Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = reinforcement and renovation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4931 KB  
Article
Experimental Study of the Interfacial Shear Behavior Between NRC and UHPC in UHPC-Jacketing Rehabilitation of Concrete Bridges
by Kaisheng Wu, Ruyu Shen, Kaijie Luo, Fan Mo, Haibo Jiang, Haozhen Fang and Bingxiong Xian
Buildings 2025, 15(16), 2928; https://doi.org/10.3390/buildings15162928 - 18 Aug 2025
Viewed by 251
Abstract
Ultra-High-Performance Concrete (UHPC) jacketing is an effective and innovative strengthening method in the renovation projects of concrete bridges. In December 2021, the UHPC-jacketing method was first applied to rehabilitate a seriously damaged bridge in the Changzhou Bridge rehabilitation project in Guangzhou, China. However, [...] Read more.
Ultra-High-Performance Concrete (UHPC) jacketing is an effective and innovative strengthening method in the renovation projects of concrete bridges. In December 2021, the UHPC-jacketing method was first applied to rehabilitate a seriously damaged bridge in the Changzhou Bridge rehabilitation project in Guangzhou, China. However, the interfacial shear behavior between the Normal Reinforced Concrete (NRC) substrate and UHPC is a crucial factor for the effectiveness of the UHPC-jacketing strengthening method. Therefore, four push-out specimens were designed in this paper to investigate the effects of the embedded bolt diameter (12 mm and 16 mm) and construction method (cast-in-place UHPC layer (ZJ group) and precast UHPC panels with infilled high-strength mortar (GJ group)) on the shear behavior of the NRC–UHPC interface. The results indicated that with the increased bolt diameter from 12 mm to 16 mm, the first peak load (P1) rose from 920.17 kN to 1048.07 kN (+13.9%) in the ZJ group and from 838.08 kN to 1204.20 kN (+43.7%) in the GJ group. The residual loads (Pr) of the GJ group were smaller than those of the ZJ group, at 41.9% and 30.2% lower for bolt diameters of 12 mm and 16 mm, respectively. The construction method of high-strength mortar filling was significantly influenced by the bolt diameter, with a diameter of 16 mm required to fully utilize its shear resistance. Predictions from ACI 318-19 underestimated experimental shear capacity by 70.6% on average, while AASHTO (2017) and Fib provided accurate estimations (within 9.8–10.9% of experimental values). Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 5594 KB  
Article
Dynamic Properties of Steel-Wrapped RC Column–Beam Joints Connected by Embedded Horizontal Steel Plate: Experimental Study
by Jian Wu, Mingwei Ma, Changhao Wei, Jian Zhou, Yuxi Wang, Jianhui Wang and Weigao Ding
Buildings 2025, 15(15), 2657; https://doi.org/10.3390/buildings15152657 - 28 Jul 2025
Viewed by 445
Abstract
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes [...] Read more.
The performance of reinforced concrete (RC) frame structures will gradually decrease over time, posing a threat to the safety of buildings. Although the performance of some buildings may still meet the safety requirements, they cannot meet new usage requirements. Therefore, this paper proposes a new-type joint to promote the development of research on the reinforcement and renovation of RC frame structures in response to this situation. The RC beams and columns of the joints are connected by embedded horizontal steel plate (a single plate with dimension of 150 mm × 200 mm × 5 mm), and the beams and columns are individually wrapped in steel. Through conducting low cyclic loading tests, this paper analyzes the influence of carrying out wrapped steel treatment and the thickness of wrapped steel of the beam and connector on mechanical performance indicators such as hysteresis curve, skeleton curve, stiffness, ductility, and energy dissipation. The experimental results indicate that the reinforcement using steel plate can significantly improve the dynamic performance of the joint. The effect of changing the thickness of the connector on the dynamic performance of the specimen is not significant, while increasing the thickness of wrapped steel of beam can effectively improve the overall strength of joint. The research results of this paper will help promote the application of reinforcement and renovation technology for existing buildings, and improve the quality of human living. Full article
Show Figures

