Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (50,018)

Search Parameters:
Keywords = receptor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1129 KiB  
Article
In Vivo Characterization of ONL1204, a Small Peptide Inhibitor of the Fas Receptor, as a Potential Neuroprotective Therapy for Geographic Atrophy and Dry Age-Related Macular Degeneration
by Andrew J. Kocab, Marisol Cano, Marianna Bacellar-Galdino, Jeffrey A. Jamison, William J. Brock, David N. Zacks and James T. Handa
Biomedicines 2025, 13(9), 2052; https://doi.org/10.3390/biomedicines13092052 - 22 Aug 2025
Abstract
Background: Age-related macular degeneration (AMD) is a major cause of irreversible vision loss in the developed world, and the approved products for geographic atrophy (GA), a late-stage form of dry AMD, have shown limited efficacy and require frequent administration. Therefore, longer-lasting therapies [...] Read more.
Background: Age-related macular degeneration (AMD) is a major cause of irreversible vision loss in the developed world, and the approved products for geographic atrophy (GA), a late-stage form of dry AMD, have shown limited efficacy and require frequent administration. Therefore, longer-lasting therapies with improved efficacy would be a welcome addition to AMD treatment. One potential therapeutic is ONL1204, a small peptide inhibitor of the Fas receptor that has prevented cell death and inflammation in retinal disease models. This study characterizes the pharmacokinetics (PK) and durability of protection conferred by ONL1204. Methods: Ocular pharmacokinetic profiles were generated over 3 months in rabbit and minipig following a single intravitreal (IVT) injection of ONL1204 at multiple doses. Ocular pharmacodynamics were evaluated in two models: a rabbit model using a single IVT injection of ONL1204 with a delayed sodium iodate challenge coupled with fluorescein angiography to quantify RPE loss, and a chronic mouse model that reflects key features of dry AMD disease pathology to assess the efficacy of repeat IVT administrations of ONL1204. Results: ONL1204 had prolonged residence in the ocular tissues of rabbit and minipig, with a vitreous humor half-life of over 100 days. ONL1204 demonstrated significant protection of the retinal pigment epithelium (RPE) in the rabbit sodium iodate model. In the chronic mouse model, two administrations of ONL1204 preserved RPE morphology, reduced caspase-8 activity, and decreased inflammation. Conclusions: These data represent key characteristics of ONL1204, highlighting its clinical potential as a therapeutic for chronic retinal diseases, including GA. Full article
(This article belongs to the Special Issue Advances in Therapeutics for Retinal Degeneration)
22 pages, 819 KiB  
Review
The Role of Oral Microbiota and Glial Cell Dynamics in Relation to Gender in Cardiovascular Disease Risk
by Devlina Ghosh and Alok Kumar
Neuroglia 2025, 6(3), 30; https://doi.org/10.3390/neuroglia6030030 - 22 Aug 2025
Abstract
The oral microbiota, long recognized for their role in local pathologies, are increasingly implicated in systemic disorders, particularly cardiovascular disease (CVD). This review focuses on emerging evidence linking oral dysbiosis to neuroglial activation and autonomic dysfunction as key mediators of cardiovascular pathology. Pathogen-associated [...] Read more.
The oral microbiota, long recognized for their role in local pathologies, are increasingly implicated in systemic disorders, particularly cardiovascular disease (CVD). This review focuses on emerging evidence linking oral dysbiosis to neuroglial activation and autonomic dysfunction as key mediators of cardiovascular pathology. Pathogen-associated molecular patterns, as well as gingipains and leukotoxin A from Porphyromonas gingivalis, Fusobacterium nucleatum, Treponema denticola, Aggregatibacter actinomycetemcomitans, etc., disrupt the blood–brain barrier, activate glial cells in autonomic centers, and amplify pro-inflammatory signaling. This glia driven sympathetic overactivity fosters hypertension, endothelial injury, and atherosclerosis. Crucially, sex hormones modulate these neuroimmune interactions, with estrogen and testosterone shaping microbial composition, glial reactivity, and cardiovascular outcomes in distinct ways. Female-specific factors such as early menarche, pregnancy, adverse pregnancy outcomes, and menopause exert profound influences on oral microbial ecology, systemic inflammation, and long-term CVD risk. By mapping this oral–brain–heart axis, this review highlights the dual role of oral microbial virulence factors and glial dynamics as mechanistic bridges linking periodontal disease to neurogenic cardiovascular regulation. Integrating salivary microbiome profiling with glial biomarkers [e.g., GFAP (Glial Fibrillary Acidic Protein) and sTREM2 (soluble Triggering Receptor Expressed on Myeloid cells 2)] offers promising avenues for sex-specific precision medicine. This framework not only reframes oral dysbiosis as a modifiable cardiovascular risk factor, but also charts a translational path toward gender tailored diagnostics and therapeutics to reduce the global CVD burden. Full article
30 pages, 2129 KiB  
Review
Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma (HNSCC)
by Albrecht Blosse, Markus Pirlich, Andreas Dietz, Christin Möser, Katrin Arnold, Jessica Freitag, Thomas Neumuth, David M. Smith, Hans Kubitschke and Maximilian Gaenzle
Int. J. Transl. Med. 2025, 5(3), 40; https://doi.org/10.3390/ijtm5030040 - 22 Aug 2025
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a [...] Read more.
Head and neck squamous cell carcinomas (HNSCCs) are the seventh most common form of cancer worldwide, typically characterized by high mortality and significant morbidity, including pain and speech and swallowing disorders. Complete tumor tissue resection, the common first line of therapy, remains a surgical challenge with room for improvements. Because tumor cells express highly specific surface molecules serving as receptors for ligands, specific targeting ligands can be conjugated to fluorescent molecules in order to better visualize tumor borders. Targeted fluorescence-guided surgery (T-FGS) as well as tumor-targeted and near-infrared (NIR) fluorescence imaging are emerging techniques for real-time intraoperative cancer imaging. Targeting agents include nanodots or fluorophores, which have been conjugated to specific ligands like antibodies, peptides, or other synthetic moieties. This article surveys tumor-targeted ligands in recent and current preclinical studies and clinical trials related to HNSCC, highlighting common NIRF dyes used for molecular imaging and their physical properties, working concentrations, and associated risks. Smaller ligands, nanodots, dual-modality NIR dyes, and activatable agents can enhance tumor-targeting processes, resulting in faster, more penetrable, and clearer imaging, which could lead to improved clinical applications and better tumor removal rates in the future. Full article
Show Figures

