Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,044)

Search Parameters:
Keywords = relation structure/properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1034 KB  
Review
Purification, Structural Characteristics, Bioactive Properties, and Applications of Naematelia aurantialba Polysaccharides: A Comprehensive Review
by Ri-Na Wu, Yun-Yang Zhu, Run-Hui Ma, Zhi-Jing Ni, Xiao-Juan Deng, Kiran Thakur and Zhao-Jun Wei
Molecules 2025, 30(20), 4073; https://doi.org/10.3390/molecules30204073 (registering DOI) - 13 Oct 2025
Abstract
Jin’er (Naematelia aurantialba), commonly known as golden ear, is a traditional edible fungus that has long been recognized for its medicinal and culinary properties in China. Recently, it has been registered as a new cosmetic ingredient, drawing significant attention across various [...] Read more.
Jin’er (Naematelia aurantialba), commonly known as golden ear, is a traditional edible fungus that has long been recognized for its medicinal and culinary properties in China. Recently, it has been registered as a new cosmetic ingredient, drawing significant attention across various fields, including medicine, food, and cosmetics, due to its array of nutritional and medicinal benefits. N. aurantialba is rich in bioactive compounds, such as polysaccharides, dietary fiber, polyphenols, and active peptides. Among these, N. aurantialba polysaccharides (NAPs) are the primary active components, exhibiting a range of biological properties, including antioxidant, hypoglycemic, immunomodulatory, intestinal flora modulatory, anti-tumor, and anti-inflammatory effects. This comprehensive review summarizes the latest advancements in the extraction, purification, structural characteristics, functional activity, and related functional mechanisms of NAPs, as well as their industrial applications. Additionally, it discusses the current limitations in NAPs research and explores its potential future research directions. This review aims to provide up-to-date information and valuable references for researchers and industry professionals interested in the potential application of NAPs in the fields of food, medicine, healthcare, and cosmetics. Full article
(This article belongs to the Special Issue Research on Functional Active Ingredients of Edible Fungi)
20 pages, 10441 KB  
Article
Steel Strand Corrosion and Corrosion-Induced Cracking in Prestressed Concrete Under Stray Current
by Yuancheng Ni, Eryu Zhu and Liangjiang Chen
Buildings 2025, 15(20), 3681; https://doi.org/10.3390/buildings15203681 (registering DOI) - 13 Oct 2025
Abstract
Due to the presence of stray current in the subway environment, the durability issues of subway structures differ from those of general structures. This study simulates the combined effects of chloride ions and stray current in the subway environment through electrochemical corrosion experiments, [...] Read more.
Due to the presence of stray current in the subway environment, the durability issues of subway structures differ from those of general structures. This study simulates the combined effects of chloride ions and stray current in the subway environment through electrochemical corrosion experiments, thereby analyzing the corrosion morphology and mechanical property degradation of steel strands and the corrosion-induced cracking of concrete. The experimental results indicate that stray current affects the strength and ductility of steel strands as well as the cracking of concrete. The corrosion difference coefficient μc at different positions is greater than 1.6 and the average corrosion degree ηave is less than 7%. The corrosion morphology gradually changes from non-uniform to uniform corrosion until the ηave is greater than 12%. The concrete crack width under a stray current of 60 mA is 10.67 times that of cracks under 20 mA after 42 days, which is approximately linearly related to the current intensity. Based on the experimental results, a corrosion-induced crack prediction model for prestressed concrete under stray current is proposed, with the main influencing factors being current intensity, concrete tensile strength, and protective layer thickness. These findings can provide valuable references for the durability analysis of subway structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