Figure 1

41 pages, 1835 KB  
Review
A Comprehensive Review of Vertical Forest Buildings: Integrating Structural, Energy, Forestry, and Occupant Comfort Aspects in Renovation Modeling
by Vachan Vanian, Theodora Fanaradelli and Theodoros Rousakis
Fibers 2025, 13(8), 101; https://doi.org/10.3390/fib13080101 - 25 Jul 2025
Viewed by 479
Abstract
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the [...] Read more.
This current review examines modeling approaches for renovating reinforced concrete (RC) buildings for vertical forest (VF) application, taking into account structural retrofitting, energy systems, forestry integration, and occupant comfort. The study assesses research conducted with an advanced 3D finite element analysis and the use of retrofitting modeling techniques, including textile-reinforced mortar (TRM), fiber-reinforced polymer (FRP), seismic joints, and green concrete applications. The energy system modeling methods are reviewed, taking into account the complexity of incorporating vegetation and seasonal variations. During forestry integration, three main design parameters are identified, namely, root systems, trunks, and crowns, for their critical role in the structural stability and optimal environmental performance. The comfort models are identified evolving from static to adaptive models incorporating thermal, acoustic, visual and air quality parameters. The current review consists of more than one hundred studies indicating that the integration of natural systems to buildings requires a multidimensional and multidisciplinary approach with sophisticated systems. The findings of this review provide the basis for implementing VF models to RC buildings, while highlighting areas requiring further research and validation. Full article
(This article belongs to the Collection Review Papers of Fibers)
Show Figures

Figure 1

18 pages, 2921 KB  
Article
Comprehensive Evaluation and Analysis of Aging Performance of Polymer-Rich Anchoring Adhesives
by Bing Zeng, Shuo Wu and Shufang Yao
Materials 2025, 18(15), 3484; https://doi.org/10.3390/ma18153484 - 25 Jul 2025
Viewed by 353
Abstract
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. [...] Read more.
In civil engineering, with the increasing demand for structural reinforcement and renovation projects, polymer-rich anchoring adhesives have attracted much attention due to their performance advantage of having high strength and have become a key factor in ensuring the safety and durability of buildings. In this study, polymer-rich anchoring adhesives underwent three artificial aging treatments (alkali medium, hygrothermal, and water bath) to evaluate their aging performance. Alkali treatment reduced bending strength by up to 70% (sample 5#) within 500 h before stabilizing, while hygrothermal and water-curing treatments caused reductions of 16–51% and 15–77%, respectively, depending on adhesive composition. Dynamic thermomechanical analysis revealed significant loss factor decreases (e.g., epoxy adhesives dropped from >1.0 to stable lower values after 500 h aging), indicating increased rigidity. Infrared spectroscopy confirmed chemical degradation, including ester group breakage in vinyl ester resins (peak shifts at 1700 cm−1 and 1100 cm−1) and molecular chain scission in unsaturated polyesters. The three test methods consistently demonstrated that 500 h of aging sufficiently captured performance trends, with alkali exposure causing the most severe degradation in sensitive formulations (e.g., samples 5# and 6#). These results can be used to establish quantitative benchmarks for adhesive durability assessment in structural applications. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 1866 KB  
Article
Risk Management in the Analysis of Failures of Protective Coatings in Municipal Sewage Treatment Plant Tanks
by Janusz Banera, Marek Maj and Ahmad H. Musa
Buildings 2025, 15(13), 2254; https://doi.org/10.3390/buildings15132254 - 26 Jun 2025
Viewed by 308
Abstract
Polyurea failures in reinforced concrete tanks, such as swimming pools and sewage treatment plants, require a thorough analysis of the causes of failures during renovation. Urban agglomerations are increasingly relying on these facilities for maintaining city functioning, and the increasing concentration of pollutants [...] Read more.
Polyurea failures in reinforced concrete tanks, such as swimming pools and sewage treatment plants, require a thorough analysis of the causes of failures during renovation. Urban agglomerations are increasingly relying on these facilities for maintaining city functioning, and the increasing concentration of pollutants in these facilities necessitates urgent repairs due to frequent failures. More thorough analysis should be given to repeated failures on the same object or “twin” objects within a short period, causing high renovation costs and long shutdowns. The causes of failures can be found not only as a result of insufficient knowledge but also in a limited analysis of the entire project from the assumption phase to completion. The article analyzed water and sewage tanks on which failures of applied polyurea coatings occurred many times. The posteriori uses of the risk management analysis with the assessment of the impact and probability of occurrence of the planned activities that failed allows it to be applied a priori and treated as a necessary analysis. For this purpose, in selected repairs, those activities that had the greatest impact on failure and a relatively high probability of occurrence during implementation were distinguished from the entire project. Based on the risk management analysis, it was shown that the basic cause of the failure was the poor knowledge and insufficient experience of the entities performing the repairs, and the errors that occurred could be minimized by conducting good diagnostics of the facility, selecting professional designers and contractors, and constant monitoring of each important activity. Full article
Show Figures

