Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,402)

Search Parameters:
Keywords = reconfigurable

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2919 KB  
Article
Design and Preparation of Compact 3-Bit Reconfigurable RF MEMS Attenuators for Millimeter-Wave Bands
by Shilong Miao, Rui Chai, Yuheng Si, Yulong Zhang, Qiannan Wu and Mengwei Li
Micromachines 2025, 16(10), 1117; https://doi.org/10.3390/mi16101117 - 29 Sep 2025
Abstract
As a core functional device in microwave systems, attenuators play a crucial role in key aspects such as signal power regulation, amplitude attenuation, and impedance matching. Addressing the pressing technical issues currently exposed by attenuators in practical applications, such as excessive insertion loss, [...] Read more.
As a core functional device in microwave systems, attenuators play a crucial role in key aspects such as signal power regulation, amplitude attenuation, and impedance matching. Addressing the pressing technical issues currently exposed by attenuators in practical applications, such as excessive insertion loss, low attenuation accuracy, large physical dimensions, and insufficient process reliability, this paper proposes a design scheme for an RF three-bit reconfigurable stepped attenuator based on radio frequency micro-electromechanical systems (RF MEMS) switches. The attenuator employs planar integration of the T-type attenuation network, Coplanar Waveguide (CPW), Y-shaped power divider, and RF MEMS switches. While ensuring rational power distribution and stable attenuation performance over the full bandwidth, it reduces the number of switches to suppress parasitic parameters, thereby enhancing process feasibility. Test results confirm that this device demonstrates significant advancements in attenuation accuracy, achieving a precision of 1.18 dB across the 0–25 dB operational range from DC to 20 GHz, with insertion loss kept below 1.65 dB and return loss exceeding 12.15 dB. Additionally, the device boasts a compact size of merely 0.66 mm × 1.38 mm × 0.32 mm, significantly smaller than analogous products documented in existing literature. Meanwhile, its service life approaches 5 × 107 cycles. Together, these two attributes validate the device’s performance reliability and miniaturization advantages. Full article
21 pages, 5486 KB  
Article
Research on Mobile Energy Storage Configuration and Path Planning Strategy Under Dual Source-Load Uncertainty in Typhoon Disasters
by Bingchao Zhang, Chunyang Gong, Songli Fan, Jian Wang, Tianyuan Yu and Zhixin Wang
Energies 2025, 18(19), 5169; https://doi.org/10.3390/en18195169 - 28 Sep 2025
Abstract
In recent years, frequent typhoon-induced disasters have significantly increased the risk of power grid outages, posing severe challenges to the secure and stable operation of distribution grids with high penetration of distributed photovoltaic (PV) systems. Furthermore, during post-disaster recovery, the dual uncertainties of [...] Read more.
In recent years, frequent typhoon-induced disasters have significantly increased the risk of power grid outages, posing severe challenges to the secure and stable operation of distribution grids with high penetration of distributed photovoltaic (PV) systems. Furthermore, during post-disaster recovery, the dual uncertainties of distributed PV output and the charging/discharging behavior of flexible resources such as electric vehicles (EVs) complicate the configuration and scheduling of mobile energy storage systems (MESS). To address these challenges, this paper proposes a two-stage robust optimization framework for dynamic recovery of distribution grids: Firstly, a multi-stage decision framework is developed, incorporating MESS site selection, network reconfiguration, and resource scheduling. Secondly, a spatiotemporal coupling model is designed to integrate the dynamic dispatch behavior of MESS with the temporal and spatial evolution of disaster scenarios, enabling dynamic path planning. Finally, a nested column-and-constraint generation (NC&CG) algorithm is employed to address the uncertainties in PV output intervals and EV demand fluctuations. Simulations on the IEEE 33-node system demonstrate that the proposed method improves grid resilience and economic efficiency while reducing operational risks. Full article
(This article belongs to the Special Issue Control Technologies for Wind and Photovoltaic Power Generation)
Show Figures

Figure 1

21 pages, 2027 KB  
Article
Fast Network Reconfiguration Method with SOP Considering Random Output of Distributed Generation
by Zhongqiang Zhou, Yuan Wen, Yixin Xia, Xiaofang Liu, Yusong Huang, Jialong Tan and Jupeng Zeng
Processes 2025, 13(10), 3104; https://doi.org/10.3390/pr13103104 - 28 Sep 2025
Abstract
Power outages in non-faulted zones caused by system failures significantly reduce the reliability of distribution networks. To address this issue, this paper proposes a fault self-healing technique based on the integration of soft open points (SOPs) and network reconfiguration. A mathematical model for [...] Read more.
Power outages in non-faulted zones caused by system failures significantly reduce the reliability of distribution networks. To address this issue, this paper proposes a fault self-healing technique based on the integration of soft open points (SOPs) and network reconfiguration. A mathematical model for power restoration is developed. The model incorporates SOP operational constraints and the stochastic output of photovoltaic (PV) distributed generation. And this formulation enables the determination of the optimal network reconfiguration strategy and enhances the restoration capability. The study first analyzes the operational principles of SOPs and formulates corresponding constraints based on their voltage support and power flow regulation capabilities. The stochastic nature of PV power output is then modeled and integrated into the restoration model to enhance its practical applicability. This restoration model is further reformulated as a second-order cone programming (SOCP) problem to enable efficient computation of the optimal network configuration. The proposed method is simulated and validated in MATLAB R2019a. Results demonstrate that combining the SOP with the reconfiguration strategy achieves a 100% load restoration rate. This represents a significant improvement compared to traditional network reconfiguration methods. Furthermore, the second-order cone programming (SOCP) transformation ensures computational efficiency. The proposed approach effectively enhances both the fault recovery capability and operational reliability of distribution networks with high penetration of renewable energy. Full article
Show Figures

Figure 1

9 pages, 536 KB  
Article
Controllable Mechanical Dynamics in Golf-Tee Shaped Nanostructures
by Chan Shin, Jinyong Kim and Inah Yeo
Symmetry 2025, 17(10), 1610; https://doi.org/10.3390/sym17101610 - 28 Sep 2025
Abstract
We investigate the mechanical dynamics of golf-tee nanostructures, a common macroscopic geometry whose nanoscale implementation has received limited attention in the emerging field of hybrid nanophotonics. Using a theoretical analysis of the golf-tee geometry–characterized by its broad head, cylindrical support, tapered bottom sidewalls, [...] Read more.
We investigate the mechanical dynamics of golf-tee nanostructures, a common macroscopic geometry whose nanoscale implementation has received limited attention in the emerging field of hybrid nanophotonics. Using a theoretical analysis of the golf-tee geometry–characterized by its broad head, cylindrical support, tapered bottom sidewalls, and axisymmetric structure–we examine the mechanical characteristics of individual resonators and pairwise coupling between resonators. We demonstrate mechanical coupling of tens of MHz, providing improved control compared to conventional cylindrical pillars. The controllable mechanical dynamics of golf-tee structures offer an alternative approach to conventional cylindrical pillars, with enhanced tunability for mechanically configurable metasurfaces and potential for mechanically reconfigurable photonic applications. Full article
Show Figures

