Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (215)

Search Parameters:
Keywords = recycled polyurethane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3512 KB  
Article
Sustainable Reprocessing of Thermoset Composite Waste into Thermoplastics: A Polymer Blend Approach for Circular Material Design
by Hasan Kasim, Yu-Chao Shih, Selvum Pillay and Haibin Ning
J. Compos. Sci. 2025, 9(10), 565; https://doi.org/10.3390/jcs9100565 (registering DOI) - 14 Oct 2025
Abstract
Thermoset composites provide excellent strength but pose major recycling challenges due to their crosslinked structure. In this study, epoxy–polyurethane–glass fiber (EPG) wastes were mechanically recycled into low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyamide-6 (PA6) matrices to produce second-generation thermoplastic composites (STCs). Fillers [...] Read more.
Thermoset composites provide excellent strength but pose major recycling challenges due to their crosslinked structure. In this study, epoxy–polyurethane–glass fiber (EPG) wastes were mechanically recycled into low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyamide-6 (PA6) matrices to produce second-generation thermoplastic composites (STCs). Fillers at 10–50 wt% were processed by single-screw extrusion and compression molding, and the resulting composites were comprehensively characterized. For LDPE, the tensile modulus increased by ~286–589% and tensile strength increased by 40–47% at 20–30 wt% loading, though ductility decreased at higher levels. HDPE composites showed a ~347% rise in modulus and ~24% increase in strength, but performance declined with more than 40 wt% filler. PA6 offered the most balanced outcome, retaining ~70% of its neat tensile strength while achieving an ~300% modulus improvement at 40 wt% loading. Thermal stability was strongly enhanced, with char residue at 700 °C rising from 0.4% to 38.7% in PA6 and from ~2.5% to 33–46% in polyolefins. In contrast, crystallinity decreased (e.g., LDPE 62.2% → 23.7%), and impact strength dropped at a loading above 30 wt%. Overall, the results demonstrate that EPG wastes can be reprocessed into functional composites without compatibilizers, with PA6 providing the most robust property retention at high filler contents. Full article
(This article belongs to the Special Issue Advances in Continuous Fiber Reinforced Thermoplastic Composites)
16 pages, 3518 KB  
Article
Transparent Polyurethane Elastomers with Excellent Foamability and Self-Healing Property via Molecular Design and Dynamic Covalent Bond Regulation
by Rongli Zhu, Mingxi Linghu, Xueliang Liu, Liang Lei, Qi Yang, Pengjian Gong and Guangxian Li
Polymers 2025, 17(19), 2639; https://doi.org/10.3390/polym17192639 - 30 Sep 2025
Viewed by 394
Abstract
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable [...] Read more.
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable materials (named as PU-S) with high light transmittance possessing two dynamic covalent bonds (oxime bond and disulfide bond) in different ratios were fabricated by the one-pot method, and then the prepared PU-S were foamed utilizing the green and efficient supercritical carbon dioxide (scCO2) foaming technology. The PU-S foams possess multiple dynamic covalent bonds as well as porous structures, and the effect of the dynamic covalent bonds endows the materials with excellent self-healing properties and recyclability. Owing to the tailored design of dynamic covalent bonding synergies and micron-sized porous structures, PU-S5 exhibits hydrophobicity (97.5° water contact angle), low temperature flexibility (Tg = −30.1 °C), high light transmission (70.6%), and light weight (density of 0.12 g/cm3) together with high expansion ratio (~10 folds) after scCO2 foaming. Furthermore, PU-S5 achieves damage recovery under mild thermal conditions (60 °C). Accordingly, self-healing PU-S based on multiple dynamic covalent bonds will realize a wide range of potential applications in biomedical, new energy automotive, and wearable devices. Full article
(This article belongs to the Special Issue Advances in Cellular Polymeric Materials)
Show Figures

Figure 1

18 pages, 4703 KB  
Article
Multi-Layer Laminate of Fibreglass Thermoplastic Composite Reinforced with Fused Filament Fabrication TPU Layers
by Ana Paula Duarte, Pedro R. da Costa and Manuel Freitas
Polymers 2025, 17(19), 2622; https://doi.org/10.3390/polym17192622 - 28 Sep 2025
Viewed by 367
Abstract
Thermoset fibre-reinforced composites are widely used in high-end industries, but a growing demand for more sustainable and recyclable alternatives conveyed the research efforts towards thermoplastics. To expand their usage, new approaches to their manufacture and mechanical performance must be tackled and tailored to [...] Read more.
Thermoset fibre-reinforced composites are widely used in high-end industries, but a growing demand for more sustainable and recyclable alternatives conveyed the research efforts towards thermoplastics. To expand their usage, new approaches to their manufacture and mechanical performance must be tackled and tailored to each engineering challenge. The present study designed, manufactured and tested advanced multi-layer laminated composites of thermoplastic polypropylene prepreg reinforced with continuous woven fibreglass with interlayer toughening through thermoplastic polyurethane elastomer (TPU) layers manufactured by fused filament fabrication. The manufacturing process was iteratively optimized, resulting in successful adhesion between layers. Three composite configurations were produced: baseline glass fibre polypropylene (GFPP) prepreg and two multi-layer composites, with solid and honeycomb structured TPU layers. Thermal and mechanical analyses were conducted with both the polyurethane elastomer and the manufactured laminates. Tensile testing was conducted on additively manufactured polyurethane elastomer specimens, while laminated composites were tested in three-point bending. The results demonstrated the potential of the developed laminates. TPU multi-layer laminates exhibit higher thermal stability compared to the baseline GFPP prepreg-based composites. The addition of elastomeric layers decreases the flexural modulus but increases the ability to sustain plastic deformation. Multi-layer laminate composites presenting honeycomb TPU layers exhibit improved geometric and mechanical consistency, lower delamination and fibre breakage, and a high elastic recoverability after testing. Full article
Show Figures

Figure 1

22 pages, 5574 KB  
Review
Discarded Mattresses: From Environmental Problem to Recoverable Resource
by Javier Arias Madero, Jose Antonio Balmori Roiz, Luis-Alfonso Basterra Otero and Iker Diaz Gonzalez
Sustainability 2025, 17(18), 8371; https://doi.org/10.3390/su17188371 - 18 Sep 2025
Viewed by 913
Abstract
Mattresses represent one of the most widespread and problematic bulky waste streams worldwide, due to their unavoidable daily use, their high presence in municipal solid waste flows, and the complexity of their end-of-life management. Their heterogeneous composition—combining polyurethane foams, textiles, metal springs, and [...] Read more.
Mattresses represent one of the most widespread and problematic bulky waste streams worldwide, due to their unavoidable daily use, their high presence in municipal solid waste flows, and the complexity of their end-of-life management. Their heterogeneous composition—combining polyurethane foams, textiles, metal springs, and adhesives—makes separation and recovery difficult, leading many discarded mattresses to end up in landfills or incinerators, with associated greenhouse gas emissions and the loss of valuable secondary resources. Within this context, recycling emerges as a priority alternative under the circular economy framework, enabling material recovery and reducing reliance on traditional disposal methods. Among current options, mechanical recycling is especially promising, as it provides energy savings and lower emissions compared to thermal treatments. However, its large-scale implementation requires improvements in product design, collection logistics, and regulatory frameworks to address existing challenges. This article provides a critical review of the current state of mattress recycling and valorization, examining technological advances, environmental impacts, and systemic barriers. It also highlights successful initiatives in the hospitality and healthcare sectors, which illustrate the potential of circular strategies to transform bulky waste management and promote sustainable material flows. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

19 pages, 1711 KB  
Article
From Construction Industry Waste to High-Performance Insulation: Sustainable Rigid Polyurethane Foams with Recycled Polyol
by Kinga Wieczorek, Łukasz Bobak and Przemysław Bukowski
Materials 2025, 18(17), 4179; https://doi.org/10.3390/ma18174179 - 5 Sep 2025
Viewed by 1134
Abstract
This study investigates the feasibility of incorporating chemically recycled polyol (glycolysate), derived from semi-rigid polyurethane waste from the building industry, into rigid PUF formulations intended for thermal insulation applications. Glycolysis was performed using a diethylene glycol–glycerol mixture (4:1) at 185 °C in the [...] Read more.
This study investigates the feasibility of incorporating chemically recycled polyol (glycolysate), derived from semi-rigid polyurethane waste from the building industry, into rigid PUF formulations intended for thermal insulation applications. Glycolysis was performed using a diethylene glycol–glycerol mixture (4:1) at 185 °C in the presence of a dibutyltin dilaurate (DBTDL) catalyst. The resulting glycolysate was characterized by a hydroxyl number of 590 mg KOH/g. Foams containing 5–50% recycled polyol were prepared and described in terms of foaming kinetics, cellular structure, thermal conductivity, apparent density, mechanical performance, dimensional stability, flammability, and volatile organic compound (VOC) emissions. The incorporation of glycolysate accelerated the foaming process, with the gel time reduced from 44 s to 16 s in the sample containing 40% recycled polyol, enabling a reduction in catalyst content. The substitution of up to 40% virgin polyol with recycled polyol maintained a high closed-cell content (up to 87.7%), low thermal conductivity (λ10 = 26.3 mW/(m·K)), and dimensional stability below 1%. Additionally, compressive strength improvements of up to 30% were observed compared to the reference foam (294 kPa versus 208 kPa for the reference sample). Flammability testing confirmed compliance with the B2 classification (DIN 4102), while preliminary qualitative VOC screening indicated no formation of additional harmful volatile compounds in glycolysate-containing samples compared to the reference. The results demonstrate that glycolysate can be effectively utilized in high-performance insulation materials, contributing to improved resource efficiency and a reduced carbon footprint. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

18 pages, 4789 KB  
Article
On the Hydrolytic Depolymerization of Polyurethane Foam Wastes by Ionic Liquids
by Rebeca Salas, Rocio Villa, Francisco Velasco, Maria Macia, Virtudes Navarro, Jairton Dupont, Eduardo Garcia-Verdugo and Pedro Lozano
Molecules 2025, 30(17), 3523; https://doi.org/10.3390/molecules30173523 - 28 Aug 2025
Viewed by 778
Abstract
Flexible polyurethane foams (PUFs) are widely used materials whose crosslinked chemical structure hinders conventional recycling, leading to significant environmental challenges. This study presents a selective and scalable depolymerization strategy for polyurethane foam waste (PUFW), utilizing a combination of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) as water-miscible [...] Read more.
Flexible polyurethane foams (PUFs) are widely used materials whose crosslinked chemical structure hinders conventional recycling, leading to significant environmental challenges. This study presents a selective and scalable depolymerization strategy for polyurethane foam waste (PUFW), utilizing a combination of 1-butyl-3-methylimidazolium chloride ([Bmim][Cl]) as water-miscible ionic liquid (IL) and a strong organic base to enable hydrolytic cleavage of urethane bonds under mild reaction conditions (98 °C, atmospheric pressure). The approach was evaluated across different PUFW formulations and successfully scaled up to a 1 kg reaction mass, maintaining high efficiency in both the depolymerization and separation steps. The recovered polyols exhibited high purity and structural fidelity, comparable to those of virgin polyols. The recycled products were integrated into a new foam formulation, resulting in a PUF with mechanical and morphological properties, as revelated by scanning electron microscopy (SEM), which closely resemble those of virgin polyol-based references and surpass those of foams produced using commercially recycled polyols. These findings support the feasibility of closed-loop polyurethane recycling and represent the transition towards circular polymer economy strategies. Full article
Show Figures

Graphical abstract

14 pages, 3778 KB  
Article
A New Recycling Technology to Produce Premixed Thermal Insulating Mortars from Polyurethane Waste Foams
by Antonis Kountouris, Kypros Efstathiou, Nikolaos Kostoglou, Dimitrios Manolakos and Claus Rebholz
Polymers 2025, 17(16), 2233; https://doi.org/10.3390/polym17162233 - 17 Aug 2025
Viewed by 919
Abstract
The increasing demand for sustainable construction materials has driven research into the reuse of plastic waste for renewable building applications. This study introduces a new lightweight insulating mortar for floor and roof systems, utilizing recycled rigid polyurethane (PU) foam as the primary aggregate. [...] Read more.
The increasing demand for sustainable construction materials has driven research into the reuse of plastic waste for renewable building applications. This study introduces a new lightweight insulating mortar for floor and roof systems, utilizing recycled rigid polyurethane (PU) foam as the primary aggregate. The binder mainly consists of Portland cement, with no added sand, and includes minor additives to enhance mechanical, physical, and thermal properties. Initial tests demonstrated that key performance metrics—density, compressive strength, and thermal conductivity—are significantly influenced by the PU content. As the proportion of PU increased, all three parameters decreased. The optimized formulation, comprising 92.25 vol.% PU foam, 6.75 vol.% cement, and 1 vol.% additives, achieved a low bulk density of 420 kg/m3, a compressive strength of 1 MPa, and a thermal conductivity of 0.07 W/m·K. A pilot-scale production system with a capacity of 1500 L/h (equivalent to 20 bags of 75 L) was subsequently designed, implemented, and validated. These findings underscore the potential of PU-based lightweight insulating mortars to reduce environmental impact and support the development of sustainable construction practices globally. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Graphical abstract

38 pages, 9791 KB  
Review
A Comprehensive Review of Sustainable Thermal and Acoustic Insulation Materials from Various Waste Sources
by Mohamed Ouda, Ala A. Abu Sanad, Ali Abdelaal, Aparna Krishna, Munther Kandah and Jamal Kurdi
Buildings 2025, 15(16), 2876; https://doi.org/10.3390/buildings15162876 - 14 Aug 2025
Cited by 1 | Viewed by 2754
Abstract
The growing demand for sustainable and energy-efficient construction has driven significant interest in the development of advanced insulation materials that reduce energy usage while minimizing environmental impact. Although conventional insulation materials such as polyurethane, polystyrene, and mineral wools offer excellent thermal and acoustic [...] Read more.
The growing demand for sustainable and energy-efficient construction has driven significant interest in the development of advanced insulation materials that reduce energy usage while minimizing environmental impact. Although conventional insulation materials such as polyurethane, polystyrene, and mineral wools offer excellent thermal and acoustic performance, they are derived from non-renewable sources, have high embodied carbon (EC) (up to 7.3 kg CO2-eq/kg), and pose end-of-life disposal challenges. Thus, this review critically examines the emergence of insulation materials derived from natural and recycled sources, which align with circular economy principles by minimizing waste, promoting material reuse, and extending product life cycles. Sustainable alternatives such as sheep wool, hemp, flax, and jute not only exhibit competitive thermal conductivity (as low as 0.031–0.046 W/m·K) and very good sound absorption but also offer low EC, biodegradability, and regional availability. Despite some limitations, including variable fire resistance and thickness requirements, these bio-based insulators present a viable path toward greener building solutions. The review highlights that waste-based insulation materials are essential for sustainable construction due to their low EC, renewability, and contribution to waste reduction, making them a necessary alternative even when conventional materials demonstrate superior short-term performance. Full article
(This article belongs to the Special Issue Advanced Composite Materials for Sustainable Construction)
Show Figures

Figure 1

13 pages, 1802 KB  
Article
Preparation and Mechanical Properties of Alkali-Treated Wood Flour/Dynamic Polyurethane Composites
by Yifan Diao, Manyu Li, Chenglei Yu, Zhenqi Han, Shuyuan Wang, Yue Liu, Jianguo Wu and Tian Liu
Materials 2025, 18(16), 3817; https://doi.org/10.3390/ma18163817 - 14 Aug 2025
Viewed by 435
Abstract
In this study, alkali-treated wood flour/dynamic polyurethane composites were successfully prepared through a solvent-free one-pot method and in situ polymerization. The effects of the alkaline treatment process, changes in the flexible long-chain content in the dynamic polyurethane system, and the wood flour filling [...] Read more.
In this study, alkali-treated wood flour/dynamic polyurethane composites were successfully prepared through a solvent-free one-pot method and in situ polymerization. The effects of the alkaline treatment process, changes in the flexible long-chain content in the dynamic polyurethane system, and the wood flour filling amount on the interface’s bonding, mechanical, and reprocessing properties were investigated. Partial removal of lignin and hemicellulose from the alkali-treated wood flour enhanced rigidity and improved interface bonding and mechanical strength when combined with dynamic polyurethane. The tensile strength was improved from 5.65–11.00 MPa to 13.08–23.53 MPa. As the composite matrix, dynamic polyurethane could not easily infiltrate all wood flour particles when its content was low or its fluidity was poor. Conversely, excessive content or overly high fluidity led to leakage and the formation of large pores, affecting the mechanical strength. As the polyol content increased, the matrix exhibited greater fluidity, which enabled it to accommodate more wood flour and penetrate the cell cavity or even the cell wall. This improved infiltration enhanced the interface bonding performance of the composites and made their mechanical properties sensitive to changes in wood flour content. The reprocessing ability of the prepared composites decreased with the increase in wood flour content, and the interface bonding was enhanced after reprocessing. The tensile strength retention rate of the composites prepared with alkali-treated wood flour was lower. This study provides a theoretical basis for optimizing the performance of wood fiber/dynamic polyurethane composites and an exploration path for developing self-healing and recyclable wood–plastic composites, which can be applied to building materials, automotive interiors, furniture manufacturing, and other fields. Full article
Show Figures

Graphical abstract

28 pages, 2546 KB  
Systematic Review
Sustainable Polymer Composites for Thermal Insulation in Automotive Applications: A Systematic Literature Review
by Dan Dobrotă, Gabriela-Andreea Sava, Andreea-Mihaela Bărbușiu and Gabriel Tiberiu Dobrescu
Polymers 2025, 17(16), 2200; https://doi.org/10.3390/polym17162200 - 12 Aug 2025
Viewed by 918
Abstract
This systematic literature review explores recent advancements in polymer-based composite materials designed for thermal insulation in automotive applications, with a particular focus on sustainability, performance optimization, and scalability. The methodology follows PRISMA 2020 guidelines and includes a comprehensive bibliometric and thematic analysis of [...] Read more.
This systematic literature review explores recent advancements in polymer-based composite materials designed for thermal insulation in automotive applications, with a particular focus on sustainability, performance optimization, and scalability. The methodology follows PRISMA 2020 guidelines and includes a comprehensive bibliometric and thematic analysis of 229 peer-reviewed articles published over the past 15 years across major databases (Scopus, Web of Science, ScienceDirect, MDPI). The findings are structured around four central research questions addressing (1) the functional role of insulation in automotive systems; (2) criteria for selecting suitable polymer systems; (3) optimization strategies involving nanostructuring, self-healing, and additive manufacturing; and (4) future research directions involving smart polymers, bioinspired architectures, and AI-driven design. Results show that epoxy resins, polyurethane, silicones, and polymeric foams offer distinct advantages depending on the specific application, yet each presents trade-offs between thermal resistance, recyclability, processing complexity, and ecological impact. Comparative evaluation tables and bibliometric mapping (VOSviewer) reveal an emerging research trend toward hybrid systems that combine bio-based matrices with functional nanofillers. The study concludes that no single material system is universally optimal, but rather that tailored solutions integrating performance, sustainability, and cost-effectiveness are essential for next-generation automotive thermal insulation. Full article
(This article belongs to the Special Issue Sustainable Polymer Materials for Industrial Applications)
Show Figures

Figure 1

18 pages, 2295 KB  
Article
The Potential of Waste-Derived Sorbents for Absorbing Petroleum Substances in Firefighting Operations
by Justyna Gniazdowska, Anna Rabajczyk, Tomasz Wilczyński and Daniel Małozięć
Materials 2025, 18(16), 3752; https://doi.org/10.3390/ma18163752 - 11 Aug 2025
Viewed by 588
Abstract
The development of industry and technology, despite making everyday life easier, generates large amounts of various wastes that negatively affect the environment. Unexpected leaks of substances such as oils, petroleum substances, and chemicals also contribute to the degradation of aquatic and terrestrial ecosystems. [...] Read more.
The development of industry and technology, despite making everyday life easier, generates large amounts of various wastes that negatively affect the environment. Unexpected leaks of substances such as oils, petroleum substances, and chemicals also contribute to the degradation of aquatic and terrestrial ecosystems. Long-term effects of environmental pollution require the development of advanced materials and technologies to collect and neutralize pollutants. Sorbents obtained from waste, including banana peels, coconut fibers, and polyurethane foams from recycling the thermal housing of refrigeration devices, allow a reduction in the amount of generated waste and the development of appropriate sorbents. This work focuses on comparing the sorption and neutralization properties of these materials for two types of oil, machine and diesel, and the possibility of using them in rescue and firefighting operations conducted by firefighters. The results obtained indicate that the viscose–cellulose sorbent and the polyurethane foam sorbent are characterized by better performance parameters than sorbents from coffee grounds or coconut fibers. The best parameters were obtained after the first 10 min of the sorbent–contaminant reaction, whereas in the case of contamination with machine oil, the absorption capacity was better than for diesel oil for each sorbent subjected to analysis. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

35 pages, 1062 KB  
Review
Micro- and Nanoplastics in the Environment: Current State of Research, Sources of Origin, Health Risks, and Regulations—A Comprehensive Review
by Anna Kochanek, Katarzyna Grąz, Halina Potok, Anna Gronba-Chyła, Justyna Kwaśny, Iwona Wiewiórska, Józef Ciuła, Emilia Basta and Jacek Łapiński
Toxics 2025, 13(7), 564; https://doi.org/10.3390/toxics13070564 - 2 Jul 2025
Cited by 5 | Viewed by 5079
Abstract
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary [...] Read more.
Small-particle-produced goods, such as those used in industry, medicine, cosmetics, paints, abrasives, and plastic pellets or powders, are the main sources of microplastics. It is also possible to mention tire recycling granules here. Larger components break down in the environment to generate secondary microplastics. Microplastics, or particles smaller than 5 mm, and nanoplastics, or particles smaller than 1 μm, are the products of degradation and, in particular, disintegration processes that occur in nature as a result of several physical, chemical, and biological variables. Polypropylene, polyethylene, polyvinyl chloride (PVC), polystyrene, polyurethane, and polyethylene terephthalate (PET) are among the chemicals included in this contamination in decreasing order of quantity. Micro- and nanoplastics have been detected in the air, water, and soil, confirming their ubiquitous presence in natural environments. Their widespread distribution poses significant threats to human health, including oxidative stress, inflammation, cellular damage, and potential carcinogenic effects. The aim of this article is to review the current literature on the occurrence of micro- and nanoplastics in various environmental compartments and to analyze the associated health consequences. The article also discusses existing legal regulations and highlights the urgent need for intensified research into the toxicological mechanisms of microplastics and the development of more effective strategies for their mitigation. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

20 pages, 3571 KB  
Article
Mechanical Properties and Thermal Degradation Behaviour of Polyurethane Composites Incorporating Waste-Glass Particles
by Nathaphon Buddhacosa, Edwin Baez, Thevega Thevakumar, Everson Kandare and Dilan Robert
Polymers 2025, 17(13), 1734; https://doi.org/10.3390/polym17131734 - 21 Jun 2025
Viewed by 798
Abstract
This study investigated the effect of hot-pressing conditions, including the curing temperature, curing time and the applied pressure, on the flexural properties of polyurethane (PU) composites incorporating 88 wt.% (Glass/PU-88/12) and 95 wt.% (Glass/PU-95/5) recycled glass particles. Hot-pressing (cure) temperatures between 100 °C [...] Read more.
This study investigated the effect of hot-pressing conditions, including the curing temperature, curing time and the applied pressure, on the flexural properties of polyurethane (PU) composites incorporating 88 wt.% (Glass/PU-88/12) and 95 wt.% (Glass/PU-95/5) recycled glass particles. Hot-pressing (cure) temperatures between 100 °C and 180 °C were investigated with the objective to shorten the cure cycle, thereby increasing the production rate of the glass/PU composites to match industrial scales. The hot-pressing time varied between 1 min and 30 min, while the pressure varied between 1.1 MPa and 6.6 MPa. Further to investigating the hot-pressing conditions, the effect of post-curing on the flexural properties of glass/PU composites was also investigated. Microstructural analysis was used to identify the interactions between the glass particles and the PU matrix, explore the void content and establish the relationship between the microstructure and the mechanical properties of the resultant glass/PU composites. Glass/PU composites incorporating 5 wt.% (Glass/PU-95/5), 10 wt.% (Glass/PU-90/10) and 12 wt.% (Glass/PU-88/12) were manufactured under optimised hot-pressing conditions (temperature = 100 °C; cure time = 1 min; pressure = 6.6 MPa) and evaluated under flexural, tensile and compression loadings. Furthermore, the high-temperature stability of the composites was evaluated using thermogravimetric analysis. This study demonstrates the feasibility of upcycling glass waste into value-added materials for potential use in the construction and building industry. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

27 pages, 4541 KB  
Review
From Molecular Design to Scenario Adaptation: Cutting-Edge Exploration of Silicone-Modified Polyurethane in Smart Sports Fields
by Guobao Yan, Guoyuan Huang, Huibin Wu, Yang Chen, Jiaxun Wu and Yangxian Hu
Coatings 2025, 15(7), 737; https://doi.org/10.3390/coatings15070737 - 20 Jun 2025
Cited by 1 | Viewed by 1853
Abstract
To overcome the shortcomings of traditional polyurethane, such as poor weather resistance and susceptibility to hydrolysis, this study systematically explores the preparation techniques of organic silicon-modified polyurethane and its application in intelligent sports fields. By introducing siloxane into the polyurethane matrix through copolymerization, [...] Read more.
To overcome the shortcomings of traditional polyurethane, such as poor weather resistance and susceptibility to hydrolysis, this study systematically explores the preparation techniques of organic silicon-modified polyurethane and its application in intelligent sports fields. By introducing siloxane into the polyurethane matrix through copolymerization, physical blending, and grafting techniques, the microphase separation structure and interfacial properties of the material are effectively optimized. In terms of synthesis processes, the one-step method achieves efficient preparation by controlling the isocyanate/hydroxyl molar ratio (1.05–1.15), while the prepolymer chain extension method optimizes the crosslinked network through dual reactions. The modified material exhibits significant performance improvements: tensile strength reaches 60 MPa, tear resistance reaches 80 kN/m, and the elastic recovery rate ranges from 85% to 92%, demonstrating outstanding weather resistance. In sports field applications, the 48% impact absorption rate meets the requirements for athletic tracks, wear resistance of <15 mg suits gym floors, and the impact resistance for skate parks reaches 55%–65%. Its environmental benefits are notable, with volatile organic compounds (VOC) <50 g/L and a recycling rate >85%, complying with green building material standards. However, its development is still constrained by multiple factors: insufficient material interface compatibility, a comprehensive cost of 435 RMB/m2, and the lack of a quality evaluation system. Future research priorities include constructing dynamic covalent crosslinked networks (e.g., self-healing systems), adopting bio-based raw materials to reduce carbon footprint by 30%–50%, and integrating flexible sensing technologies for intelligent responsiveness. Through multidimensional innovation, this material is expected to evolve toward multifunctionality and environmental friendliness, providing core material support for the intelligent upgrading of sports fields. Full article
(This article belongs to the Special Issue Synthesis and Application of Functional Polymer Coatings)
Show Figures

Graphical abstract

75 pages, 15988 KB  
Review
Tailoring Polymer Properties Through Lignin Addition: A Recent Perspective on Lignin-Derived Polymer Modifications
by Nawoda L. Kapuge Dona and Rhett C. Smith
Molecules 2025, 30(11), 2455; https://doi.org/10.3390/molecules30112455 - 3 Jun 2025
Cited by 1 | Viewed by 2126
Abstract
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This [...] Read more.
Lignin, an abundant and renewable biopolymer, has gained significant attention as a sustainable modifier and building block in polymeric materials. Recent advancements highlight its potential to tailor mechanical, thermal, and barrier properties of polymers while offering a greener alternative to petroleum-based additives. This review provides an updated perspective on the incorporation of lignin into various polymer matrices, focusing on lignin modification techniques, structure–property relationships, and emerging applications. Special emphasis is given to recent innovations in lignin functionalization and its role in developing high-performance, biodegradable, and recyclable materials such as polyurethanes, epoxy resins, phenol-formaldehyde resins, lignin-modified composites, and lignin-based films, coatings, elastomers, and adhesives. These lignin-based materials are gaining attention for potential applications in construction, automated industries, packaging, textiles, wastewater treatment, footwear, supporting goods, automobiles, printing rollers, sealants, and binders. Full article
(This article belongs to the Special Issue Advances in Polymer Materials Based on Lignocellulosic Biomass)
Show Figures

Figure 1

Back to TopTop