Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (33,264)

Search Parameters:
Keywords = reinforcement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4779 KB  
Article
Decoding Salinity Tolerance in Salicornia europaea L.: Image-Based Oxidative Phenotyping and Histochemical Mapping of Pectin and Lignin
by Susana Dianey Gallegos Cerda, Aleksandra Orzło, José Jorge Chanona Pérez, Josué David Hernández Varela, Agnieszka Piernik and Stefany Cárdenas Pérez
Plants 2025, 14(19), 3055; https://doi.org/10.3390/plants14193055 - 2 Oct 2025
Abstract
Halophytes such as Salicornia europaea rely on biochemical and structural mechanisms to survive in saline environments. This study aimed to evaluate oxidative stress and structural defense responses in four inland populations—Poland (Inowrocław, Ciechocinek), Germany (Salzgraben-Salzdahlum, Salz), and Soltauquelle (Soltq)—subjected to 0, 200, 400, [...] Read more.
Halophytes such as Salicornia europaea rely on biochemical and structural mechanisms to survive in saline environments. This study aimed to evaluate oxidative stress and structural defense responses in four inland populations—Poland (Inowrocław, Ciechocinek), Germany (Salzgraben-Salzdahlum, Salz), and Soltauquelle (Soltq)—subjected to 0, 200, 400, and 1000 mM NaCl, using non-destructive, image-based approaches. Lipid peroxidation was assessed via malondialdehyde (MDA) detected with Schiff’s reagent, and hydrogen peroxide (H2O2) accumulation was visualized with 3,3′-diaminobenzidine (DAB). Roots and shoots were analyzed through colour image analysis and quantified using a computer vision system (CVS). MDA accumulation revealed population-specific differences, with Salz tending to exhibit lower peroxidation, characterized by lower L* ≈ 42–43 and higher b* ≈ 37–18 in shoots at 200–400 mM, which may reflect a potentially more effective salt-management strategy. Although H2O2 responses deviated from a direct salinity-dependent trend, particularly in the tolerant Salz and Soltq populations, both approaches effectively tracked population-specific adaptation, with German populations displaying detectable basal H2O2 levels, consistent with its multifunctional signalling role in salt management and growth regulation. Structural defences were further explored through histochemical mapping and image analysis of pectin and lignin distribution, which revealed population-specific patterns consistent with cell wall remodelling under stress. Non-destructive, image-based methods proved effective for detecting oxidative and structural responses in halophytes. Such a non-destructive, cost-efficient, and reproducible approach can accelerate the identification of salt-tolerant ecotypes for saline agriculture and reinforce S. europaea as a model species for elucidating salt-tolerance mechanisms. Full article
(This article belongs to the Special Issue Abiotic Stress Responses in Plants—Second Edition)
26 pages, 1645 KB  
Review
Mechanotransduction-Epigenetic Coupling in Pulmonary Regeneration: Multifunctional Bioscaffolds as Emerging Tools
by Jing Wang and Anmin Xu
Pharmaceuticals 2025, 18(10), 1487; https://doi.org/10.3390/ph18101487 - 2 Oct 2025
Abstract
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present [...] Read more.
Pulmonary fibrosis (PF) is a progressive and fatal lung disease characterized by irreversible alveolar destruction and pathological extracellular matrix (ECM) deposition. Currently approved agents (pirfenidone and nintedanib) slow functional decline but do not reverse established fibrosis or restore functional alveoli. Multifunctional bioscaffolds present a promising therapeutic strategy through targeted modulation of critical cellular processes, including proliferation, migration, and differentiation. This review synthesizes recent advances in scaffold-based interventions for PF, with a focus on their dual mechano-epigenetic regulatory functions. We delineate how scaffold properties (elastic modulus, stiffness gradients, dynamic mechanical cues) direct cell fate decisions via mechanotransduction pathways, exemplified by focal adhesion–cytoskeleton coupling. Critically, we highlight how pathological mechanical inputs establish and perpetuate self-reinforcing epigenetic barriers to regeneration through aberrant chromatin states. Furthermore, we examine scaffolds as platforms for precision epigenetic drug delivery, particularly controlled release of inhibitors targeting DNA methyltransferases (DNMTi) and histone deacetylases (HDACi) to disrupt this mechano-reinforced barrier. Evidence from PF murine models and ex vivo lung slice cultures demonstrate scaffold-mediated remodeling of the fibrotic niche, with key studies reporting substantial reductions in collagen deposition and significant increases in alveolar epithelial cell markers following intervention. These quantitative outcomes highlight enhanced alveolar epithelial plasticity and upregulating antifibrotic gene networks. Emerging integration of stimuli-responsive biomaterials, CRISPR/dCas9-based epigenetic editors, and AI-driven design to enhance scaffold functionality is discussed. Collectively, multifunctional bioscaffolds hold significant potential for clinical translation by uniquely co-targeting mechanotransduction and epigenetic reprogramming. Future work will need to resolve persistent challenges, including the erasure of pathological mechanical memory and precise spatiotemporal control of epigenetic modifiers in vivo, to unlock their full therapeutic potential. Full article