Figure 1

23 pages, 8739 KB  
Article
Bending Test and Numerical Simulation of Externally Prestressed Reinforced Concrete Beams on the Side Facade
by Zhenhua Ren, Ke Zhang, Chengwang Wu, Yi Zhang, Xiantao Zeng and Xuanming Ding
Materials 2025, 18(13), 3024; https://doi.org/10.3390/ma18133024 - 26 Jun 2025
Viewed by 287
Abstract
China has a vast number of infrastructure projects, with concrete structures accounting for the majority. To achieve the rapid and effective reinforcement and renovation of existing engineering structures, this paper proposes a novel approach for the rapid strengthening of concrete beams: an external [...] Read more.
China has a vast number of infrastructure projects, with concrete structures accounting for the majority. To achieve the rapid and effective reinforcement and renovation of existing engineering structures, this paper proposes a novel approach for the rapid strengthening of concrete beams: an external prestressed reinforcement method applied to the side facade. To investigate the effectiveness of this new reinforcement method, we used three ordinary concrete beams serving as control specimens without prestress application, nine beams reinforced using traditional external prestressing, and nine beams reinforced with external prestressing applied to the side facade. The results indicated that, in comparison to the control beam and depending on the initial prestress level, the ultimate bearing capacity of the concrete beams reinforced with traditional external prestressing increased by 152% to 155%. Additionally, for the concrete beams reinforced with external prestressing on the side face, the ultimate bearing capacity improved by 53% to 61%. Both the cracking load and yield load of the reinforced concrete significantly increased, thereby enhancing the overall working performance. Based on the finite element simulation results, it can be observed that the simulation calculation outcomes aligned closely with the experimental test results. Full article
Show Figures

Figure 1

34 pages, 8454 KB  
Article
Architectural Heritage Conservation and Green Restoration with Hydroxyapatite Sustainable Eco-Materials
by Alina Moșiu, Rodica-Mariana Ion, Iasmina Onescu, Meda Laura Moșiu, Ovidiu-Constantin Bunget, Lorena Iancu, Ramona Marina Grigorescu and Nelu Ion
Sustainability 2025, 17(13), 5788; https://doi.org/10.3390/su17135788 - 24 Jun 2025
Cited by 1 | Viewed by 784
Abstract
Sustainable architectural heritage conservation focuses on preserving historical buildings while promoting environmental sustainability. It involves using eco-friendly materials and methods to ensure that the cultural value of these structures is maintained while minimizing their ecological impact. In this paper, the use of the [...] Read more.
Sustainable architectural heritage conservation focuses on preserving historical buildings while promoting environmental sustainability. It involves using eco-friendly materials and methods to ensure that the cultural value of these structures is maintained while minimizing their ecological impact. In this paper, the use of the hydroxyapatite (HAp) in various combinations on masonry samples is presented, with the aim of identifying the ideal solution to be applied to an entire historical building in Banloc monument. The new solution has various advantages: compatibility with historical lime mortars (chemical and physical), increased durability under aggressive environmental conditions, non-invasive and reversible, aligning with conservation ethics, bioinspired material that avoids harmful synthetic additives, preservation of esthetics—minimal visual change to treated surfaces, and nanostructural (determined via SEM and AFM) reinforcement to improve cohesion without altering the porosity. An innovative approach involving hydroxiapatite addition to commercial mortars is developed and presented within this paper. Physico-chemical, mechanical studies, and architectural and economic trends will be addressed in this paper. Some specific tests (reduced water absorption, increased adhesion, high mechanical strength, unchanged chromatic aspect, high contact angle, not dangerous freeze–thaw test, reduced carbonation test), will be presented to evidence the capability of hydroxyapatite to be incorporated into green renovation efforts, strengthen the consolidation layer, and focus on its potential uses as an eco-material in building construction and renovation. The methodology employed in evaluating the comparative performance of hydroxyapatite (HAp)-modified mortar versus standard Baumit MPI25 mortar includes a standard error (SE) analysis computed column-wise across performance indicators. To further substantiate the claim of “optimal performance” at 20% HAp addition, independent samples t-tests were performed. The results of the independent samples t-tests were applied to three performance and cost indicators: Application Cost, Annualized Cost, and Efficiency-Cost-Performance (ECP) Index. This validates the claim that HAp-modified mortar offers superior overall performance when considering efficiency, cost, and durability combined. Full article
Show Figures