25 pages, 2872 KB  
Article
Moisture Sorption Isotherms of Fructooligosaccharide and Inulin Powders and Their Gelling Competence in Delaying the Retrogradation of Rice Starch
by Bing Dai, Ruijun Chen, Zheng Wei, Jianzhang Wu and Xingjun Li
Gels 2025, 11(10), 817; https://doi.org/10.3390/gels11100817 (registering DOI) - 12 Oct 2025
Abstract
The accurate determination of the equilibrium moisture content (EMC) of gel-related powdery samples requires strictly controlled conditions and a long time period. In this study, the adsorption and desorption isotherms of two fructooligosaccharide (FOS) powders and three inulin powders were determined using a [...] Read more.
The accurate determination of the equilibrium moisture content (EMC) of gel-related powdery samples requires strictly controlled conditions and a long time period. In this study, the adsorption and desorption isotherms of two fructooligosaccharide (FOS) powders and three inulin powders were determined using a dynamic moisture sorption analyzer at 0.1–0.9 water activity (aw) and 20–35 °C, respectively. The adsorption and desorption isotherms all exhibited type IIa sigmoidal curves; the desorptive isotherm was smooth, the FOS adsorption curves had three inflection points, and the inulin adsorption curves had five inflection points. Large hysteresis between the adsorption and desorption isotherms occurred at 0.1–0.7 aw for FOS and 0.1–0.6 aw for inulin. Seven equations, Boquet, Ferro–Fontan, Guggenheim–Anderson–de Boer (GAB), Generalized D’Arcy and Watt (GDW), modified GAB (MGAB), Peleg, and our developed Polynomial, were found to fit the isotherms of the FOS and inulin samples; for adsorption, the best equations were Ferro–Fontan and GDW, and for desorption, the best equations were Polynomial and MGAB. The GDW and MGAB equations could not distinguish the effect of temperature on the isotherms, while the Polynomial equation could. The mean adsorptive monolayer moisture content (M0) values in FOS and inulin samples were predicted as 7.29% and 7.94% wet basis, respectively. The heat of moisture sorption of FOS and inulin approached that of pure water at about 32.5% and 22.5% wet basis (w.b.) moisture content (MC), respectively. Fourier Transform Infrared Spectroscopy (FTIR) showed that the peaks in inulin with absorbance values above 0.52 and in FOS with absorbance values above 0.35 were at 1020, 1084, and 337 cm−1; these could represent the amorphous structure (primary alcohol C-OH), C-O group, and hydroxyl functional group, respectively. Microscopic structure analysis showed that inulin powder particles were more round-shaped and adhered together, resulting in hygroscopic and sticky characteristics, with a maximum equilibrium moisture content (EMC) of 34% w.b. In contrast, the FOS powders exhibited irregular amorphous particles and a maximum EMC of 60% w.b. As hydrogels, 3–10% FOS or inulin addition reduced the peak, trough, final, breakdown, and setback viscosities of rice starch pasting, but increased the peak time and pasting temperature. FOS addition gave stronger reduction in the setback viscosity and in amylose retrogradation of rice starch pasting than inulin addition. The differential scanning calorimeter (DSC) showed 3–10% FOS addition reduced the amylopectin aging of retrograded paste of rice starch, but 5–7% inulin addition tended to reduce. These results suggest that FOS and inulin have strong hygroscopic properties and can be used to maintain the freshness of starch-based foods. These data can be used for drying, storage, and functional food design of FOS and inulin products. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products (2nd Edition))
Show Figures

Figure 1

58 pages, 1997 KB  
Review
Immunomodulatory Activities of Emerging Rare Ginsenosides F1, Rg5, Rk1, Rh1, and Rg2: From Molecular Mechanisms to Therapeutic Applications
by Chang-Eui Hong and Su-Yun Lyu
Pharmaceuticals 2025, 18(10), 1529; https://doi.org/10.3390/ph18101529 - 11 Oct 2025
Abstract
Ginsenosides, the primary bioactive components of Panax ginseng, have demonstrated significant immunomodulatory potential. While major ginsenosides have been extensively studied, rare ginsenosides produced through deglycosylation, heating, and steaming show enhanced biological activities with improved bioavailability. This review aimed to comprehensively analyze the [...] Read more.
Ginsenosides, the primary bioactive components of Panax ginseng, have demonstrated significant immunomodulatory potential. While major ginsenosides have been extensively studied, rare ginsenosides produced through deglycosylation, heating, and steaming show enhanced biological activities with improved bioavailability. This review aimed to comprehensively analyze the immunomodulatory mechanisms, structure-activity relationships (SARs), therapeutic applications, and clinical translation strategies of five emerging rare ginsenosides: F1, Rg5, Rk1, Rh1, and Rg2. We conducted a comprehensive literature review examining the production methods, immunological effects, molecular mechanisms, pharmacokinetics, safety profiles, and clinical applications of these five compounds. Analysis focused on chemical structures, immune cell modulation, signaling pathways, disease model efficacy, and bioavailability enhancement strategies. Ginsenoside F1 uniquely demonstrated immunostimulatory effects, enhancing natural killer (NK) cell cytotoxicity and macrophage phagocytosis through mitogen-activated protein kinase (MAPK)/nuclear factor-κB (NF-κB) activation. Conversely, Rg5, Rk1, Rh1, and Rg2 exhibited anti-inflammatory properties via distinct mechanisms: Rg5 through Toll-like receptor 4 (TLR4)/NF-κB inhibition, Rk1 via triple pathway modulation (NF-κB, p38 MAPK, signal transducer and activator of transcription (STAT)), Rh1 by selective p38 MAPK and STAT1 inhibition, and Rg2 through modulation of both central nervous system (neuroinflammation) and peripheral organ systems. Structure-activity analysis revealed that sugar moiety positions critically determine immunological outcomes. Crucially, advanced delivery systems including nanostructured lipid carriers, self-microemulsifying systems, and specialized liposomes have overcome the major translational barrier of poor bioavailability, achieving up to 2.6-fold improvements and enabling clinical development. Safety assessments demonstrated favorable tolerability profiles across preclinical and clinical studies. These five rare ginsenosides represent promising immunomodulatory agents with distinct therapeutic applications. F1’s unique immunostimulatory properties position it for cancer immunotherapy, while the complementary anti-inflammatory mechanisms of Rg5, Rk1, Rh1, and Rg2 offer opportunities for precision medicine in inflammatory diseases. Advanced formulation technologies and optimized production methods now enable their significant clinical translation potential, providing promising therapeutic options for immune-related disorders pending further development. Full article
Show Figures