Figure 1

17 pages, 886 KiB  
Article
LncRNA Profiling and ceRNA Network Construction of Intrauterine Exosomes in Goats During Embryo Implantation
by Yanni Jia, Huixin Zhang, Wei Wang, Zuhui Li, Chunmei Shang, Haokun Liu, Hongyu Niu, Dong Zhou, Yaping Jin and Pengfei Lin
Animals 2025, 15(17), 2471; https://doi.org/10.3390/ani15172471 - 22 Aug 2025
Abstract
Exosomes have been shown to play an important role in embryo implantation, but the mechanism is still unclear. This study aimed to investigate the functional roles of lncRNAs in intrauterine exosomes in goat pregnancy. We used RNA-seq to identify the lncRNA profiles of [...] Read more.
Exosomes have been shown to play an important role in embryo implantation, but the mechanism is still unclear. This study aimed to investigate the functional roles of lncRNAs in intrauterine exosomes in goat pregnancy. We used RNA-seq to identify the lncRNA profiles of exosomes obtained from goat uterine rinsing fluid at 5, 15, and 18 days of gestation. In addition, we performed weighted gene co-expression network analysis based on differentially expressed mRNAs (DEMs) and lncRNAs (DELs). Functional enrichment analyses of gene modules were conducted using Gene Ontology classification (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. A lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) regulatory network was constructed based on predictive interaction derived from miRTarBase, miRDB and RNAhybrid databases. Altogether, 831 DELs were identified. GO and KEGG analysis showed that the target genes were enriched in processes associated with embryo implantation, such as signaling receptor activity, binding and immune response. Nine functional co-expression modules were enriched in various biological processes, such as metabolic pathways, protein transport, cell cycle and VEGF signaling pathway. Additionally, 12 lncRNA-mediated ceRNA networks were constructed. Our results demonstrate that exosomal lncRNAs in uterine flushing fluid exhibit dynamic changes across gestational stages and play an important role in regulating the uterine microenvironment during embryo implantation. These findings provide a foundational basis for screening exosome-derived lncRNAs that influence embryo implantation and contribute to elucidating the mechanistic roles of lncRNAs in exosome-mediated processes during early pregnancy. Full article
12 pages, 2421 KiB  
Article
Titers of IgG, IgM, and IgA Against SARS-CoV-2 in Healthcare Workers from a General Hospital in Mexico City
by Nelly Raquel González-Arenas, Mariana Dinazar Chavez-Vargas, Hector Prado-Calleros, Juan Pablo Ramírez-Hinojosa, Fernando Martinez-Hernandez, Angélica Olivo-Díaz, Pablo Maravilla, Mirza Romero-Valdovinos and Guillermina Ávila-Ramírez
Diseases 2025, 13(9), 276; https://doi.org/10.3390/diseases13090276 - 22 Aug 2025
Abstract
Objectives: The aim of the present study was to better understand the antibody concentrations in healthcare workers (HCWs) from a hospital in Mexico City with a high density of COVID-19 patients. Methods: Up to 243 HCWs were recruited in 2020 and 2022 and [...] Read more.
Objectives: The aim of the present study was to better understand the antibody concentrations in healthcare workers (HCWs) from a hospital in Mexico City with a high density of COVID-19 patients. Methods: Up to 243 HCWs were recruited in 2020 and 2022 and were sorted into three groups: hybrid immunity (HI, natural infection plus vaccination), vaccine-induced immunity (VI), and unvaccinated but RT-qPCR negative at the beginning of the pandemic (UV). Peripheral blood and nasopharyngeal swab samples were obtained; additionally, saliva samples were obtained from the UV group. The titers of IgG, IgM, and IgA against the SARS-CoV-2 receptor-binding domain (RBD) and nucleocapsid (NCP) proteins were assessed using an in-house ELISA, and positivity to the virus was determined via RT-qPCR. Results: Most HI and VI participants were positive for serum anti-RBD IgG (92.8% and 100%, respectively), while 26.6% (for HI) and 19% (for VI) were positive for anti-NCP IgG. Regarding serum anti-RBD IgA, the VI and HI groups had positive rates of 87.3% and 66%, respectively. In contrast, the UV group showed a rate of 5.7% but the positivity for IgA in saliva was higher (52% for RBD and 35% for NCP). In addition, the highest antibody titers were obtained for anti-RBD IgG and IgA in the HI and VI groups, respectively. In saliva, the IgA antibody titer was higher for the RBD antigen (1:1280). Conclusions: These results strengthen our understanding of antibody concentrations in HCWs during two critical years of the pandemic in a general hospital with many COVID-19 patients. Full article
(This article belongs to the Section Infectious Disease)
Show Figures

Figure 1

19 pages, 724 KiB  
Article
Analyzing the Gaps in Breast Cancer Diagnostics in Poland—A Retrospective Observational Study in the Data Donation Model
by Wojciech Sierocki, Ligia Kornowska, Oliver Slapal, Agata Koska, Gabriela Sierocka, Alicja Dudek, Claudia Dompe, Michał Suchodolski, Przemysław Keczmer and Magdalena Roszak
Diagnostics 2025, 15(17), 2127; https://doi.org/10.3390/diagnostics15172127 - 22 Aug 2025
Abstract
Background: Breast cancer is a major health concern in Poland, with significant incidence and mortality rates despite national screening programs. This retrospective study aimed to evaluate critical aspects of breast cancer management, focusing on waiting times, treatment coordination, cancer characteristics, diagnostic testing, and [...] Read more.
Background: Breast cancer is a major health concern in Poland, with significant incidence and mortality rates despite national screening programs. This retrospective study aimed to evaluate critical aspects of breast cancer management, focusing on waiting times, treatment coordination, cancer characteristics, diagnostic testing, and staging. Methods: We retrospectively analyzed 587 medical records of breast cancer patients (585 female, 2 male) collected between March 2023 and June 2024 through a data donation model. Data included tumor characteristics (histological type, grade, stage, biological subtype, receptor status, Ki-67), diagnostic and genetic tests, and timelines of key events in the diagnostic and therapeutic pathways. Results: Although referral to first oncology consult (18 days) and MDT referral/admission to treatment (10 days) met NFZ guidelines, diagnosis to surgery (94 days) and diagnosis to drug treatment (109 days) were significantly delayed. No records showed oncology coordinator assignment or educational material provision. Clinically, invasive carcinoma NST (77%) and early-stage (IA/IIA, 61%) were prevalent, with Luminal B (HER2-negative) being the most common biological subtype. BRCA1/2 testing was common, but Oncotype DX was not. For 314 HR+ HER2- patients, stage IA (44%) was most common, with no BRCA1/2 mutations found. Conclusion: Breast cancer care in the Łódź voivodeship falls short of national guidelines due to long waiting times and poor care coordination, a problem worsened by incomplete data. Improving record-keeping and speeding up diagnostic and treatment pathways are crucial for better breast cancer management in Poland. While patient data donation can help analyze real clinical pathways, data completeness, and consistency remain challenges. Full article
(This article belongs to the Special Issue Diagnosis, Treatment, and Prognosis of Breast Cancer)
Show Figures