Figure 1

19 pages, 4310 KB  
Article
The Calculation and Optimization Methodology of Repairable Elements of a UAV Structure
by Wojciech Skarka, Sergiy Kurennov, Kostiantyn Barakhov, Fedir Gagauz, Olesia Maksymovych and Oleksii Vambol
Aerospace 2025, 12(5), 441; https://doi.org/10.3390/aerospace12050441 - 16 May 2025
Viewed by 393
Abstract
A novel approach to the calculation and optimization methodology of repairable elements of unmanned aerial vehicle (UAV) structures using pre-cured composite patches is proposed. These patches are glued to the damaged structure with adhesives filled with short fibers or particulate fillers. Compared with [...] Read more.
A novel approach to the calculation and optimization methodology of repairable elements of unmanned aerial vehicle (UAV) structures using pre-cured composite patches is proposed. These patches are glued to the damaged structure with adhesives filled with short fibers or particulate fillers. Compared with conventional repair procedures (in which composite prepregs or wet lay-up are used), the suggested method allows damaged UAV structures to be repaired relatively quickly in field conditions without the need for a vacuum or special equipment. In most scientific studies on this problem, significant attention is devoted to the investigation of rectangular patches used for reinforcing plates that have defects such as cracks and damage. This study focuses on the potential application of circular patches for reinforcing plates with defects or damage and includes further parametric optimization of the geometric parameters of the patch. A fundamental approach to the topological and structural optimization of adhesive bonding, along with an experimental study of adhesive properties, has been combined into a single model. This model includes the optimization of the shape and structure of patches for bonded repair, allowing for changes in adhesive thickness to restore the load-carrying capacity of the structure. The simulation and analysis of the results of the renovation of damaged structures for double-sided and single-sided repaired elements of the UAV structure were performed. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

27 pages, 4739 KB  
Systematic Review
A System Thinking Approach to Circular-Based Strategies for Deep Energy Renovation: A Systematic Review
by Shantanu Ashok Raut, Lia Marchi and Jacopo Gaspari
Energies 2025, 18(10), 2494; https://doi.org/10.3390/en18102494 - 12 May 2025
Cited by 1 | Viewed by 840
Abstract
Over 85% of buildings in the European Union were constructed before 2001, contributing to energy inefficiencies, material waste, and increasing socio-economic disparities. While deep energy renovations (DER) are critical to EU climate goals, their implementation remains hindered by financial, regulatory, and social barriers. [...] Read more.
Over 85% of buildings in the European Union were constructed before 2001, contributing to energy inefficiencies, material waste, and increasing socio-economic disparities. While deep energy renovations (DER) are critical to EU climate goals, their implementation remains hindered by financial, regulatory, and social barriers. Integrating circular economy (CE) principles into DER offers a pathway to enhance resource efficiency and sustainability yet requires a systemic understanding of feedback dynamics. This study applies a systems-thinking approach to examine the interdependencies influencing CE-DER implementation. Five thematic clusters—technical enablers, economic and policy barriers, social sustainability factors, environmental considerations, and digitalization for climate resilience—are identified, informing the development of causal loop diagrams (CLDs). The CLDs reveal key reinforcing loops such as innovation investment, policy learning, stakeholder co-design, operational efficiency, and balancing loops, including certification bottlenecks, financial fragmentation, and digital resistance. The findings suggest that CE-DER success relies on activating reinforcing dynamics while addressing systemic constraints through coordinated financial incentives, ethical digitalization, and inclusive governance. By visualizing interdependencies across technical, social, and policy domains, the feedback-oriented framework developed provides actionable insights for advancing socially equitable, resource-efficient, and climate-resilient renovation strategies. Full article
(This article belongs to the Special Issue Advanced Technologies for Energy-Efficient Buildings)
Show Figures