(This article belongs to the Section Pharmacology)
23 pages, 365 KB  
Article
Stakeholder Perspectives on Policy, Social, and Organizational Challenges of Sustainable Residential, Multi-Storey Building Retrofitting in Germany
by Ines Wolf, Jan Kratzer and Clara Reimer
Buildings 2025, 15(19), 3566; https://doi.org/10.3390/buildings15193566 - 2 Oct 2025
Abstract
Retrofitting existing buildings is regarded as a main driver of decarbonization, yet retrofitting activities are lagging behind their ambitious goals. This study explores 86 German construction practitioners’ perceptions of organizational, policy, and social challenges to sustainable retrofitting and how those perceptions relate to [...] Read more.
Retrofitting existing buildings is regarded as a main driver of decarbonization, yet retrofitting activities are lagging behind their ambitious goals. This study explores 86 German construction practitioners’ perceptions of organizational, policy, and social challenges to sustainable retrofitting and how those perceptions relate to age, attitude, and their interaction. The primary analyses used OLS moderation models with HC3-robust standard errors and ordered-logit models, which served as robustness checks. Across outcomes, more pro-environment attitudes were associated with fewer perceived challenges, and older practitioners (4156+) reported higher barrier perception. The attitude × age interaction results indicate that the protective link of attitude was weaker among older respondents, which was significant for policy and social challenges but only marginal for organizational challenges. The model fit was reasonable, at an Adj. R2 between ≈0.56 and 0.72 with acceptable diagnostics. Our results suggest that even motivated professionals can feel constrained, especially among older, senior staff. Practical implications include early tenant engagement to enhance acceptance and foster internal organizational sustainability capacities. Policy instruments such as adult education programmes need to be leveraged to enhance sustainable construction capabilities and reinforce attitudes and behaviours toward sustainable retrofitting. More salient policy communications and guidance can contribute to increasing sustainability orientation and reducing perceived trade-offs with economic goals. Full article
(This article belongs to the Special Issue Promoting Green, Sustainable, and Resilient Urban Construction)
16 pages, 1031 KB  
Article
Analysis of Marginal Expansion in Existing Pressurised Water Installations: Analytical Formulation and Practical Application
by Alfonso Arrieta-Pastrana, Oscar E. Coronado-Hernández and Manuel Saba
Sci 2025, 7(4), 140; https://doi.org/10.3390/sci7040140 - 2 Oct 2025
Abstract
Water supply networks in both developed and developing major cities worldwide were constructed many years ago. Currently, these systems face numerous challenges, including population growth, climate change, emerging technologies, and the policies implemented by local governments. Such factors can impact the design life [...] Read more.
Water supply networks in both developed and developing major cities worldwide were constructed many years ago. Currently, these systems face numerous challenges, including population growth, climate change, emerging technologies, and the policies implemented by local governments. Such factors can impact the design life of water infrastructure, leading to service pressure deficiencies. Consequently, water infrastructure must be reinforced to ensure an adequate and reliable service. This research presents the development of an analytical formulation for hydraulic installations with a pumping station, enabling the calculation of requirements for a new parallel pipeline within an existing water system without altering the current pipe resistance class. To implement the proposed solution, it is essential to maintain the initial pump head by adjusting the impeller size. A construction cost assessment is also undertaken to identify the most cost-effective reinforcement strategy, acknowledging that pipe costs vary significantly with diameter and material, and are proportional to the square of the diameter. The proposed methodology is applied to a 30 km pipeline with a 10% increase in demand, showing that a new parallel pipe of the same diameter as the existing hydraulic installation must be installed to minimise construction costs. A multi-parametric analysis was conducted employing machine learning presets with 309 dataset points. Full article