Figure 1

23 pages, 3539 KiB  
Article
Unraveling the Metabolic Mechanisms and Novel Biomarkers of Vulvar Lichen Simplex Chronicus Using Skin Biopsy and Tape Stripping Samples
by Tian He, Fanrui Xu, Jing Liang, Qing Feng, Dan Cheng, Linlin Xiao, Maoyu Liu, Xuerui Zhang, Xin Wang, Yang Yang, Dan Zhu, Sergey Tumanov, Richard D. Cannon, Ting-Li Han and Shufang Chang
Metabolites 2025, 15(9), 566; https://doi.org/10.3390/metabo15090566 - 22 Aug 2025
Abstract
Background/Objectives: Lichen simplex chronicus (LSC) of the vulva is a chronic dermatologic disorder characterized by persistent pruritus, compulsive scratching, and progressive thickening of the vulvar skin. Currently, LSC diagnosis primarily relies on clinical presentation, with histopathological examination performed when the diagnosis is unclear. [...] Read more.
Background/Objectives: Lichen simplex chronicus (LSC) of the vulva is a chronic dermatologic disorder characterized by persistent pruritus, compulsive scratching, and progressive thickening of the vulvar skin. Currently, LSC diagnosis primarily relies on clinical presentation, with histopathological examination performed when the diagnosis is unclear. However, the precise pathogenic mechanisms driving the disease remain poorly understood. This study aimed to investigate the pathogenesis of LSC and evaluate the feasibility of tape stripping as a non-invasive diagnostic technique. Methods: Skin specimens were obtained using both traditional biopsy and tape stripping methods, and the metabolites and oxidized lipids in these samples were analyzed using advanced mass spectrometry techniques. Results: Our findings suggest that 20-hydroxyeicosatetraenoic acid (20-HETE), an oxidized derivative of arachidonic acid (AA), activates the TRPV1 receptor, thereby exacerbating the itch–scratch cycle. This activation upregulates energy metabolism and promotes epidermal hyperplasia, providing new insights into the disease’s pathophysiology. Conclusions: Our study suggests that tape stripping could serve as a viable non-invasive diagnostic tool for LSC, with linoleic acid (LA) and AA potentially acting as biomarkers for the disease. Full article
(This article belongs to the Section Advances in Metabolomics)
Show Figures

Figure 1

13 pages, 1207 KiB  
Article
Evaluation of Cyclotron Solid Target Produced Gallium-68 Chloride for the Labeling of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC
by Michał Jagodziński, Jakub Boratyński, Paulina Hamankiewicz, Łukasz Cheda, Witold Uhrynowski, Agnieszka Girstun, Joanna Trzcińska-Danielewicz, Zbigniew Rogulski and Marek Pilch-Kowalczyk
Molecules 2025, 30(17), 3458; https://doi.org/10.3390/molecules30173458 - 22 Aug 2025
Abstract
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence [...] Read more.
Gallium-68 is a widely used positron-emitting radionuclide in nuclear medicine, traditionally obtained from 68Ge/68Ga generators. However, increasing clinical demand has driven interest in alternative production methods, such as medical cyclotrons equipped with solid targets. This study evaluates the functional equivalence of gallium-68 chloride obtained from cyclotron solid target and formulated to be equivalent to the eluate from a germanium-gallium generator, aiming to determine whether this production method can serve as a reliable alternative for PET radiopharmaceutical applications. Preparations of [68Ga]Ga-PSMA-11 and [68Ga]Ga-DOTATOC, labeled with cyclotron-derived gallium-68 chloride, were subjected to quality control analysis using radio thin layer chromatography and radio high performance liquid chromatography. Subsequently, biodistribution studies were performed in mouse oncological models of expression of PSMA antigen and SSTR receptor to compare uptake of preparations produced with generator and cyclotron-derived isotopes. All tested formulations met the required radiochemical purity specifications. Moreover, tumor accumulation of the radiolabeled compounds was comparable regardless of the isotope source. The results support the conclusion that gallium-68 produced via cyclotron is functionally equivalent to that obtained from a generator, demonstrating its potential for interchangeable use in clinical and research radiopharmaceutical applications. Full article
Show Figures

Figure 1

41 pages, 1055 KiB  
Review
Targeting Inflammation with Natural Products: A Mechanistic Review of Iridoids from Bulgarian Medicinal Plants
by Rositsa Mihaylova, Viktoria Elincheva, Reneta Gevrenova, Dimitrina Zheleva-Dimitrova, Georgi Momekov and Rumyana Simeonova
Molecules 2025, 30(17), 3456; https://doi.org/10.3390/molecules30173456 - 22 Aug 2025
Abstract
Chronic, low-grade inflammation is a key contributor to the development of numerous non-communicable diseases (NCDs), including cardiovascular, metabolic, and neurodegenerative disorders. Conventional anti-inflammatory drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, often present safety concerns with prolonged use, highlighting the need for [...] Read more.
Chronic, low-grade inflammation is a key contributor to the development of numerous non-communicable diseases (NCDs), including cardiovascular, metabolic, and neurodegenerative disorders. Conventional anti-inflammatory drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids, often present safety concerns with prolonged use, highlighting the need for safer, multi-targeted therapeutic options. Iridoids, a class of monoterpenoid compounds abundant in several medicinal plants, have emerged as promising bioactive agents with diverse pharmacological properties. They exert anti-inflammatory and metabolic regulatory effects by modulating key signaling pathways, including nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), Janus kinase/signal transducer and activator of transcription (JAK/STAT), adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor (PPAR) pathways. This review provides a comprehensive summary of the major iridoid metabolites derived from ten Bulgarian medicinal plant species, along with mechanistic insights from in vitro and in vivo studies. Documented biological activities include anti-inflammatory, antioxidant, immunomodulatory, antifibrotic, organoprotective, antibacterial, antiviral, analgesic, and metabolic effects. By exploring their phytochemical profiles and pharmacodynamics, we underscore the therapeutic potential of iridoid-rich Bulgarian flora in managing inflammation-related and metabolic diseases. These findings support the relevance of iridoids as complementary or alternative agents to conventional therapies and highlight the need for further translational and clinical research. Full article
(This article belongs to the Special Issue Role of Natural Products in Inflammation)
32 pages, 2219 KiB  
Review
Deciphering the Molecular Interplay Between RXLR-Encoded Avr Genes and NLRs During Phytophthora infestans Infection in Potato: A Comprehensive Review
by Bicko S. Juma, Olga A. Oxholm, Isaac K. Abuley, Chris K. Sørensen and Kim H. Hebelstrup
Int. J. Mol. Sci. 2025, 26(17), 8153; https://doi.org/10.3390/ijms26178153 - 22 Aug 2025
Abstract
Potato (Solanum tuberosum L.) is a globally significant staple crop that faces constant threats from Phytophthora infestans, the causative agent of late blight (LB). The battle between Phytophthora infestans and its host is driven by the molecular interplay of RXLR-encoded avirulence [...] Read more.
Potato (Solanum tuberosum L.) is a globally significant staple crop that faces constant threats from Phytophthora infestans, the causative agent of late blight (LB). The battle between Phytophthora infestans and its host is driven by the molecular interplay of RXLR-encoded avirulence (PiAvr) effectors and nucleotide-binding leucine-rich repeat (NLR) immune receptors in potato. This review provides a comprehensive analysis of the structural characteristics, functional diversity, and evolutionary dynamics of RXLR effectors and the mechanisms by which NLR receptors recognize and respond to them. The study elaborates on both direct and indirect modes of effector recognition by NLRs, highlighting the gene-for-gene interactions that underlie resistance. Additionally, we discuss the molecular strategies employed by P. infestans to evade host immunity, including effector polymorphism, truncation, and transcriptional regulation. Advances in structural biology, functional genomics, and computational modeling have provided valuable insights into effector–receptor interactions, paving the way for innovative resistance breeding strategies. We also discuss the latest approaches to engineering durable resistance, including gene stacking, synthetic NLRs, and CRISPR-based modifications. Understanding these molecular mechanisms is critical for developing resistant potato cultivars and mitigating the devastating effects of LB. This review aims to bridge current knowledge gaps and guide future research efforts in plant immunity and disease management. Full article