Figure 1

18 pages, 5896 KB  
Article
Efficiency of Alternative Reinforcement Methods for Wooden Ceilings and Their Ecological Aspects
by Karl Deix, Christian Huber and Josip Gogic
Materials 2025, 18(9), 2032; https://doi.org/10.3390/ma18092032 - 29 Apr 2025
Viewed by 447
Abstract
In the case of load increases and the refurbishment of existing buildings, it is often necessary to carry out strengthening measures on existing timber beams. When timber concrete composite (TCC) ceilings cannot be used, it is possible to reinforce the undersides of the [...] Read more.
In the case of load increases and the refurbishment of existing buildings, it is often necessary to carry out strengthening measures on existing timber beams. When timber concrete composite (TCC) ceilings cannot be used, it is possible to reinforce the undersides of the beams with structural steel or fiber composites (aramid or carbon-fiber-reinforced polymer). This work investigates how significant effects on the load-bearing and deformation behavior can be achieved with these materials in terms of construction practice. The article is intended to show structural engineers which reinforcement measures lead to which forces, deformations, etc., and how these are utilized. This should form the basis for the planning of reinforcement measures, as it is not clear from the beginning whether AFRP, CFRP, or steel is the most suitable material. For this purpose, a comparative parameter study was carried out under practical conditions and with a variable degree of reinforcement using the corresponding formulas. The internal forces in the timber and reinforcement cross-sections, the deflection behavior, and the failure loads at the strength and design levels were calculated. It was demonstrated that, particularly for steel and carbon-fiber-reinforced polymer (CFRP) reinforcements, significant increases in the ultimate load can be achieved and the often-important deformation behavior can be significantly improved. Especially the steel variant leads to high improvements in deflection and breaking load behavior, with the base material (wood) also being utilized more economically as a result. A comparative ecological study in the form of the global warming potential showed that reinforcement methods are also advantageous from the point of view of sustainability compared to renovations with timber concrete composite slabs or new concrete slabs. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

22 pages, 12922 KB  
Article
Theoretical Approach for Micro-Settlement Control in Super-Large Cross-Section Tunnels Under Sensitive Environments
by Zhongsheng Tan, Zhengquan Ding, Zhenliang Zhou and Zhanxian Li
Appl. Sci. 2025, 15(8), 4375; https://doi.org/10.3390/app15084375 - 15 Apr 2025
Viewed by 479
Abstract
The rapid development of urban transportation renovation and transportation networks in China has driven the construction of an increasing number of large-span, large cross-section tunnels under sensitive environments, such as airport runways, critical infrastructure, and high-speed railways. These projects often require strict settlement [...] Read more.
The rapid development of urban transportation renovation and transportation networks in China has driven the construction of an increasing number of large-span, large cross-section tunnels under sensitive environments, such as airport runways, critical infrastructure, and high-speed railways. These projects often require strict settlement control within a millimeter-level tolerance range, thus theoretical methods and key technologies for micro-settlement control have been developed. This study first derives a calculation formula for surface settlement associated with large cross-section tunnels and elucidates its correlations with factors such as pipe-roof stiffness, support system stiffness, pipe-roof construction procedures, and groundwater level changes. Theoretical approaches for controlling micro-settlement are introduced, including increasing pipe-roof stiffness, reinforcing the support system, mitigating group pipe effects, maintaining pressure and reducing resistance around the pipe, and controlling groundwater levels. A method is proposed for determining the appropriate stiffness of the pipe roof and support system. The stiffness should be selected from the transition segment between the steep decline and the gentle slope on the stiffness-settlement curves of the pipe roof and the support system. If the stiffness of the pipe roof and primary support combined with temporary support fails to meet the micro-settlement control requirements, an integrated support system with greater stiffness can be adopted. A reasonable pressure-regulating grouting technique for maintaining pressure and reducing resistance around the pipe is proposed. It is recommended that the spacing for simultaneous jacking of pipes be greater than half the width of the settlement trough. For over-consolidation-sensitive strata such as medium or coarse sands, water-blocking measures, including freezing, grouting, or a combination of both, are recommended. For over-consolidation-insensitive strata like gravels and cobbles with strong permeability, water-blocking treatments are generally unnecessary. The proposed theoretical approaches have been successfully implemented in projects such as the tunnel beneath Beijing Capital Airport runways and Taiyuan Railway Station, demonstrating their reliability. The research findings provide valuable insights into surface micro-settlement control for similar projects. Full article
Show Figures