Figure 1

21 pages, 387 KB  
Article
Escaping the Workshop: Writers from the Factory in China’s Early Reform Era (1978–1989)
by Sandy J. S. Zhang
Humanities 2025, 14(10), 189; https://doi.org/10.3390/h14100189 - 26 Sep 2025
Abstract
This article traces the trajectory of China’s dominant literary field as it shifted from proletarian to intellectual literature in the early reform era. It examines the conditions and cultural logic underlying the striking phenomenon whereby former industrial workers, once incorporated into the literary [...] Read more.
This article traces the trajectory of China’s dominant literary field as it shifted from proletarian to intellectual literature in the early reform era. It examines the conditions and cultural logic underlying the striking phenomenon whereby former industrial workers, once incorporated into the literary field, rapidly distanced themselves from the very genre historically rooted in their own industrial experiences, namely, worker literature. Focusing on writers emerging from factories and on Shanghai Literature—a journal once known for publishing worker literature. The article analyzes the reconfiguration of class and identity that accompanied China’s transition from its high socialist past. I argue that socialist worker literature never fully reconciled the structural antagonism between manual and mental labor. In the early reform era, factory-based writers appropriated literature as a mode of symbolic escape and ideological critique. Hence, literature itself became a site where the contradictions of socialist and capitalist modernity were negotiated and contested. Full article
(This article belongs to the Special Issue Labor Utopias and Dystopias)
42 pages, 5827 KB  
Review
A Review of Reconfigurable Intelligent Surfaces in Underwater Wireless Communication: Challenges and Future Directions
by Tharuka Govinda Waduge, Yang Yang and Boon-Chong Seet
J. Sens. Actuator Netw. 2025, 14(5), 97; https://doi.org/10.3390/jsan14050097 - 26 Sep 2025
Abstract
Underwater wireless communication (UWC) is an emerging technology crucial for automating marine industries, such as offshore aquaculture and energy production, and military applications. It is a key part of the 6G vision of creating a hyperconnected world for extending connectivity to the underwater [...] Read more.
Underwater wireless communication (UWC) is an emerging technology crucial for automating marine industries, such as offshore aquaculture and energy production, and military applications. It is a key part of the 6G vision of creating a hyperconnected world for extending connectivity to the underwater environment. Of the three main practicable UWC technologies (acoustic, optical, and radiofrequency), acoustic methods are best for far-reaching links, while optical is best for high-bandwidth communication. Recently, utilizing reconfigurable intelligent surfaces (RISs) has become a hot topic in terrestrial applications, underscoring significant benefits for extending coverage, providing connectivity to blind spots, wireless power transmission, and more. However, the potential for further research works in underwater RIS is vast. Here, for the first time, we conduct an extensive survey of state-of-the-art of RIS and metasurfaces with a focus on underwater applications. Within a holistic perspective, this survey systematically evaluates acoustic, optical, and hybrid RIS, showing that environment-aware channel switching and joint communication architectures could deliver holistic gains over single-domain RIS in the distance–bandwidth trade-off, congestion mitigation, security, and energy efficiency. Additional focus is placed on the current challenges from research and realization perspectives. We discuss recent advances and suggest design considerations for coupling hybrid RIS with optical energy and piezoelectric acoustic energy harvesting, which along with distributed relaying, could realize self-sustainable underwater networks that are highly reliable, long-range, and high throughput. The most impactful future directions seem to be in applying RIS for enhancing underwater links in inhomogeneous environments and overcoming time-varying effects, realizing RIS hardware suitable for the underwater conditions, and achieving simultaneous transmission and reflection (STAR-RIS), and, particularly, in optical links—integrating the latest developments in metasurfaces. Full article
Show Figures

Figure 1

21 pages, 10177 KB  
Article
Postcolonial Resilience in Casablanca: Colonial Legacies and Climate Vulnerability
by Pelin Bolca
Sustainability 2025, 17(19), 8656; https://doi.org/10.3390/su17198656 - 26 Sep 2025
Abstract
Casablanca, Morocco’s largest Atlantic port city, faces increasing exposure to floods, drought, and other risks that align with legacies of urban transformations carried out during the colonial period. This study examines how early-20th-century interventions—including the canalization and burial of the Oued Bouskoura, extensive [...] Read more.
Casablanca, Morocco’s largest Atlantic port city, faces increasing exposure to floods, drought, and other risks that align with legacies of urban transformations carried out during the colonial period. This study examines how early-20th-century interventions—including the canalization and burial of the Oued Bouskoura, extensive coastal reclamation, and the implementation of rigid zoning—were associated with a reconfiguration of the city’s hydrology and coincide with persistent socio-spatial inequalities. Using historical cartography, archival sources, and GIS-based overlays of colonial-era plans with contemporary hazard maps, the analysis reveals an indicative spatial correlation between today’s high-risk zones and areas transformed under the Protectorate, with the medina emerging as one of the most vulnerable districts. While previous studies have examined either colonial planning in architectural or contemporary climate risks through technical and governance lenses, this article illuminates historically conditioned relationships and long-term associations for urban resilience. In doing so, it empirically maps spatial associations and conceptually argues for reframing heritage not only as cultural memory but as a climate resource, illustrating how suppressed vernacular systems may inform adaptation strategies. This interdisciplinary approach provides a novel contribution to postcolonial city research, climate adaptation and heritage studies by proposing a historically conscious framework for resilience planning. Full article
Show Figures

Figure 1

18 pages, 4553 KB  
Article
The Sacred Theater in Goguryeo Tomb Murals: Myth, Belief, and the Pictorial Performance of Political Authority
by Lu Yang
Religions 2025, 16(10), 1237; https://doi.org/10.3390/rel16101237 - 25 Sep 2025
Abstract
The 4th and 5th centuries marked a pivotal phase in the development of the Goguryeo regime. Its tomb murals epitomize the visual strategies of state-building, serving to establish a “sacred theater” of power. Taking Tomb No. 4 of the Wukui complex as a [...] Read more.
The 4th and 5th centuries marked a pivotal phase in the development of the Goguryeo regime. Its tomb murals epitomize the visual strategies of state-building, serving to establish a “sacred theater” of power. Taking Tomb No. 4 of the Wukui complex as a case in point, the murals reveal localized adaptations of the Fuxi–Nüwa imagery, blending the Central Plains’ sun-deity worship with Goguryeo’s ancestral mythology through the symbol of the sun-centered Three-Legged Crow, thereby legitimizing the sacred lineage of royal authority. The function of the Four Symbols (Sishen) imagery evolved from mere directional markers into guardians of sovereignty, reflecting deeper cultural transformations. The diachronic evolution of mural themes traces the trajectory of political change: in the 4th century, murals centered on wrestling and banqueting scenes, reinforcing ethnic identity and consolidating tribal alliances through ritualized displays of strength and hierarchical banquet etiquette. By the 5th century, the themes shifted to hunting, processions, and Buddhist rituals, where military metaphors and ceremonial norms underscored the rise of a centralized bureaucratic system and the imperatives of territorial expansion. Through three interlocking mechanisms—symbolic reconfiguration, spatial narrative, and sensory manipulation—Goguryeo tomb murals constructed a closed value system linking worldly authority to posthumous order, serving as material testimony to the enduring “covenant between humans and deities.” Full article
(This article belongs to the Section Religions and Humanities/Philosophies)
Show Figures

Figure 1

25 pages, 1060 KB  
Article
Ambidextrous Market Orientation and Digital Business Model Innovation
by Xiaolong Liu and Yi Xie
Sustainability 2025, 17(19), 8633; https://doi.org/10.3390/su17198633 - 25 Sep 2025
Abstract
With accelerating digital transformation, firms must renew how they create, deliver, and capture value to remain competitive and to advance sustainable competitiveness. This study examines how ambidextrous market orientation drives digital business model innovation (DBMI) through the mediating role of digital resource bricolage [...] Read more.
With accelerating digital transformation, firms must renew how they create, deliver, and capture value to remain competitive and to advance sustainable competitiveness. This study examines how ambidextrous market orientation drives digital business model innovation (DBMI) through the mediating role of digital resource bricolage and the moderating effect of environmental turbulence. Using survey data and structural equation modeling (SEM), we find that both proactive and responsive market orientations positively affect DBMI. Digital resource bricolage partially mediates both relationships, with a stronger mediation effect for responsive orientation. Environmental turbulence strengthens the association between ambidextrous market orientation and digital resource bricolage. Complementing variable-centric tests, fuzzy-set qualitative comparative analysis (fsQCA) identifies three configurational pathways sufficient for high DBMI, revealing alternative routes to business-model renewal under different contextual conditions. The findings extend ambidextrous market orientation research to digital contexts, enrich the resource-recombination perspective on DBMI, and provide actionable guidance for firms seeking to orchestrate data, platforms, and legacy assets to reconfigure activity systems. By clarifying when and how market sensing and shaping translate into effective digital recombination, this study informs strategies for sustainable competitiveness in turbulent environments. Full article
Show Figures