30 pages, 2037 KB  
Article
From Market Volatility to Predictive Insight: An Adaptive Transformer–RL Framework for Sentiment-Driven Financial Time-Series Forecasting
by Zhicong Song, Harris Sik-Ho Tsang, Richard Tai-Chiu Hsung, Yulin Zhu and Wai-Lun Lo
Forecasting 2025, 7(4), 55; https://doi.org/10.3390/forecast7040055 - 2 Oct 2025
Abstract
Financial time-series prediction remains a significant challenge, driven by market volatility, nonlinear dynamic characteristics, and the complex interplay between quantitative indicators and investor sentiment. Traditional time-series models (e.g., ARIMA and GARCH) struggle to capture the nuanced sentiment in textual data, while static deep [...] Read more.
Financial time-series prediction remains a significant challenge, driven by market volatility, nonlinear dynamic characteristics, and the complex interplay between quantitative indicators and investor sentiment. Traditional time-series models (e.g., ARIMA and GARCH) struggle to capture the nuanced sentiment in textual data, while static deep learning integration methods fail to adapt to market regime transitions (bull markets, bear markets, and consolidation). This study proposes a hybrid framework that integrates investor forum sentiment analysis with adaptive deep reinforcement learning (DRL) for dynamic model integration. By constructing a domain-specific financial sentiment dictionary (containing 16,673 entries) based on the sentiment analysis approach and word-embedding technique, we achieved up to 97.35% accuracy in forum title classification tasks. Historical price data and investor forum sentiment information were then fed into a Support Vector Regressor (SVR) and three Transformer variants (single-layer, multi-layer, and bidirectional variants) for predictions, with a Deep Q-Network (DQN) agent dynamically fusing the prediction results. Comprehensive experiments were conducted on diverse financial datasets, including China Unicom, the CSI 100 index, corn, and Amazon (AMZN). The experimental results demonstrate that our proposed approach, combining textual sentiment with adaptive DRL integration, significantly enhances prediction robustness in volatile markets, achieving the lowest RMSEs across diverse assets. It overcomes the limitations of static methods and multi-market generalization, outperforming both benchmark and state-of-the-art models. Full article
25 pages, 6498 KB  
Article
SCPL-TD3: An Intelligent Evasion Strategy for High-Speed UAVs in Coordinated Pursuit-Evasion
by Xiaoyan Zhang, Tian Yan, Tong Li, Can Liu, Zijian Jiang and Jie Yan
Drones 2025, 9(10), 685; https://doi.org/10.3390/drones9100685 - 2 Oct 2025
Abstract
The rapid advancement of kinetic pursuit technologies has significantly increased the difficulty of evasion for high-speed UAVs (HSUAVs), particularly in scenarios where two collaboratively operating pursuers approach from the same direction with optimized initial space intervals. This paper begins by deriving an optimal [...] Read more.
The rapid advancement of kinetic pursuit technologies has significantly increased the difficulty of evasion for high-speed UAVs (HSUAVs), particularly in scenarios where two collaboratively operating pursuers approach from the same direction with optimized initial space intervals. This paper begins by deriving an optimal initial space interval to enhance cooperative pursuit effectiveness and introduces an evasion difficulty classification framework, thereby providing a structured approach for evaluating and optimizing evasion strategies. Based on this, an intelligent maneuver evasion strategy using semantic classification progressive learning with twin delayed deep deterministic policy gradient (SCPL-TD3) is proposed to address the challenging scenarios identified through the analysis. Training efficiency is enhanced by the proposed SCPL-TD3 algorithm through the employment of progressive learning to dynamically adjust training complexity and the integration of semantic classification to guide the learning process via meaningful state-action pattern recognition. Built upon the twin delayed deep deterministic policy gradient framework, the algorithm further enhances both stability and efficiency in complex environments. A specially designed reward function is incorporated to balance evasion performance with mission constraints, ensuring the fulfillment of HSUAV’s operational objectives. Simulation results demonstrate that the proposed approach significantly improves training stability and evasion effectiveness, achieving a 97.04% success rate and a 7.10–14.85% improvement in decision-making speed. Full article
Show Figures

Figure 1

19 pages, 4582 KB  
Article
Sustainable Bio-Gelatin Fiber-Reinforced Composites with Ionic Coordination: Mechanical and Thermal Properties
by Binrong Zhu, Qiancheng Wang, Yang Wei, Jinlong Pan and Huzi Ye
Materials 2025, 18(19), 4584; https://doi.org/10.3390/ma18194584 - 2 Oct 2025
Abstract
A novel bio-gelatin fiber-reinforced composite (BFRC) was first developed by incorporating industrial bone glue/gelatin as the matrix, magnesium oxide (MgO) as an additive, and natural or synthetic fibers as reinforcement. Systematic tests evaluated mechanical, impact, and thermal performance, alongside microstructural mechanisms. Results showed [...] Read more.
A novel bio-gelatin fiber-reinforced composite (BFRC) was first developed by incorporating industrial bone glue/gelatin as the matrix, magnesium oxide (MgO) as an additive, and natural or synthetic fibers as reinforcement. Systematic tests evaluated mechanical, impact, and thermal performance, alongside microstructural mechanisms. Results showed that polyethylene (PE) fiber-reinforced composites achieved a tensile strength of 3.40 MPa and tensile strain of 10.77%, with notable improvements in compressive and flexural strength. PE-based composites also showed excellent impact energy absorption, while bamboo fiber-reinforced composites exhibited higher thermal conductivity. Microstructural analysis revealed that coordination between Mg2+ ions and amino acids in gelatin formed a stable cross-linked network, densifying the matrix and improving structural integrity. A multi-criteria evaluation using the TOPSIS model identified the BC-PE formulation as the most balanced system, combining strength, toughness, and thermal regulation. These findings demonstrate that ionic coordination and fiber reinforcement can overcome inherent weaknesses of gelatin matrices, offering a sustainable pathway for building insulation and cushioning packaging applications. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

38 pages, 3996 KB  
Article
Deformation and Energy-Based Comparison of Outrigger Locations in RC and BRB-Core Tall Buildings Under Repetitive Earthquakes
by İlhan Emre İnam and Ahmet Anıl Dindar
Buildings 2025, 15(19), 3563; https://doi.org/10.3390/buildings15193563 - 2 Oct 2025
Abstract
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and [...] Read more.
The aim of this study is to investigate how the positioning of outrigger systems affects the seismic performance of high-rise buildings with either reinforced concrete (RC) shear walls or buckling-restrained braces (BRBs) in the core. Two important questions emerge as the focus and direction of the study: (1) How does the structural performance change when outriggers are placed at various positions? (2) How do outrigger systems affect structural behavior under sequential earthquake scenarios? Nonlinear time history analyses were employed as the primary methodology to evaluate the seismic response of the two reinforced concrete buildings with 24 and 48 stories, respectively. Each building type was developed for two different core configurations: one with a reinforced concrete shear wall core and the other with a BRB core system. Each analysis model also includes outrigger systems constructed with BRBs positioned at different floor levels. Five sequential ground motion records were used to assess the effects of main- and aftershocks. The analysis results were evaluated not only based on displacement and force demands but also using a damage measure called the Park-Ang Damage Index. In addition, displacement-based metrics, particularly the maximum inter-story drift ratio (MISD), were also utilized to quantify lateral displacement demands under consecutive seismic loading. With the results obtained from this study, it is aimed to provide design-oriented insights into the most effective use of outrigger systems formed with BRB in high-rise RC buildings and their functions in increasing seismic resistance, especially in areas likely to experience consecutive seismic events. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 4885 KB  
Article
Nonlinear Aero-Thermo-Elastic Analysis of Laminated Composite Beams with Surface-Bonded FGMs Layers Subjected to a Concentrated Harmonic Load
by Mehdi Alimoradzadeh, Francesco Tornabene and Rossana Dimitri
J. Compos. Sci. 2025, 9(10), 539; https://doi.org/10.3390/jcs9100539 - 2 Oct 2025
Abstract
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, [...] Read more.
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, where von Kármán geometric nonlinearities are taken into account, along with the modified third-order piston theory to represent aerodynamic effects. By neglecting axial inertia, the resulting set of nonlinear governing equations is simplified into a single equation. This equation is discretized through the Galerkin procedure, yielding a nonlinear ordinary differential equation. An analytical solution is, then, obtained by applying the method of multiple time scales (MTS). Furthermore, a comprehensive parametric analysis is carried out to evaluate how factors such as the power-law index, stacking sequence, temperature field, load amplitude and position, free-stream velocity, and Mach number influence both the lateral dynamic deflection and the frequency response characteristics (FRCs) of the beams, offering useful guidelines for structural design optimization. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

31 pages, 9075 KB  
Article
Behaviour Analysis of Timber–Concrete Composite Floor Structure with Granite Chip Connection
by Anna Haijima, Elza Briuka, Janis Sliseris, Dmitrijs Serdjuks, Arturs Ziverts and Vjaceslavs Lapkovskis
J. Compos. Sci. 2025, 9(10), 538; https://doi.org/10.3390/jcs9100538 - 2 Oct 2025
Abstract
This study investigates the mechanical behaviour of timber–concrete composite (TCC) floor members with an innovative adhesive connection reinforced by granite chips, glass fibre yarn net in the epoxy adhesive layer, and polypropylene (PP) fibres in the concrete layer. Laboratory tests involved three groups [...] Read more.
This study investigates the mechanical behaviour of timber–concrete composite (TCC) floor members with an innovative adhesive connection reinforced by granite chips, glass fibre yarn net in the epoxy adhesive layer, and polypropylene (PP) fibres in the concrete layer. Laboratory tests involved three groups of specimens subjected to three-point bending over a span of 500 mm with specimen lengths of 550 mm. Group A specimens exhibited crack initiation at approximately 8 kN and partial disintegration at an average load of 11.17 kN, with maximum vertical displacements ranging from 1.7 to 2.5 mm at 8 kN load, increasing rapidly to 4.3 to 5 mm post-cracking. The addition of reinforcing fibres decreased the brittleness of the adhesive connection and improved load-bearing capacity. Finite element modeling using the newly developed Verisim4D software (2025 v 0.6) and analytical micromechanics approaches demonstrated satisfactory accuracy in predicting the composite behavior. This research highlights the potential of reinforcing the adhesive layer and concrete with fibres to enhance the ductility and durability of TCC members under flexural loading. Full article
(This article belongs to the Special Issue Behaviour and Analysis of Timber–Concrete Composite Structures)
Show Figures

Figure 1

15 pages, 4826 KB  
Article
Effect of Silane Surface Treatments on the Interfacial Shear Strength Between Cotton Yarn and Poly(Lactic Acid) Resin
by Gyu Hyeon Kim, Young Soo Cho, Gye Hwa Shin and Jun Tae Kim
Materials 2025, 18(19), 4582; https://doi.org/10.3390/ma18194582 - 2 Oct 2025
Abstract
This study explores the enhancement of mechanical properties in cotton yarn-reinforced poly(lactic acid) (PLA) biocomposites, aimed at providing a sustainable alternative to petroleum-based plastics. The primary challenge addressed is the low interfacial shear strength (ISFF) between the hydrophilic cotton yarn and the hydrophobic [...] Read more.
This study explores the enhancement of mechanical properties in cotton yarn-reinforced poly(lactic acid) (PLA) biocomposites, aimed at providing a sustainable alternative to petroleum-based plastics. The primary challenge addressed is the low interfacial shear strength (ISFF) between the hydrophilic cotton yarn and the hydrophobic PLA matrix. To overcome this, cotton yarn surface was chemically modified using silane treatment. Cotton yarns were aligned on a metal frame and treated with hydrolyzed silane solutions at concentrations of 1%, 2%, 3%, and 4% (w/v) for 3 h. Although the tensile stress of the cotton yarn decreased significantly (p < 0.05) with higher silane concentrations, from 520.46 MPa (untreated) to 340.88 MPa (4% silane-treated), the IFSS improved significantly (p < 0.05) from 5.63 MPa to 12.12 MPa. Consequently, the tensile stress of the cotton yarn/PLA biocomposites increased significantly (p < 0.05), from 20.74 MPa (untreated) to 41.58 MPa (4% silane-treated). This is because the increased IFSS achieved through silane treatment allowed the PLA polymer to more firmly connect adjacent cotton fibers, resulting in maximum strength. FTIR and SEM analyses confirmed successful surface modification of the cotton yarn. These findings demonstrate that silane treatment effectively enhances interfacial bonding between cotton yarn and PLA resin, leading to improved mechanical performance of the biocomposites. Full article
(This article belongs to the Special Issue Bio-Based Natural Fiber Composite Materials)
Show Figures