Figure 1

29 pages, 4660 KB  
Article
The Rural Village Regeneration for the European Built Environment: From Good Practices Towards a Conceptual Model
by Francesca Ciampa, Giulia Marchiano, Luigi Fusco Girard and Mariarosaria Angrisano
Sustainability 2025, 17(7), 2787; https://doi.org/10.3390/su17072787 - 21 Mar 2025
Cited by 2 | Viewed by 1626
Abstract
In the European Green Deal and Renovation Wave framework, cities should be more self-sufficient and sustainable, promoting investment in the regeneration and maintenance of the built and natural heritage. The New European Bauhaus reinforces this vision, promoting the value of beauty as a [...] Read more.
In the European Green Deal and Renovation Wave framework, cities should be more self-sufficient and sustainable, promoting investment in the regeneration and maintenance of the built and natural heritage. The New European Bauhaus reinforces this vision, promoting the value of beauty as a product of environmental harmony/sustainability and participation. Many cities are already working to improve infrastructure and public services, with the aim of creating better socio-economic and environmental conditions in urbanised areas. At the same time, they aim to increase and relocate attractiveness and competitiveness to less densified rural areas, and to reduce overcrowding problems in cities. The aim is to propose a virtuous model of circular regeneration, by identifying virtuous strategies of the regeneration of rural villages capable of aligning the transformation of the built environment with climate objectives, social cohesion and local economy strengthening, and the integration of historical and identity values. Rural villages in marginal areas are left behind places. They require new economic development strategies, grounded in a circular bio-economy model for reducing/avoiding spiraled down processes. The application of European evaluation criteria to the main topic literature background allowed for the construction of a virtuous practices observatory about regenerated rural villages, which is elaborated using registry, systemic, and analytical/analysis forms. From the ex-post evaluation analysis of the case studies, it was possible to identify a number of dimensions/clusters in which investment is being made today for the regeneration of rural villages. By reasoning on the investment clusters, it was possible to identify a circular regeneration model for rural villages, transferable to other realities in order to implement the broader vision of circular settlement development. The “Rural Village Regeneration Model” represents an operational tool for regional transformation, suitable for reactivating lost connections between rural villages and larger towns in functional areas, characterised by greater self-sufficiency and exploration of the potential of digital tools to improve services, connections, infrastructure, and cooperation. Full article
(This article belongs to the Special Issue Circular Economy and Circular City for Sustainable Development)
Show Figures

Figure 1

48 pages, 5577 KB  
Review
Performance-Based Damage Quantification and Hazard Intensity Measures for Vertical Forest Systems on RC Buildings
by Vachan Vanian, Theodoros Rousakis, Theodora Fanaradelli, Maristella Voutetaki, Makrini Macha, Adamantis Zapris, Ifigeneia Theodoridou, Maria Stefanidou, Katerina Vatitsi, Giorgos Mallinis, Violetta Kytinou and Constantin Chalioris
Buildings 2025, 15(5), 769; https://doi.org/10.3390/buildings15050769 - 26 Feb 2025
Viewed by 915
Abstract
The European building stock is aging and needs renovation. Holistic renovation approaches, including Vertical Forest (VF) systems, are emerging as sustainable alternatives to demolition and reconstruction. This paper reviews and defines missing reliable damage and hazard intensity measures for the holistic renovation of [...] Read more.
The European building stock is aging and needs renovation. Holistic renovation approaches, including Vertical Forest (VF) systems, are emerging as sustainable alternatives to demolition and reconstruction. This paper reviews and defines missing reliable damage and hazard intensity measures for the holistic renovation of existing reinforced concrete (RC) buildings with VF systems. Based on an extensive literature review and preliminary studies, including empirical multiparametric system evaluation assessments, Monte Carlo simulations, and System-Theoretic Process Analysis (STPA), combined structural, non-structural, vegetation, and human comfort components are examined. Key damage indicators are identified, including interstory drift ratio, residual deformation, concrete and reinforcement strains/stresses, and energy dissipation, and their applicability to VF-integrated structures are evaluated. Green modifications are found to have higher risk profiles than traditional RC buildings (mean scores from Monte Carlo method: 9.72/15–11.41/15 vs. 9.47/15), with moisture management and structural integrity as critical concerns. The paper advances the understanding of hazard intensity measures for seismic, wind, and rainfall impacts. The importance of AI-driven vegetation monitoring systems with 80–99% detection accuracy is highlighted. It is concluded that successful VF renovation requires specialized design codes, integrated monitoring systems, standardized maintenance protocols, and enhanced control systems to ensure structural stability, environmental efficiency, and occupant safety. Full article
(This article belongs to the Special Issue Challenges in Seismic Analysis and Assessment of Buildings)
Show Figures