Figure 1

19 pages, 1201 KB  
Article
Design of a Low-Latency Video Encoder for Reconfigurable Hardware on an FPGA
by Pablo Perez-Tirador, Jose Javier Aranda, Manuel Alarcon Granero, Francisco J. J. Quintanilla, Gabriel Caffarena and Abraham Otero
Technologies 2025, 13(10), 433; https://doi.org/10.3390/technologies13100433 - 25 Sep 2025
Abstract
The growing demand for real-time video streaming in power-constrained embedded systems, such as drone navigation and remote surveillance, requires encoding solutions that prioritize low latency. In these applications, even small delays in video transmission can impair the operator’s ability to react in time, [...] Read more.
The growing demand for real-time video streaming in power-constrained embedded systems, such as drone navigation and remote surveillance, requires encoding solutions that prioritize low latency. In these applications, even small delays in video transmission can impair the operator’s ability to react in time, leading to instability in closed-loop control systems. To mitigate this, encoding must be lightweight and designed so that streaming can start as soon as possible, ideally even while frames are still being processed, thereby ensuring continuous and responsive operation. This paper presents the design of a hardware implementation of the Logarithmic Hop Encoding (LHE) algorithm on a Field-Programmable Gate Array (FPGA). The proposed architecture is deeply pipelined and parallelized to achieve sub-frame latency. It employs adaptive compression by dividing frames into regions of interest and uses a quantized differential system to minimize data transmission. Our design achieves an encoding latency of between 1.87 ms and 2.1 ms with a power consumption of only 2.7 W when implemented on an FPGA clocked at 150 MHz. Compared to a parallel GPU implementation of the same algorithm, this represents a 6.6-fold reduction in latency at approximately half the power consumption. These results show that FPGA-based LHE is a highly effective solution for low-latency, real-time video applications and establish a robust foundation for its deployment in embedded systems. Full article
Show Figures

Graphical abstract

26 pages, 14657 KB  
Article
A Simple Burst-Mode Multiple-Entropy TRNG Based on Standard Logic Primitives
by Bartosz Mikołaj Szkoda and Piotr Zbigniew Wieczorek
Electronics 2025, 14(19), 3803; https://doi.org/10.3390/electronics14193803 - 25 Sep 2025
Abstract
The paper introduces the concept of a True Random Number Generator (TRNG) based on an unstable circuit that uses only two types of logic devices: XOR gates and logic inverters forming delay lines. The core circuit ensures randomness in both the voltage (logical [...] Read more.
The paper introduces the concept of a True Random Number Generator (TRNG) based on an unstable circuit that uses only two types of logic devices: XOR gates and logic inverters forming delay lines. The core circuit ensures randomness in both the voltage (logical state) and time domains (duration of autonomous operation), while utilizing very few resources. Due to its low complexity, the proposed TRNG can be easily implemented in reconfigurable devices without sophisticated components such as Digital Clock Managers (DCM), Phase Locked Loops (PLL), or dedicated IP cores. The authors present a theoretical analysis of the TRNG using a Simulink macromodel, demonstrating chaotic behavior, and describe its implementation on a Complex Programmable Logic Device (CPLD) and additional verification on an FPGA. The randomness quality of the TRNG was validated using the standard National Institute of Standards and Technology (NIST) SP 800-22 battery of tests. Full article
Show Figures

Figure 1

21 pages, 6518 KB  
Article
Topological Rainbow Trapping in One-Dimensional Magnetoelastic Phononic Crystal Slabs
by Wen Xiao, Fuhao Sui, Jiujiu Chen, Hongbo Huang and Tao Luo
Magnetochemistry 2025, 11(10), 83; https://doi.org/10.3390/magnetochemistry11100083 - 25 Sep 2025
Abstract
We design a one-dimensional magnetoelastic phononic crystal slab composed of the smart magnetostrictive material Terfenol-D and pure tungsten. Band inversion and topological phase transitions are achieved by modifying the geometric parameters of the non-magnetic medium within the unit cell. The emergence of topological [...] Read more.
We design a one-dimensional magnetoelastic phononic crystal slab composed of the smart magnetostrictive material Terfenol-D and pure tungsten. Band inversion and topological phase transitions are achieved by modifying the geometric parameters of the non-magnetic medium within the unit cell. The emergence of topological interface states within overlapping bandgaps, exhibiting distinct topological properties, along with their robustness against interfacial structural defects, is confirmed. The coupling effects between adjacent topological interface states in a sandwich-like supercell configuration are investigated, and their tunability under external magnetic fields is demonstrated. A Su-Schrieffer-Heeger (SSH) phononic crystal slab system under gradient magnetic fields is proposed. Critically, and in stark contrast to previous static or structurally graded designs, we achieve reconfigurable rainbow trapping of topological interface states solely by reprogramming the gradient magnetic field, leaving the physical structure entirely unchanged. This highly localized, compact, and broadband-tunable topological rainbow trapping system design holds significant promise for applications in elastic energy harvesting, wave filtering, and multi-frequency signal processing. Full article
(This article belongs to the Special Issue Advances in Low-Dimensional Magnetic Materials)
Show Figures

Figure 1

19 pages, 839 KB  
Article
RIS-Assisted Backscatter V2I Communication System: Spectral-Energy Efficient Trade-Off
by Yi Dong, Peng Xu, Xiaoyu Lan, Yupeng Wang and Yufeng Li
Electronics 2025, 14(19), 3800; https://doi.org/10.3390/electronics14193800 - 25 Sep 2025
Abstract
In this paper, an energy efficiency (EE)–spectral efficiency (SE) trade-off scheme is investigated for the distributed reconfigurable intelligent surface (RIS)-assisted backscatter vehicle-to-infrastructure (V2I) communication system. Firstly, a multi-objective optimization framework balancing EE and SE is established using the linear weighting method, and the [...] Read more.
In this paper, an energy efficiency (EE)–spectral efficiency (SE) trade-off scheme is investigated for the distributed reconfigurable intelligent surface (RIS)-assisted backscatter vehicle-to-infrastructure (V2I) communication system. Firstly, a multi-objective optimization framework balancing EE and SE is established using the linear weighting method, and the quadratic transformation is utilized to recast the optimization problem as a strictly convex problem. Secondly, an alternating optimization (AO) approach is applied to partition the original problem into two independent subproblems of the BS and RIS beamforming, which are, respectively, designed by the weighted minimization mean-square error (WMMSE) and the Riemannian conjugate gradient (RCG) algorithms. Finally, according to the trade-off factor, the power reflection coefficients of backscatter devices (BDs) are dynamically optimized with the BS beamforming vectors and RIS phase shift matrices, considering their activation requirements and the vehicle minimum quality of service (QoS). The simulation results verify the effectiveness of the proposed algorithm in simultaneously improving SE and the EE in practical V2I applications through rational optimization of the BD power reflection coefficient. Full article
Show Figures

Figure 1

20 pages, 2930 KB  
Article
Global Mobility Networks of Smart City Researchers: Spatiotemporal and Multi-Scale Perspectives, 2000–2020
by Ying Na and Xintao Liu
Smart Cities 2025, 8(5), 159; https://doi.org/10.3390/smartcities8050159 - 25 Sep 2025
Abstract
This study examines the global mobility of researchers in the smart city domain from 2000 to 2020, using inter-country and intercity affiliation data from the Web of Science. Employing network analysis and spatial econometric models, the paper maps the structural reconfiguration of scientific [...] Read more.
This study examines the global mobility of researchers in the smart city domain from 2000 to 2020, using inter-country and intercity affiliation data from the Web of Science. Employing network analysis and spatial econometric models, the paper maps the structural reconfiguration of scientific labor circulation. The results show that the international mobility network is dense yet asymmetric, dominated by a small set of high-frequency corridors such as China–United States, which intensified markedly over the two decades. While early networks were fragmented and polycentric, the later period reveals a multipolar configuration with significant growth in South–South and intra-European exchanges. At the city level, Beijing, Shanghai, Wuhan, and Nanjing emerged as central nodes, reflecting the consolidation of East Asian hubs within the global knowledge system. Mesoscale community detection highlights the coexistence of territorially embedded ecosystems and transregional corridors sustained by thematic and reputational affinities. Growth decomposition indicates that high-income countries benefit from both talent retention and international inflows, while upper-middle-income countries rely heavily on inbound mobility. Spatial regression and quantile models confirm that economic growth and baseline scientific visibility remain robust drivers of urban smart city performance. In contrast, mobility effects are context-dependent and heterogeneous across city positions. Together, these findings demonstrate that researcher mobility is not only a vector of knowledge exchange but also a mechanism that reinforces spatial hierarchies and reshapes the geography of global smart city innovation. Full article
Show Figures

Figure 1

21 pages, 1376 KB  
Article
A Safe In-Flight Reconfiguration Solution for UAV Swarms Based on Attraction/Repulsion Principles
by Nicolás Sarabia Sauquillo, Henok Gashaw, Jamie Wubben, Enrique Hernández-Orallo and Carlos T. Calafate
Electronics 2025, 14(19), 3799; https://doi.org/10.3390/electronics14193799 - 25 Sep 2025
Abstract
The increasing use of UAV swarms for collaborative autonomous missions presents significant challenges in coordination, safety, and scalability, especially during dynamic formation reconfigurations. This study introduces the Magnetic Swarm Reconfiguration (MSR) protocol, a fully distributed navigation method that enables UAV swarms to transition [...] Read more.
The increasing use of UAV swarms for collaborative autonomous missions presents significant challenges in coordination, safety, and scalability, especially during dynamic formation reconfigurations. This study introduces the Magnetic Swarm Reconfiguration (MSR) protocol, a fully distributed navigation method that enables UAV swarms to transition smoothly and safely between geometric formations. MSR achieves this by combining two main components: first, it employs the Hungarian algorithm to compute an optimal assignment of UAVs to target positions within the new formation, thereby minimizing trajectory overlap and interference; second, it utilizes virtual magnetic attraction and repulsion forces for real-time navigation, drawing each UAV toward its assigned destination while dynamically repelling nearby agents to avoid collisions. To evaluate the performance of the MSR protocol, six representative formation transitions were simulated across swarm sizes of up to 100 UAVs. Results show that MSR reduces reconfiguration time significantly compared to existing methods, maintains strict safety standards by achieving minimal to zero collisions, and supports fully decentralized and simultaneous maneuvering. The scalability and robustness of the MSR protocol make it suitable for complex, large-scale swarm operations requiring rapid and reliable formation changes. Full article
(This article belongs to the Special Issue Unmanned Aircraft Systems with Autonomous Navigation, 2nd Edition)
Show Figures

Figure 1

Back to TopTop