasz Jóźwiak, Urszula Filipkowska, Anna Nowicka and Natalia Baranowska
Molecules 2025, 30(17), 3614; https://doi.org/10.3390/molecules30173614 - 4 Sep 2025
Viewed by 1017
Abstract
This study investigated the sorption properties of the biomass of larch (LaC), pine (PiC) and spruce cones (SpC) in relation to the anionic dye Reactive Black 5 (RB5) and cationic Basic Red 46 (BR46). The scope of the study included the properties of [...] Read more.
This study investigated the sorption properties of the biomass of larch (LaC), pine (PiC) and spruce cones (SpC) in relation to the anionic dye Reactive Black 5 (RB5) and cationic Basic Red 46 (BR46). The scope of the study included the properties of the sorbents (FTIR, SSA, fiber content, elemental analysis C, N, H, pHPZC), the effect of pH on the sorption efficiency of the dyes, the sorption kinetics (pseudo-first-order model, second-order model, intraparticle diffusion model) and the maximum sorption capacity of the sorbents (Langmuir 1 and 2 models, Freundlich). The sorption efficiency of RB5 on the sorbents tested was highest at pH 2 and BR46 at pH 6. The pHPZC values determined for LaC, PiC and SpC were 6.86, 7.02 and 7.19, respectively. The sorption equilibrium time depended mainly on the initial dye concentration and ranged from 150 to 180 min for RB5 and from 120 to 210 min for BR46. The sorption capacities (Qmax) of LaC, PiC and SpC for RB5 were 1.05 mg/g, 1.12 mg/g and 1.61 mg/g, respectively, and for BR46 were 70.53 mg/g, 76.60 mg/g and 96.44 mg/g, respectively. The most efficient sorbent for both dyes was SpC, which was partly related to the high lignin content of the material. Full article
Show Figures

Figure 1

17 pages, 2555 KB  
Article
Radical and Catalyst Effect on Fenton-like Textile Dyes’ Degradation Process and Techno-Economical Consideration
by Guntur Adisurya Ismail and Hiroshi Sakai
Textiles 2025, 5(3), 37; https://doi.org/10.3390/textiles5030037 - 1 Sep 2025
Viewed by 1013
Abstract
This study investigates Fenton-based processes for textile dye degradation, focusing on Direct Red 28 (DR28), Reactive Blue 19 (RB19), and Reactive Black 5 (RBk5). Results reveal varying effectiveness of catalyst–radical combinations, with copper and peroxydisulfate consistently performing well, especially on RBk5 with 100% [...] Read more.
This study investigates Fenton-based processes for textile dye degradation, focusing on Direct Red 28 (DR28), Reactive Blue 19 (RB19), and Reactive Black 5 (RBk5). Results reveal varying effectiveness of catalyst–radical combinations, with copper and peroxydisulfate consistently performing well, especially on RBk5 with 100% and 98.5% decolorization and total organic carbon (TOC) reduction, respectively. Iron faces limitations with DR28 due to sediment formation, resulting in 3.5% and 52.7% TOC removal when paired with hydroxyl and peroxydisulfate radicals, correspondingly. Unexpectedly, cobalt shows notable capabilities with RBk5, reaching 87.2% TOC removal, but performs poorly on the other two dyes, with less than 20% TOC removal when paired with hydroxyl radicals. Cost analysis highlights the cost-effectiveness of the standard photo-Fenton process for easy-to-degrade dyes with a cost of $0.174/g TOC removed, while copper emerges as a viable option for recalcitrant dyes, costing $0.371/g TOC removed. Overall, this research enhances understanding of catalyst–radical interactions on various dyes, a topic that is scarcely discussed in other research, and expands upon it by using techno-economic analysis for Fenton-based technologies for textile wastewater treatment, as a consideration for technology selection in actual application. Full article
Show Figures

Figure 1

22 pages, 2722 KB  
Article
Optically Active, Chlorophyll-Based Fluorescent Dye from Calabrian Opuntia ficus-indica Cladodes for Sustainable Applications
by Antonio Ferraro, Rita Guzzi, Sephora Kamwe Sighano, Giuseppe Nicoletta, Roberto Caputo, Franco Cofone, Giovanni Desiderio and Oriella Gennari
Sustainability 2025, 17(16), 7504; https://doi.org/10.3390/su17167504 - 20 Aug 2025
Viewed by 548
Abstract
Using ultrasound-assisted extraction, we obtained a chlorophyll-rich extract from Opuntia ficus-indica cladodes (OFI) characterized through thin-layer chromatography (TLC), Fourier-transform infrared spectroscopy (FTIR), and spectrophotometric absorption analysis. The dye exhibited a strong fluorescence response in the visible range (400–800 nm) with a [...] Read more.
Using ultrasound-assisted extraction, we obtained a chlorophyll-rich extract from Opuntia ficus-indica cladodes (OFI) characterized through thin-layer chromatography (TLC), Fourier-transform infrared spectroscopy (FTIR), and spectrophotometric absorption analysis. The dye exhibited a strong fluorescence response in the visible range (400–800 nm) with a pronounced red emission when excited with a UV source. Antioxidant ability was evaluated via DPPH assay, showing an IC50 of 185 µg/mL, highlighting its potential for reactive oxygen species scavenging. The extract was incorporated into polymethyl methacrylate (PMMA), polyvinylpyrrolidone (PVP), and polyvinyl alcohol (PVA), leading to fluorescence intensity enhancements of up to 40 times compared to the dye alone depending on matrix polarity, consistent with aggregation and polarity effects. Stability tests confirmed the dye’s resistance to CO2 exposure, pH variations, and prolonged storage, positioning it as a viable alternative to synthetic fluorophores. These findings suggest that the OFI extract provides a functionally relevant, bio-derived dye platform promoting the valorization of agricultural by-products in high-value technological applications, highlighting a circular and scalable approach to developing ecofriendly fluorescent materials, aligning with sustainability and green technology goals. Full article
(This article belongs to the Special Issue Resource Sustainability: Sustainable Materials and Green Engineering)
Show Figures

Figure 1

19 pages, 2171 KB  
Article
Investigation of Adsorption Kinetics and Isotherms of Synthetic Dyes on Biochar Derived from Post-Coagulation Sludge
by Barbara Pieczykolan
Int. J. Mol. Sci. 2025, 26(16), 7912; https://doi.org/10.3390/ijms26167912 - 16 Aug 2025
Viewed by 499
Abstract
An activated biochar was produced from post-coagulation sludge (also called water treatment residuals or water treatment sludge) in the pyrolysis process at 800 °C in a nitrogen atmosphere and chemical activation using NaOH. The produced adsorption material was characterised by an SBET [...] Read more.
An activated biochar was produced from post-coagulation sludge (also called water treatment residuals or water treatment sludge) in the pyrolysis process at 800 °C in a nitrogen atmosphere and chemical activation using NaOH. The produced adsorption material was characterised by an SBET surface area of 439 m2/g, a total volume of pores of 0.301 cm3/g, and an average pore size of 1.4 nm. FTIR analysis reveals the presence of primarily C-H, C-O, N-H, C-N, and O-H groups on the activated biochar surface. The batch adsorption process was conducted for three dyes: Acid Red 18, Acid Green 16, and Reactive Blue 81. In the study, the effect of pH, contact time, adsorption kinetics, and adsorption isotherm was determined. The studies showed that, for all dyes, the highest efficiency of the process was achieved at a pH of 2. The results indicate the occurrence of a chemical adsorption process, as evidenced by the best fit to the experimental results obtained with the pseudo-second-order kinetics model and the Elovich model. In the case of the adsorption isotherm, the SIPS model best describes the adsorption for Acid Red 18 and Reactive Blue 81, and the Jovanovic model describes the adsorption of Acid Green 16. Full article
(This article belongs to the Special Issue Molecular Advances in Adsorbing Materials)
Show Figures

Figure 1

15 pages, 1834 KB  
Article
Metal-Free Graphene/Conjugated Microporous Polymer Mott–Schottky Heterojunctions: A Design Strategy for High-Efficiency, Durable Photocatalysts
by Selsabil Chikhi, Sander Dekyvere, Shuai Li, Chih-Ming Kao and Francis Verpoort
Catalysts 2025, 15(7), 609; https://doi.org/10.3390/catal15070609 - 20 Jun 2025
Viewed by 651
Abstract
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a [...] Read more.
Conjugated microporous polymers (CMP) are advanced photocatalytic systems for degrading organic dyes. However, their potential and efficiency are often limited by rapid electron–hole pair (e/h+) recombination. To overcome this limitation, this study proposes a strategy that involves designing a Mott–Schottky heterojunction and integrating graphene sheets with a near-zero bandgap into the CMP-1 framework, resulting in a non-covalent graphene/CMP (GCMP) heterojunction composite. GCMP serves two main functions: physical adsorption and photocatalytic absorption that uses visible light energy to trigger and degrade the organic dye. GCMP effectively degraded four dyes with both anionic and cationic properties (Rhodamine B; Nile Blue; Congo Red; and Orange II), demonstrating stable recyclability without losing its effectiveness. When exposed to visible light, GCMP generates reactive oxygen species (ROS), primarily singlet oxygen (1O2), and superoxide radicals (O2), degrading the dye molecules. These findings highlight GCMP’s potential for real-world applications, offering a metal-free, cost-effective, and environmentally friendly solution for wastewater treatment. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Graphical abstract

23 pages, 6014 KB  
Article
Evofosfamide Enhances Sensitivity of Breast Cancer Cells to Apoptosis and Natural-Killer-Cell-Mediated Cytotoxicity Under Hypoxic Conditions
by Shubhankar Das, Goutham Hassan Venkatesh, Walid Shaaban Moustafa Elsayed, Raefa Abou Khouzam, Ayda Shah Mahmood, Husam Hussein Nawafleh, Nagwa Ahmed Zeinelabdin, Rania Faouzi Zaarour and Salem Chouaib
Cancers 2025, 17(12), 1988; https://doi.org/10.3390/cancers17121988 - 14 Jun 2025
Cited by 1 | Viewed by 1007
Abstract
Background/objectives: Hypoxia in the tumor microenvironment is linked to aggressiveness, epithelial–mesenchymal transition, metastasis, and therapy resistance. Targeting hypoxia to enhance antitumor immunity is crucial for overcoming therapeutic resistance. Here, we investigated the ability of Evofosfamide, a prodrug that gets activated under hypoxic conditions, [...] Read more.
Background/objectives: Hypoxia in the tumor microenvironment is linked to aggressiveness, epithelial–mesenchymal transition, metastasis, and therapy resistance. Targeting hypoxia to enhance antitumor immunity is crucial for overcoming therapeutic resistance. Here, we investigated the ability of Evofosfamide, a prodrug that gets activated under hypoxic conditions, to sensitize breast cancer cells to cell death. Evofosfamide is converted into bromo-isophosphoramide mustard, a potent DNA cross-linking agent that is expected to enhance the killing of cancer cells under hypoxic conditions, where these cells typically exhibit resistance. Methods: Representative breast cancer cell lines, MCF-7 and MDA-MB-231, were treated with Evofosfamide under normoxia and hypoxia. Changes in cell viability and the mechanism of cell death were measured using neutral red dye uptake, Annexin-FITC/propidium iodide staining, and Western blot analysis of markers—PARP1 and caspase 3/7. We tested Evofosfamide’s ability to counteract hypoxic suppression of type I Interferon signaling genes using quantitative PCR (qPCR), as well as its capacity to trigger natural killer (NK)-cell-mediated cytotoxicity. Results: Evofosfamide enhanced cell killing in both MCF-7 and MDA-MB-231 cells under hypoxic conditions compared to normoxic conditions. Cell killing was accompanied by increased cellular reactive oxygen species (ROS), diminished mitochondrial membrane potential, and induction of apoptosis, as demonstrated by the fragmentation or laddering of genomic DNA, the activation of caspase 3/7, and the cleavage of PARP. qPCR analysis revealed that Evofosfamide was capable of restoring type I interferon signaling in hypoxic breast cancer cells, leading to the subsequent cytolytic activity of NK cells against the tumor cells. Conclusions: Thus, conditioning the breast cancer cells with Evofosfamide resulted in enhanced cell killing under hypoxia, further underscoring its potential as a sensitizer to target hypoxia-driven tumors. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

12 pages, 1433 KB  
Article
Outstanding Adsorption of Reactive Red 2 and Reactive Blue 19 Dyes on MIL-101 (Cr): Novel Physicochemical Analysis of Underlying Mechanism Through Statistical Physics Modeling
by Lotfi Sellaoui, Nour Sghaier and Alessandro Erto
Water 2025, 17(11), 1665; https://doi.org/10.3390/w17111665 - 30 May 2025
Viewed by 664
Abstract
An outstanding adsorbent, such as the metal–organic framework (MOF) MIL-101 (Cr), was employed to study the adsorption of two dyes, namely reactive red 2 (RR2) and reactive blue 19 (RB19). Experimental adsorption data were retrieved at T = 25, 35 and 45 °C [...] Read more.
An outstanding adsorbent, such as the metal–organic framework (MOF) MIL-101 (Cr), was employed to study the adsorption of two dyes, namely reactive red 2 (RR2) and reactive blue 19 (RB19). Experimental adsorption data were retrieved at T = 25, 35 and 45 °C and analyzed to define the adsorption mechanism of these dyes. A modeling approach based on a double-layer model derived from statistical physics was used. The maximum adsorption capacity (MAC) was found to be 875, 954 and 1002 mg/g for RR2 and 971, 1093 and 1148 mg/g for RB19, at T = 25, 35 and 45 °C, respectively. These values indicate that MIL-101 (Cr) exhibits outstanding performance in removing potential water pollutants such as the RR2 and RB19 dyes. The possible orientations of the RR2 and RB19 dyes upon adsorption were determined by analyzing the number of dye molecules bound per MIL-101 (Cr) active sites during the adsorption process. It was found that the RR2 dye was removed via a mixed parallel and non-parallel orientation on MIL-101 (Cr), while RB19 was removed via an inclined orientation at higher temperatures. The adsorption mechanism suggested that MIL-101 (Cr) site density was reduced due to an exothermic effect, which decreases the number of active sites participating in dye adsorption, even though the reduction in water adsorption may be attributed to the overall endothermic behavior. From the adsorption energy (AE) and the chemical structure of MIL-101 (Cr) and both dyes, it was concluded that hydrogen bonds, Van der Waals forces and π-π stacking are involved in the dye removal process. This research provides new physical insights into the adsorption mechanism of two relevant dyes on an outstanding adsorbent such as the MIL-101 (Cr) MOF. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 974 KB  
Article
Synthetic and Natural Red Food Dyes Affect Oxidative Metabolism and the Redox State in the Nauplii of Brine Shrimp Artemia franciscana
by Gianluca Fasciolo, Gaetana Napolitano, Maria Teresa Muscari Tomajoli, Eugenio Geremia, Adriana Petito, Carlos Gravato, Andreia C. M. Rodrigues, Ana L. Patrício Silva, Chiara Maria Motta, Claudio Agnisola and Paola Venditti
Antioxidants 2025, 14(6), 634; https://doi.org/10.3390/antiox14060634 - 25 May 2025
Cited by 2 | Viewed by 918
Abstract
The food industry widely uses dyes from animal and plant sources, but their discharge into water bodies can harm aquatic animals. Red food dyes increase reactive oxygen species (ROS) production, disrupting redox homeostasis in Artemia franciscana nauplii, although the underlying mechanisms are unclear. [...] Read more.
The food industry widely uses dyes from animal and plant sources, but their discharge into water bodies can harm aquatic animals. Red food dyes increase reactive oxygen species (ROS) production, disrupting redox homeostasis in Artemia franciscana nauplii, although the underlying mechanisms are unclear. In this study, we exposed Artemia franciscana cysts for 48 h to three different red dyes: E124 (synthetic), E120 (animal-based) or Vegan red (plant-based) and evaluated the oxidative metabolism and redox status in the hatched nauplii. Only E120 and VEG increased oxygen consumption. E124 and VEG increased mitochondrial Complex I activity, while all dyes enhanced the activity of Complex III. The levels of reactive oxygen species (ROS) and NADPH oxidase activity were increased by all red dyes. E120 and E124 increased antioxidant enzyme activity to a greater extent than VEG. Additionally, only E120 and E124 increased total antioxidant capacity. Nevertheless, E124 exposure induced redox imbalance (increased lipid and protein oxidative damage). Our data, as a whole, allow us to conclude that red dyes can influence the oxidative capacity and redox state of Artemia franciscana nauplii with more harmful effects in the presence of E124, thus drawing attention to their potentially severe influence on aquatic life. Full article
(This article belongs to the Special Issue Role of Mitochondria and ROS in Health and Disease)
Show Figures

Graphical abstract

25 pages, 8331 KB  
Article
Aqueous Cymbopogon citratus Extract Mediated Silver Nanoparticles: Part II. Dye Degradation Studies
by Himabindu Kurra, Aditya Velidandi, Ninian Prem Prashanth Pabbathi and Vikram Godishala
Eng 2025, 6(5), 102; https://doi.org/10.3390/eng6050102 - 19 May 2025
Cited by 2 | Viewed by 724
Abstract
This study investigates the catalytic potential of silver nanoparticles (AgNPs) synthesized using aqueous Cymbopogon citratus (lemongrass) extract for the degradation of toxic textile dyes, offering an eco-friendly solution to industrial wastewater treatment. The green-synthesized AgNPs demonstrated remarkable degradation efficiency (>94%) for multiple dyes, [...] Read more.
This study investigates the catalytic potential of silver nanoparticles (AgNPs) synthesized using aqueous Cymbopogon citratus (lemongrass) extract for the degradation of toxic textile dyes, offering an eco-friendly solution to industrial wastewater treatment. The green-synthesized AgNPs demonstrated remarkable degradation efficiency (>94%) for multiple dyes, such as rhodamine B, methyl red, methyl orange, methylene blue, eosin yellow, and Eriochrome black T, in the presence of sodium borohydride. Optimization studies employing a one-factor-at-a-time approach revealed the critical influence of AgNPs and reductant concentration, temperature, and pH. Kinetic analysis confirmed pseudo-first-order degradation behavior. Reactive species scavenging experiments established that hydroxyl radicals and holes played dominant roles in the degradation mechanism. Notably, the AgNPs retained catalytic activity across eight reuse cycles with negligible performance loss, demonstrating strong potential for repeated application. Comparative analysis with data from the literature highlights the superior performance of C. citratus-derived AgNPs in terms of reaction rate and efficiency. This work underscores the value of plant-extract-mediated AgNPs synthesis not only for its environmental compatibility but also for its catalytic effectiveness. The study advances the practical applicability of green nanotechnology in wastewater remediation and supports its integration into sustainable industrial practices. Full article
Show Figures

Figure 1

16 pages, 63340 KB  
Article
Reactive Dyeing of Cotton Yarns by Exhaustion Method in an Oil-Based Medium Using Crude and Refined Soybean Oil
by Edilson Locks, Selene Maria de Arruda Guelli Ulson de Souza, Afonso Henrique da Silva Júnior, Carlos Rafael Silva de Oliveira and Catia Rosana Lange de Aguiar
Colorants 2025, 4(2), 11; https://doi.org/10.3390/colorants4020011 - 21 Mar 2025
Cited by 1 | Viewed by 1356
Abstract
Dyeing is a major contributor to pollution, with high concentrations of hydrolyzed dyes and electrolytes in its effluents. Recent studies suggest the possibility of dyeing cotton substrates with reactive dyes in an oil medium, reducing the need for electrolytes. This study evaluated the [...] Read more.
Dyeing is a major contributor to pollution, with high concentrations of hydrolyzed dyes and electrolytes in its effluents. Recent studies suggest the possibility of dyeing cotton substrates with reactive dyes in an oil medium, reducing the need for electrolytes. This study evaluated the dyeing of cotton yarns with reactive Red 195 dye in an oil medium using crude and refined soybean oil. The method employed 75% oil and 25% water, with the oil recovered for reuse, significantly reducing water consumption and effluent generation. Dyeing with crude soybean oil showed higher color intensity than the conventional method and the use of refined soybean oil. Additionally, reducing electrolyte concentration from 75 to 18.75 g/L did not affect color intensity, yielding similar results to conventional aqueous dyeing. The dyed substrates were tested for washing, rubbing, and lightfastness, showing comparable performance to conventional methods. The dyeing followed pseudo-second-order kinetics, and the Freundlich isotherm model better fit the oil medium process. FTIR analysis revealed no changes in the functional groups on the yarn surface, and tensile strength tests showed similar results across methods. These findings indicate that oil medium dyeing can reduce electrolyte use, conserve water, and allow for oil reuse, demonstrating potential for industrial-scale application. Full article
Show Figures

Figure 1

Back to TopTop