Figure 1

23 pages, 8084 KB  
Article
Experimental Research on the Seismic Behavior of Reinforced Concrete Column–Beam Joints Connected by Π-Shaped Steel Plates
by Jian Wu, Ying Jiang, Jian Zhou, Liangjie Hu, Jianhui Wang and Weigao Ding
Buildings 2025, 15(3), 349; https://doi.org/10.3390/buildings15030349 - 23 Jan 2025
Viewed by 922
Abstract
The mechanical performance of existing buildings degrades over time, and even if the mechanical performance meets the requirements, some buildings will have new usage needs, necessitating the reinforcement and renovation of buildings. Therefore, this paper conducted experimental research on the reinforcement and renovation [...] Read more.
The mechanical performance of existing buildings degrades over time, and even if the mechanical performance meets the requirements, some buildings will have new usage needs, necessitating the reinforcement and renovation of buildings. Therefore, this paper conducted experimental research on the reinforcement and renovation of reinforced concrete joints that could simultaneously meet the requirements for seismic performance and new usage needs. Firstly, the reinforced concrete columns are produced, and the treatment of the wrapped steel plate is conducted. Then, the Π-shaped steel plate is welded onto the wrapped steel of the column, and the longitudinal bars of the beam and the Π-shaped steel plate are connected through the weld seam. Finally, we proceed with pouring the concrete for the beam and wrapping the beam with the steel plate. After the completion of specimen production, a cyclic loading test is conducted to compare and analyze the hysteresis curve, ductility, stiffness degradation, and energy dissipation of the new specimen type and cast-in-place specimen. The steel plate thickness, including the wrapped steel of the beam and the Π-shaped steel plate, is designed as a variable for the experiment. The results indicate that the seismic properties of the specimen are effectively improved after reinforcement with a steel plate. At the same time, the seismic performance of the specimen improves with an increase in the thickness of the steel plate wrapping the beam, while the impact of the Π-shaped steel plate is relatively minimal. The research results show that compared with the cast-in-place specimen, the reinforcement and renovation method proposed in this paper can significantly improve the seismic performance of the specimen and can help promote the development of urban reinforcement and renovation work. Full article
Show Figures

Figure 1

20 pages, 19130 KB  
Article
Spatial Continuum in History: Pier Buildings on the Bosphorus and Golden Horn, Istanbul
by Dilek Yasar and Gamze Kaymak Heinz
Buildings 2024, 14(11), 3531; https://doi.org/10.3390/buildings14113531 - 5 Nov 2024
Cited by 2 | Viewed by 2422
Abstract
Pier buildings along the coastline of Istanbul City, an ancient city surrounded by the sea on three sides, serve not only as vital transportation nodes but also as hubs for cultural and social life. As an embodiment of their respective topography and culture [...] Read more.
Pier buildings along the coastline of Istanbul City, an ancient city surrounded by the sea on three sides, serve not only as vital transportation nodes but also as hubs for cultural and social life. As an embodiment of their respective topography and culture with distinctive characteristics in terms of location and architecture, the historical pier buildings are incorporated into the social, cultural, and historical fabric of the city. It is important to protect and preserve these buildings and develop sustainable tourism policies for sustainable cultural heritage management. Accordingly, the present study investigated 36 pier buildings in Istanbul using a comprehensive map analysis and on-site discovery. The study results suggested that these buildings preserved their authentic identities and spatial continuum, despite several renovations over time. Today, some of the pier buildings in Istanbul have additional functions, including serving as cafes, libraries, and sightseeing spots along with their transportation functions, contributing to the reinforcement of social interaction and social ties. The study results helped suggest key inferences on how these buildings should be preserved and carried into the future in the scope of urban planning. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop