Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = rectangular quadruple

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5218 KB  
Article
Toward Stabilizing the Keyhole in Laser Spot Welding of Aluminum: Numerical Analysis
by Saeid SaediArdahaei and Xuan-Tan Pham
Materials 2024, 17(19), 4741; https://doi.org/10.3390/ma17194741 - 27 Sep 2024
Cited by 2 | Viewed by 1347
Abstract
The inherent instability of laser welding, particularly keyhole instability, poses significant challenges in industrial applications, leading to defects such as porosities that compromise weld quality. Various forces act on the keyhole and molten pool during laser welding, influencing process stability. These forces are [...] Read more.
The inherent instability of laser welding, particularly keyhole instability, poses significant challenges in industrial applications, leading to defects such as porosities that compromise weld quality. Various forces act on the keyhole and molten pool during laser welding, influencing process stability. These forces are categorized into those promoting keyhole opening and penetration (e.g., recoil pressure) and those promoting keyhole collapse (e.g., surface tension, Darcy’s damping forces), increasing instability and defect likelihood. This paper provides a comprehensive instability analysis to uncover key factors affecting keyhole and process instability, presenting future avenues for improving laser welding stability. Using a novel numerical method for simulating laser spot welding on aluminum with COMSOL Multiphysics 5.6, we investigated the effect of laser pulse shaping on keyhole and process instability. Our analysis focused on keyhole morphology, fluid flow behaviour, and force analysis. The results indicated that the curvature effect, Marangoni effect, and Darcy’s damping force are primary contributors to instability, with the curvature effect and Darcy’s damping force being the most dominant. Additionally, erratic and high-velocity magnitudes induce intense fluid flow behaviour, exacerbating keyhole instability. Moreover, single/quadruple peak triangular and variant rectangular ramp-down pulse shapes produced the least instability, while multi-pulse rectangular shapes exhibited intense instability. It was found that combining triangular/rectangular pulse shapes can reduce force and keyhole instability by smoothing spontaneous force spikes, resulting in a more stabilized welding process. Controlling fluid flow and abrupt force changes with appropriate pulse shaping is key to defect-free welded products. Full article
Show Figures

Graphical abstract

30 pages, 15900 KB  
Article
A Quadruple Notch UWB Antenna with Decagonal Radiator and Sierpinski Square Fractal Slots
by Om Prakash Kumar, Pramod Kumar, Tanweer Ali, Pradeep Kumar and Subhash B. K
J. Sens. Actuator Netw. 2023, 12(2), 24; https://doi.org/10.3390/jsan12020024 - 14 Mar 2023
Cited by 12 | Viewed by 2399
Abstract
A novel quadruple-notch UWB (ultrawideband) antenna for wireless applications is presented. The antenna consists of a decagonal-shaped radiating part with Sierpinski square fractal slots up to iteration 3. The ground part is truncated and loaded with stubs and slots. Each individual stub at [...] Read more.
A novel quadruple-notch UWB (ultrawideband) antenna for wireless applications is presented. The antenna consists of a decagonal-shaped radiating part with Sierpinski square fractal slots up to iteration 3. The ground part is truncated and loaded with stubs and slots. Each individual stub at the ground plane creates/controls a particular notch band. Initially, a UWB antenna is designed with the help of truncation at the ground plane. Miniaturization in this design is achieved with the help of Sierpinski square fractal slots. Additionally, these slots help improve the UWB impedance bandwidth. This design is then extended to achieve a quadruple notch by loading the ground with various rectangular-shaped stubs. The final antenna shows the UWB range from 4.21 to 13.92 GHz and notch frequencies at 5.02 GHz (C-band), 7.8 GHz (satellite band), 9.03, and 10.86 GHz (X-band). The simulated and measured results are nearly identical, which shows the efficacy of the proposed design. Full article
(This article belongs to the Topic Electronic Communications, IOT and Big Data)
Show Figures

Figure 1

6 pages, 279 KB  
Article
Right Quadruple Convexity of Complements
by Xuemei He, Liping Yuan and Tudor Zamfirescu
Mathematics 2023, 11(1), 84; https://doi.org/10.3390/math11010084 - 26 Dec 2022
Viewed by 1410
Abstract
Let F be a family of sets in Rd (always d2). A set MRd is called F-convex, if for any pair of distinct points x,yM, there is a set [...] Read more.
Let F be a family of sets in Rd (always d2). A set MRd is called F-convex, if for any pair of distinct points x,yM, there is a set FF, such that x,yF and FM. A set of four points {w,x,y,z}Rd is called a rectangular quadruple, if conv{w,x,y,z} is a non-degenerate rectangle. If F is the family of all rectangular quadruples, then we obtain the right quadruple convexity, abbreviated as rq-convexity. In this paper we focus on the rq-convexity of complements, taken in most cases in balls or parallelepipeds. Full article
(This article belongs to the Section B: Geometry and Topology)
Show Figures

Figure 1

16 pages, 3841 KB  
Article
Temporal Scour Variations at Permeable and Angled Spur Dikes under Steady and Unsteady Flows
by Reza Farshad, Seyed Mahmood Kashefipour, Mehdi Ghomeshi and Giuseppe Oliveto
Water 2022, 14(20), 3310; https://doi.org/10.3390/w14203310 - 20 Oct 2022
Cited by 12 | Viewed by 3175
Abstract
Spur dikes are river protection structures typically used for flow diversion from erodible banks. However, scouring might be a severe problem that compromises their stability and, consequently, their hydraulic function. This paper aims to study the maximum scour depth at permeable and angled [...] Read more.
Spur dikes are river protection structures typically used for flow diversion from erodible banks. However, scouring might be a severe problem that compromises their stability and, consequently, their hydraulic function. This paper aims to study the maximum scour depth at permeable and angled spur dikes under hydrographs of different duration. Experiments were carried out in a rectangular channel 10 m long, 0.76 m wide, and 0.6 m deep. The mobile bed was made of nearly uniform sand with a median grain size of 0.8 mm. A total of 36 new experiments were performed with a detailed data collection over the time (i.e., 216 datasets), which could provide a useful contribution to the topic. The impact of the spur dike orientation angle, θ, and the degree of permeability, φ, on the temporal scour evolution were explored. Results were found physically consistent and revealed that the spur dike permeability implies a significant attenuation of the scouring processes in comparison to the impermeable spur dikes and generally its effect is more beneficial than that from a favorable orientation angle. The differences in percentage between the maximum scour depth for impermeable spur dikes and the maximum scour depths for various degrees of spur dike permeability were found ranging from 44% (at φ = 33% and θ = 60°) up to 88% (at φ = 66% and θ = 120°). Other results include the effect of the hydrograph base-time on the scour depth and the comparison between scouring processes under steady and unsteady flow conditions. By quadrupling the hydrograph base-time, keeping constant the peak and base flood discharges, the maximum scour depths increased by about 29%, 42%, and 25% in case of impermeable spur dike, spur dike with 33% degree of permeability, and spur dike with 66% degree of permeability. Furthermore, starting from dimensional analysis a new empirical model (with coefficient of determination R2 equal to 0.94) is introduced to predict the time-dependent scour depth due to the passage of a flood wave. The model suggests that the main independent dimensionless variables which control local scour processes are: the densimetric Froude number, the time t normalized to the hydrograph base-time, the degree of permeability, and the orientation angle. These dimensionless variables would generalize the laboratory results to the real-world scenarios, although caution should always be taken because of possible scale effects. Full article
(This article belongs to the Special Issue Sediment Transport at Bridges and River Training Structures)
Show Figures

Figure 1

9 pages, 4566 KB  
Communication
High Sensitivity Strain Sensors Using Four-Core Fibers through a Corner-Core Excitation
by Lina Suo, Ya-Pei Peng, Cheng-Kai Yao, Shijie Ren, Xinhe Lu and Nan-Kuang Chen
Micromachines 2022, 13(3), 431; https://doi.org/10.3390/mi13030431 - 11 Mar 2022
Cited by 6 | Viewed by 2497
Abstract
A weakly-coupled multicore fiber can generate supermodes when the multi-cores are closer to enter the evanescent power coupling region. The high sensitivity strain sensors using tapered four-core fibers (FCFs) were demonstrated. The fan-in and fan-out couplers were used to carry out light coupling [...] Read more.
A weakly-coupled multicore fiber can generate supermodes when the multi-cores are closer to enter the evanescent power coupling region. The high sensitivity strain sensors using tapered four-core fibers (FCFs) were demonstrated. The fan-in and fan-out couplers were used to carry out light coupling between singlemode fibers and the individual core of the FCFs. A broadband lightsource from superlumminescent diodes (SLDs) was launched into one of the four cores arranged in a rectangular configuration. When the FCF was substantially tapered, the asymmetric supermodes were produced to generate interferences through this corner-core excitation scheme. During tapering, the supermodes were excited based on a tri-core structure initially and then transited to a rectangular quadruple-core structure gradually to reach the sensitivity of 185.18 pm/μԑ under a tapered diameter of 3 μm. The asymmetric evanescent wave distribution due to the corner-core excitation scheme is helpful to increase the optical path difference (OPD) between supermodes for improving the strain sensitivity. Full article
(This article belongs to the Special Issue Optical Sensing and Devices)
Show Figures

Figure 1

12 pages, 2976 KB  
Article
Refractive Index Sensing Based on Multiple Fano Resonances in a Split-Ring Cavity-Coupled MIM Waveguide
by Jianfeng Chen, Hao Yang, Zhiyuan Fang, Ming Zhao and Chenbo Xie
Photonics 2021, 8(11), 472; https://doi.org/10.3390/photonics8110472 - 24 Oct 2021
Cited by 22 | Viewed by 6865
Abstract
A metal–insulator–metal (MIM) waveguide consisting of a circular split-ring resonance cavity (CSRRC) and a double symmetric rectangular stub waveguide (DSRSW) is designed, which can excite quadruple Fano resonances. The finite element method (FEM) is used to investigate influences of geometric parameters on the [...] Read more.
A metal–insulator–metal (MIM) waveguide consisting of a circular split-ring resonance cavity (CSRRC) and a double symmetric rectangular stub waveguide (DSRSW) is designed, which can excite quadruple Fano resonances. The finite element method (FEM) is used to investigate influences of geometric parameters on the transmission characteristics of the structure. The results show that Fano resonances are excited by the interference between the DSRSW and the CSRRC. Among them, the resonance wavelengths of the Fano resonances are tuned by the narrow-band discrete state excited by the CSRRC, and the resonance line transmittance and profiles are tuned by the wide-band continuous state excited by the DSRSW. The sensitivity (S) can be up to 1328.8 nm/RIU, and the figure of merit (FOM) can be up to 4.80 × 104. Based on these advantages, the structure has potential applications in sensing in the sub-wavelength range. Full article
Show Figures

Figure 1

10 pages, 3373 KB  
Article
Quadruple-Mode Wideband Bandpass Filter with Improved Out-of-Band Rejection
by Musab Hameed, Gaobiao Xiao, Ali Imran Najam, Lina Qiu and Tayyab Hameed
Electronics 2019, 8(3), 300; https://doi.org/10.3390/electronics8030300 - 7 Mar 2019
Cited by 5 | Viewed by 5505
Abstract
This paper proposes a method for designing a quadruple-mode wideband bandpass filter using off-centered perturbed metallic cylinders in a rectangular waveguide cavity with compact size and improved out-of-band rejection. Two off-centered perturbation cylinders were placed at the bottom of the rectangular waveguide cavity [...] Read more.
This paper proposes a method for designing a quadruple-mode wideband bandpass filter using off-centered perturbed metallic cylinders in a rectangular waveguide cavity with compact size and improved out-of-band rejection. Two off-centered perturbation cylinders were placed at the bottom of the rectangular waveguide cavity along with a pair of perpendicularly-fed coaxial lines, which excited four quasi-transverse magnetic (TM) modes to realize the desired passband. The height of the waveguide cavity and the shape of the perturbation cylinders were exploited to achieve an all quasi-TM modes filter with good out-of-band rejection and sharp skirt selectivity. The proposed filter operates at 2.93 GHz center frequency with 38% wide fractional bandwidth (FBW). The proposed filter is fabricated using aluminum. The measured and simulated results are in good agreement with each other. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

Back to TopTop