(This article belongs to the Special Issue Plant–Microbe Interactions: 2nd Edition)
21 pages, 929 KiB  
Review
Potential Effects of Low-Calorie Sweeteners on Human Health
by Huang-Pin Chen, Yuan Kao, Meng-Wei Lin, Chun-Te Lee, Hung-Tsung Wu and Hsin-Yu Kuo
Nutrients 2025, 17(17), 2726; https://doi.org/10.3390/nu17172726 - 22 Aug 2025
Abstract
Low-calorie sweeteners (LCS) are widely utilized as sugar substitutes due to their intense sweetness, thermal stability, and applicability in weight management and diabetic-friendly products. However, increasing evidence has raised concerns about their potential long-term effects on metabolic health, glucose regulation, cardiovascular function, carcinogenicity, [...] Read more.
Low-calorie sweeteners (LCS) are widely utilized as sugar substitutes due to their intense sweetness, thermal stability, and applicability in weight management and diabetic-friendly products. However, increasing evidence has raised concerns about their potential long-term effects on metabolic health, glucose regulation, cardiovascular function, carcinogenicity, and gut microbiota composition. This review systematically evaluates the pharmacokinetics, metabolic effects, and associated health outcomes of major LCS. Mechanistically, LCS exert effects via sweet taste receptor-mediated pathways, altering glucose absorption, insulin secretion, and intracellular signaling cascades. Additionally, LCS influence gut microbiota composition, with certain agents promoting dysbiosis and glucose intolerance. While some findings support the metabolic benefits of selected LCS, others underscore potential risks, necessitating cautious interpretation. In conclusion, while LCS offer viable alternatives to sugar, their health effects are context-dependent and may vary across different sweeteners and populations. Long-term, high-quality clinical trials are essential to elucidate their safety and efficacy. Full article
20 pages, 17061 KiB  
Article
RIPK3 Contributes to Thyroid Hormone-Induced Photoreceptor Degeneration
by Lilliana R. York, Hongwei Ma, Yun Le, Courtney T. Griffin and Xi-Qin Ding
Int. J. Mol. Sci. 2025, 26(17), 8154; https://doi.org/10.3390/ijms26178154 - 22 Aug 2025
Abstract
Thyroid hormone (TH) regulates cell proliferation, differentiation, and metabolism. Increased TH levels in circulation are associated with a higher incidence of age-related macular degeneration. In mice, TH treatment causes photoreceptor degeneration, which is accompanied by an increase in receptor-interacting serine/threonine-protein kinase 3 (RIPK3) [...] Read more.
Thyroid hormone (TH) regulates cell proliferation, differentiation, and metabolism. Increased TH levels in circulation are associated with a higher incidence of age-related macular degeneration. In mice, TH treatment causes photoreceptor degeneration, which is accompanied by an increase in receptor-interacting serine/threonine-protein kinase 3 (RIPK3) in the retina. Here, we investigated the contribution of RIPK3/necroptosis to TH-induced photoreceptor degeneration using mice deficient in RIPK3 and the necroptotic mixed lineage kinase domain-like protein (MLKL). Wild-type (C57BL/6) and mutant mice at postnatal day 30 received triiodothyronine (T3, 20 µg/mL in drinking water) for four weeks, followed by the evaluation of photoreceptor survival/death and retinal function. Deletion of Ripk3 preserved photoreceptor integrity against T3-induced degeneration, evidenced by improved retinal morphology, increased cone density, improved retinal light responses, and reduced cell death. This protection was observed in both global and photoreceptor-specific Ripk3 knockout mice. In contrast, the deletion of Mlkl did not protect photoreceptors. This work supports the view that RIPK3, but not MLKL, contributes to TH-induced photoreceptor degeneration. The lack of protection from Mlkl deletion suggests that RIPK3’s action is likely mediated via a necrosome-independent mechanism. These findings provide significant insight into how TH signaling induces photoreceptor degeneration and implicate RIPK3 as a potential therapeutic target. Full article
(This article belongs to the Special Issue Advanced Molecular Research on Retinopathy and Protection)
Show Figures

Figure 1

51 pages, 2520 KiB  
Review
Bone-Derived Factors: Regulating Brain and Treating Alzheimer’s Disease
by Qiao Guan, Yanting Cao, Jun Zou and Lingli Zhang
Biology 2025, 14(9), 1112; https://doi.org/10.3390/biology14091112 - 22 Aug 2025
Abstract
In recent years, the bidirectional regulatory mechanism of the bone-brain axis has become a hotspot for interdisciplinary research. In this paper, we systematically review the anatomical and functional links between bone and the central nervous system, focusing on the regulation of brain function [...] Read more.
In recent years, the bidirectional regulatory mechanism of the bone-brain axis has become a hotspot for interdisciplinary research. In this paper, we systematically review the anatomical and functional links between bone and the central nervous system, focusing on the regulation of brain function by bone-derived signals and their clinical translational potential. At the anatomical level, the blood–brain barrier permeability mechanism and the unique structure of the periventricular organs establish the anatomical basis for bone-brain information transmission. Innovative discoveries indicate that the bone cell network (bone marrow mesenchymal stem cells, osteoblasts, osteoclasts, and bone marrow monocytes) directly regulates neuroplasticity and the inflammatory microenvironment through the secretion of factors such as osteocalcin, lipid transporter protein 2, nuclear factor κB receptor-activating factor ligand, and fibroblast growth factor 23, as well as exosome-mediated remote signaling. Clinical studies have revealed a bidirectional vicious cycle between osteoporosis and Alzheimer’s disease: reduced bone density exacerbates Alzheimer’s disease pathology through pathways such as PDGF-BB, while AD-related neurodegeneration further accelerates bone loss. The breakthrough lies in the discovery that anti-osteoporotic drugs, such as bisphosphonates, improve cognitive function. In contrast, neuroactive drugs modulate bone metabolism, providing new strategies for the treatment of comorbid conditions. Additionally, whole-body vibration therapy shows potential for non-pharmacological interventions by modulating bone-brain interactions through the mechano-osteoclast signaling axis. In the future, it will be essential to integrate multiple groups of biomarkers to develop early diagnostic tools that promote precise prevention and treatment of bone-brain comorbidities. This article provides a new perspective on the mechanisms and therapeutic strategies of neuroskeletal comorbidities. Full article
(This article belongs to the Special Issue Bone Cell Biology)
11 pages, 668 KiB  
Article
Influence of Gestational Age on the Level of Functional Peptides (Peptidome) in Breast Milk
by Anna-Lena Abels, Johanna Ruhnau, Till Ittermann, Manuela Gesell Salazar, Anja Lange, Antje Vogelgesang, Hans Jörgen Grabe, Uwe Völker, Matthias Heckmann and Elke Hammer
Nutrients 2025, 17(17), 2724; https://doi.org/10.3390/nu17172724 - 22 Aug 2025
Abstract
Background/Objectives: Human milk provides essential nutrients and immune factors with beneficial impact on term, but especially preterm infants’ development. Therefore, this study focuses on the quantification of differences in the peptidome composition of breast milk from mothers of preterm and term infants, keeping [...] Read more.
Background/Objectives: Human milk provides essential nutrients and immune factors with beneficial impact on term, but especially preterm infants’ development. Therefore, this study focuses on the quantification of differences in the peptidome composition of breast milk from mothers of preterm and term infants, keeping in mind that this could reflect different biological needs of these infants or indicate nutritional gaps for healthy development. Methods: In a prospective observational study, breast milk samples were collected from 10 mothers of preterm infants (29–36 weeks gestational age,) and 13 mothers of term infants (37–41 weeks) at day 4 to 6 postnatally. A non-targeted tandem mass spectrometry approach was employed to analyze the milk peptidome. Results: In total, 4570 peptides were quantified. Adjusting the results for maternal age, weight, and height revealed a significant difference for 130 peptides derived from 19 different proteins between preterm and term milk. Proteins comprised high abundant proteins (e.g., αS1-casein, κ- casein, or ß-casein), but also proteins that are less prominent in milk but of high functional importance (e.g., Hypoxia-inducible factor 1-alpha, Olfactory receptor 4M1). The differentially abundant peptides included peptides derived from ß-casein, which have already been described as being involved in antimicrobial functions as well as proliferation stimulating. For another 32 peptides, bioactivity was predicted. Conclusions: The current study provides a comprehensive overview on the differences in the milk peptidome at different gestational ages independent from common maternal phenotypes and improved the database for future peptide functionality studies. Full article
(This article belongs to the Special Issue Bioactive Milk Proteins and Human Health—2nd Edition)
Show Figures