Figure 1

18 pages, 697 KB  
Article
Recasting Gender Roles: A Study of Indian Television Commercials (2011–2020)
by Himika Akram and Alicia Mason
Journal. Media 2025, 6(4), 166; https://doi.org/10.3390/journalmedia6040166 - 2 Oct 2025
Abstract
Television commercials (TVCs) play a critical role in shaping and reflecting societal understandings of gender roles. Guided by cultivation theory and framing theory, this study examines gender representation in Indian TVCs, focusing on the gender distribution of primary characters, voiceovers, settings (home, outdoor, [...] Read more.
Television commercials (TVCs) play a critical role in shaping and reflecting societal understandings of gender roles. Guided by cultivation theory and framing theory, this study examines gender representation in Indian TVCs, focusing on the gender distribution of primary characters, voiceovers, settings (home, outdoor, workplace), and product categories. A quantitative content analysis of 120 Indian TVCs from 2011 to 2020 was conducted, with coding performed by the researcher. Findings show that men were primary characters in 54.6% of ads, while women featured in 45.4%. Male voiceovers dominated at 70.1%, compared to 29.9% for females. Women appeared in home settings in 66.7% of TVCs, while men were predominant in workplace contexts (100%). No significant gender disparity was observed in outdoor settings. Product-wise, women were mostly linked with household and healthcare items, whereas men dominated sectors like banking, technology, and transport. The study highlights how repetitive portrayals of certain gender framings in TVCs contribute to the normalization of traditional gender roles, offering insights into the symbolic structures that reinforce these norms in Indian media culture. Full article
Show Figures

Figure 1

37 pages, 2156 KB  
Review
Experimental Fish Models in the Post-Genomic Era: Tools for Multidisciplinary Science
by Camila Carlino-Costa and Marco Antonio de Andrade Belo
J 2025, 8(4), 39; https://doi.org/10.3390/j8040039 - 2 Oct 2025
Abstract
Fish have become increasingly prominent as experimental models due to their unique capacity to bridge basic biological research with translational applications across diverse scientific disciplines. Their biological traits, such as external fertilization, high fecundity, rapid embryonic development, and optical transparency, facilitate in vivo [...] Read more.
Fish have become increasingly prominent as experimental models due to their unique capacity to bridge basic biological research with translational applications across diverse scientific disciplines. Their biological traits, such as external fertilization, high fecundity, rapid embryonic development, and optical transparency, facilitate in vivo experimentation and real-time observation, making them ideal for integrative research. Species like zebrafish (Danio rerio) and medaka (Oryzias latipes) have been extensively validated in genetics, toxicology, neuroscience, immunology, and pharmacology, offering robust platforms for modeling human diseases, screening therapeutic compounds, and evaluating environmental risks. This review explores the multidisciplinary utility of fish models, emphasizing their role in connecting molecular mechanisms to clinical and environmental outcomes. We address the main species used, highlight their methodological advantages, and discuss the regulatory and ethical frameworks guiding their use. Additionally, we examine current limitations and future directions, particularly the incorporation of high-throughput omics approaches and real-time imaging technologies. The growing scientific relevance of fish models reinforces their strategic value in advancing cross-disciplinary knowledge and fostering innovation in translational science. Full article
(This article belongs to the Special Issue Feature Papers of J—Multidisciplinary Scientific Journal in 2025)
Show Figures

Figure 1

26 pages, 4384 KB  
Review
Application of Fiber-Reinforced Polymer (FRP) Composites in Mitigation Measures for Dam Safety Risks: A Review
by Lei Zhao, Fangduo Xiao, Pengfei Liu, Guanghui Bai, Litan Pan, Jiankang Chen and Dongming Yan
Buildings 2025, 15(19), 3558; https://doi.org/10.3390/buildings15193558 - 2 Oct 2025
Abstract
Dams are currently confronted with severe risks from frequent extreme climates and expanding aging deterioration, with traditional mitigation measures struggling to balance efficient prevention/control and long-term management. As an innovative solution, fiber-reinforced polymer (FRP) composites support improved dam safety governance. To address the [...] Read more.
Dams are currently confronted with severe risks from frequent extreme climates and expanding aging deterioration, with traditional mitigation measures struggling to balance efficient prevention/control and long-term management. As an innovative solution, fiber-reinforced polymer (FRP) composites support improved dam safety governance. To address the lack of systematic integration in existing dam-related studies, this paper promotes the development of an FRP in the dam field by comprehensively analyzing and summarizing the material properties, interfacial bonding properties of the FRP, as well as the flexural and compressive characteristics of FRP bar–concrete members and FRP sheet–concrete members while systematically organizing their practical engineering application cases. It also explores the FRP’s potential in hydraulic structures and suggests its wider application therein based on the FRP’s superior properties. Full article
(This article belongs to the Special Issue Applications of Advanced Composites in Civil Engineering)
Show Figures

Figure 1

24 pages, 5840 KB  
Article
Numerical Study of Blast Load Acting on Typical Precast Segmental Reinforced Concrete Piers in Near-Field Explosions
by Lu Liu, Zhouhong Zong, Yulin Shan, Yao Yao, Chenglin Li and Yihao Cheng
CivilEng 2025, 6(4), 53; https://doi.org/10.3390/civileng6040053 - 2 Oct 2025
Abstract
Explosions, including those from war weapons, terrorist attacks, etc., can lead to damage and overall collapse of bridges. However, there are no clear guidelines for anti-blast design and protective measures for bridges under blast loading in current bridge design specifications. With advancements in [...] Read more.
Explosions, including those from war weapons, terrorist attacks, etc., can lead to damage and overall collapse of bridges. However, there are no clear guidelines for anti-blast design and protective measures for bridges under blast loading in current bridge design specifications. With advancements in intelligent construction, precast segmental bridge piers have become a major trend in social development. There is a lack of full understanding of the anti-blast performance of precast segmental bridge piers. To study the engineering calculation method for blast load acting on a typical precast segmental reinforced concrete (RC) pier in near-field explosions, an air explosion test of the precast segmental RC pier is firstly carried out, then a fluid–structure coupling numerical model of the precast segmental RC pier is established and the interaction between the explosion shock wave and the precast segmental RC pier is discussed. A numerical simulation of the precast segmental RC pier in a near-field explosion is conducted based on a reliable numerical model, and the distribution of the blast load acting on the precast segmental RC pier in the near-field explosion is analyzed. The results show that the reflected overpressure on the pier and the incident overpressure in the free field are reliable. The simulation results are basically consistent with the experimental results (with a relative error of less than 8%), and the fluid–structure coupling model is reasonable and reliable. The explosion shock wave has effects of reflection and circulation on the precast segmental RC pier. In the near-field explosion, the back and side blast loads acting on the precast segmental RC bridge pier can be ignored in the blast-resistant design. The front blast loads can be simplified and equalized, and a blast-resistant design load coefficient (1, 0.2, 0.03, 0.02, and 0.01) and a calculation formula of maximum equivalent overpressure peak value (applicable scaled distance [0.175 m/kg1/3, 0.378 m/kg1/3]) are proposed, which can be used as a reference for the blast-resistant design of precast segmental RC piers. Full article
(This article belongs to the Section Mathematical Models for Civil Engineering)
Show Figures

Figure 1

Back to TopTop