Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = reconfigurable spherical parallel mechanism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3521 KB  
Proceeding Paper
Structure of Parallel Mechanism Combined with Waterbomb-Base-Inspired Origami
by Lulu Al Marjan and Shyh-Chour Huang
Eng. Proc. 2023, 38(1), 51; https://doi.org/10.3390/engproc2023038051 - 26 Jun 2023
Cited by 1 | Viewed by 1317
Abstract
Structure from the geometry and analysis of the three-spherical kinematic chain-base parallel mechanism have been studied. The parallel mechanism evolved from an origami fold as chain legs with three spherical kinematic chains becoming rigid bodies. The parallel mechanism with a three 6R kinematic [...] Read more.
Structure from the geometry and analysis of the three-spherical kinematic chain-base parallel mechanism have been studied. The parallel mechanism evolved from an origami fold as chain legs with three spherical kinematic chains becoming rigid bodies. The parallel mechanism with a three 6R kinematic chain as three chain legs is complicated. The reconfiguration of the parallel mechanism with full tilt–circle movement, kinematic, and workspace are investigated, too. This parallel mechanism can be applied in specific applications with certain treatments. Full article
Show Figures

Figure 1

33 pages, 10546 KB  
Article
A Reconfigurable Parallel Robot for On-Structure Machining of Large Structures
by Abdur Rosyid, Cesare Stefanini and Bashar El-Khasawneh
Robotics 2022, 11(5), 110; https://doi.org/10.3390/robotics11050110 - 14 Oct 2022
Cited by 6 | Viewed by 4570
Abstract
This paper presents a novel walking hybrid-kinematics robot that can be reconfigured to have three, five, and six degrees of freedom (DOFs) for adsorption machining of large structures. A symmetric 3PRPR or 3PRRR parallel mechanism with three translational (3T) DOFs is used to [...] Read more.
This paper presents a novel walking hybrid-kinematics robot that can be reconfigured to have three, five, and six degrees of freedom (DOFs) for adsorption machining of large structures. A symmetric 3PRPR or 3PRRR parallel mechanism with three translational (3T) DOFs is used to perform three-axis machining tasks. Three attachment pads connected to passive spherical joints are used to attach the robot to the surface of a large structure. Two or three rotational degrees of freedom can be added to the robot to adapt to a large structure’s irregular surface geometry and perform five- or six-axis machining tasks. This is achieved through modular reassembly or joint locking that reconfigures the robot from a three-DOF robot to a five- or six-DOF robot. A serial module providing two rotational DOFs can be added to the 3T parallel mechanism to provide five DOFs. A parallel module, namely 3SPR or 3SU mechanism, can be added to the 3T parallel mechanism to provide six DOFs. The mobility, pose kinematics, differential kinematics, singularities, and workspace of the 3SPR and 3SU parallel mechanisms alone and combined with the 3T mechanism are discussed in this paper. It is shown that the singularities of the mechanism can be easily avoided by making the moving platform of the 3SPR or 3SU mechanism smaller than the base, limiting the range of some joints, and having an appropriate length of the links. Furthermore, a method to optimize the workspace of the mechanism was also discussed. Full article
(This article belongs to the Special Issue Robotics and Parallel Kinematic Machines)
Show Figures

Figure 1

13 pages, 2652 KB  
Article
Novel Reconfigurable Spherical Parallel Mechanisms with a Circular Rail
by Pavel Laryushkin, Anton Antonov, Alexey Fomin and Victor Glazunov
Robotics 2022, 11(2), 30; https://doi.org/10.3390/robotics11020030 - 22 Feb 2022
Cited by 12 | Viewed by 4828
Abstract
The COVID-19 pandemic has placed unprecedented stress on the world healthcare system and demonstrated the need for modern automated robotic solutions for numerous medical applications. Often, robots that provide spherical motion of the end-effector are used in this area. In this paper, we [...] Read more.
The COVID-19 pandemic has placed unprecedented stress on the world healthcare system and demonstrated the need for modern automated robotic solutions for numerous medical applications. Often, robots that provide spherical motion of the end-effector are used in this area. In this paper, we discuss a spherical mechanism with a circular rail and provide several possible variations of the design: spherical robots with three or four legs and 4-DOF robots with an additional translational DOF, including a decoupled mechanism. The screw theory is used to analyze the mobility of the discussed mechanisms, and their advantages and drawbacks are discussed. Full article
(This article belongs to the Special Issue Service Robotics against COVID-2019 Pandemic)
Show Figures

Figure 1

14 pages, 4348 KB  
Article
Torque Reduction of a Reconfigurable Spherical Parallel Mechanism Based on Craniotomy Experimental Data
by Terence Essomba, Juan Sandoval, Med Amine Laribi, Chieh-Tsai Wu, Cyril Breque, Saïd Zeghloul and Jean-pierre Richer
Appl. Sci. 2021, 11(14), 6534; https://doi.org/10.3390/app11146534 - 16 Jul 2021
Cited by 5 | Viewed by 2938
Abstract
This paper deals with a robotic manipulator dedicated to craniotomy with a remote center of motion based on a Spherical Parallel Manipulator (SPM) architecture. The SPM is proposed to handle the drilling tool through the requested craniotomy Degrees of Freedom (DoF) with two [...] Read more.
This paper deals with a robotic manipulator dedicated to craniotomy with a remote center of motion based on a Spherical Parallel Manipulator (SPM) architecture. The SPM is proposed to handle the drilling tool through the requested craniotomy Degrees of Freedom (DoF) with two rotations. The proposed architecture allows one degree of redundancy according to the total DoF. Thus, a first contribution of this work focuses on the experimental analysis of craniotomy surgery tasks. Secondly, its behavior is improved, taking advantage of the redundancy of the SPM using the spinning motion as a reconfiguration variable. The spinning angle modulation allows the reconfigurable manipulator to minimize its motor torques. A series of motion capture and force experimentations is performed for the analysis of the kinematic and force interaction characterizing Burr hole craniotomy procedures. Experimentations were carried out by a neurosurgeon on a human cadaver, ensuring highly realistic conditions. Full article
(This article belongs to the Special Issue Robotics and Vibration Mechanics)
Show Figures

Figure 1

Back to TopTop