Graphical abstract

15 pages, 2576 KiB  
Article
Dextromethorphan Enhances Apoptosis and Suppresses EMT in PANC-1 Pancreatic Cancer Cells: Synergistic Effects with Gemcitabine
by Gulsah Medet and Ahmet Inal
Int. J. Mol. Sci. 2025, 26(17), 8151; https://doi.org/10.3390/ijms26178151 - 22 Aug 2025
Abstract
This study aimed to evaluate the effects of dextromethorphan (DX), alone and in combination with gemcitabine (GEM), on cell viability, apoptosis, and epithelial–mesenchymal transition (EMT) markers in PANC-1 human pancreatic cancer cells. PANC-1 human pancreatic cancer cells were cultured and treated with varying [...] Read more.
This study aimed to evaluate the effects of dextromethorphan (DX), alone and in combination with gemcitabine (GEM), on cell viability, apoptosis, and epithelial–mesenchymal transition (EMT) markers in PANC-1 human pancreatic cancer cells. PANC-1 human pancreatic cancer cells were cultured and treated with varying concentrations of dextromethorphan (DX), gemcitabine (GEM), and 5-fluorouracil (5-FU), both as monotherapies and in combination. Cytotoxic effects were assessed using the MTT assay, and IC50 values were calculated at 24, 48, and 72 h. Apoptotic responses were evaluated using Annexin V-FITC/PI staining followed by flow cytometry. Protein expression levels of Bax, Bcl-2, and Vimentin were determined via immunocytochemistry, while EMT markers (E-cadherin, N-cadherin, Vimentin) were analyzed using flow cytometry. Relative mRNA expression of apoptotic and EMT-related genes was quantified by qRT-PCR. DX exhibited time- and dose-dependent cytotoxicity in PANC-1 cells, with IC50 values of 280.4 µM at 24 h, 163.2 µM at 48 h, and 105.6 µM at 72 h. For GEM, the 72 h IC50 was 57.53 µM. The combination of DX 50 µM + GEM 12.5 µM resulted in significantly lower cell viability (24.93 ± 3.12%) compared to GEM 25 µM (35.33 ± 5.22%) and DX 100 µM (51.40 ± 3.10%) (p < 0.001). Flow cytometry revealed significant increases in early (21.83 ± 1.32%) and late apoptotic cells (32.20 ± 0.84%) in the combination group, with a corresponding reduction in viable cells compared to control (24.93 ± 3.12% vs. 89.53 ± 0.97%, p < 0.001). Immunocytochemical analysis showed increased Bax-positive cell count (62.0 cells/unit area), and decreased Bcl-2 (19.0) and Vimentin (28.0) levels in the combination group compared to control (Bax: 15.0, Bcl-2: 60.0, Vimentin: 70.0) (p < 0.001). Flow cytometry for EMT markers demonstrated increased E-cadherin (83.84 ± 0.65%) and decreased Vimentin (71.04 ± 1.17%) and N-cadherin (30.47 ± 0.72%) expression in the DX + GEM group compared to EMT control (E-cadherin: 68.97 ± 1.43%, Vimentin: 91.00 ± 0.75%, N-cadherin: 62.47 ± 1.13%) (p < 0.001). qRT-PCR supported these findings with increased Bax (2.1-fold), E-cadherin (2.0-fold), and reduced Bcl-2 (0.3-fold) and XIAP (0.6-fold) in the combination group (p < 0.05). Dextromethorphan, particularly in combination with gemcitabine, appears to enhance apoptosis and suppress EMT-associated marker expression in PANC-1 cells, supporting its potential as an adjuvant agent in pancreatic cancer therapy. Full article
Show Figures

Figure 1

Back to TopTop