Graphical abstract

21 pages, 2536 KB  
Article
Predicting Star Scientists in the Field of Artificial Intelligence: A Machine Learning Approach
by Koosha Shirouyeh, Andrea Schiffauerova and Ashkan Ebadi
Metrics 2025, 2(4), 22; https://doi.org/10.3390/metrics2040022 - 11 Oct 2025
Viewed by 34
Abstract
Star scientists are highly influential researchers who have made significant contributions to their field, gained widespread recognition, and often attracted substantial research funding. They are critical for the advancement of science and innovation and significantly influence the transfer of knowledge and technology to [...] Read more.
Star scientists are highly influential researchers who have made significant contributions to their field, gained widespread recognition, and often attracted substantial research funding. They are critical for the advancement of science and innovation and significantly influence the transfer of knowledge and technology to industry. Identifying potential star scientists before their performance becomes outstanding is important for recruitment, collaboration, networking, and research funding decisions. This study utilizes machine learning techniques and builds four different classifiers, i.e., random forest, support vector machines, naïve bayes, and logistic regression, to predict star scientists in the field of artificial intelligence while highlighting features related to their success. The analysis is based on publication data collected from Scopus from 2000 to 2019, incorporating a diverse set of features such as gender, ethnic diversity, and collaboration network structural properties. The random forest model achieved the best performance with an AUC of 0.75. Our results confirm that star scientists follow different patterns compared to their non-star counterparts in almost all the early-career features. We found that certain features, such as gender and ethnic diversity, play important roles in scientific collaboration and can significantly impact an author’s career development and success. The most important features in predicting star scientists in the field of artificial intelligence were the number of articles, betweenness centrality, research impact indicators, and weighted degree centrality. Our approach offers valuable insights for researchers, practitioners, and funding agencies interested in identifying and supporting talented researchers. Full article
Show Figures

Figure 1

17 pages, 6132 KB  
Article
Nanostructured Scaffold, Combined with Human Dental Pulp Stem Cell Secretome, Induces Vascularization in Medicinal Leech Model
by Gaia Marcolli, Nicolò Baranzini, Ludovica Barone, Federica Rossi, Laura Pulze, Christina Pagiatakis, Roberto Papait, Annalisa Grimaldi and Rosalba Gornati
Micromachines 2025, 16(10), 1150; https://doi.org/10.3390/mi16101150 - 10 Oct 2025
Viewed by 71
Abstract
As life expectancy continues to increase, age-related disorders are becoming more prevalent. Among these, vascular complications resulting from chronic inflammation are particularly concerning, as they impair angiogenesis and hinder tissue repair, both processes that heavily rely on a well-structured extracellular matrix (ECM). In [...] Read more.
As life expectancy continues to increase, age-related disorders are becoming more prevalent. Among these, vascular complications resulting from chronic inflammation are particularly concerning, as they impair angiogenesis and hinder tissue repair, both processes that heavily rely on a well-structured extracellular matrix (ECM). In this context, MicroMatrix® UBM Particulate, a skin substitute composed of collagen, laminin, and proteoglycans, appears to offer properties conducive to tissue regeneration. The aim of this study was to evaluate the regenerative potential of MicroMatrix® combined with the Secretome of human Dental Pulp Stem Cells (hDPSC-S), using the medicinal leech Hirudo verbana, a well-established model for studying wound healing, angiogenesis, and tissue regeneration. Adult leeches were injected with MicroMatrix® either suspended in FBS-free medium (CTRL) or supplemented with hDPSC-S. 1-week post-treatment, the animals were sacrificed and subjected to morphological and immunohistochemical analyses. Our findings revealed that MicroMatrix® successfully integrated into the leech body wall. Notably, when supplemented with hDPSC-S, there was a marked increase in cell infiltration, including telocytes and Hematopoietic Precursor Stem Cells, along with a significantly higher vessel density compared to CTRL. These results support the effectiveness of the cell-free device composed of MicroMatrix® and hDPSC-S, highlighting its potential as a promising strategy for regenerative therapies aimed at treating complex wounds with poor vascularization. Full article
Show Figures

Figure 1

22 pages, 3371 KB  
Article
Targeted Chemical Profiling and Dereplication of Australian Plants of the Family Haemodoraceae Using a Combined HPLC-MS and HRLC(ESI)-MS Approach
by Liam Thompson, Valerie Chow, Shan Chen, Priyanka Reddy, Robert Brkljača, Colin Rix, Joseph J. Byrne, Aya C. Taki, Robin B. Gasser and Sylvia Urban
Molecules 2025, 30(20), 4044; https://doi.org/10.3390/molecules30204044 (registering DOI) - 10 Oct 2025
Viewed by 96
Abstract
Australian plants of the family Haemodoraceae have been a reliable source of new secondary metabolites, particularly those of the ‘phenylphenalenone’ class, and related chromenes and xanthones. Some of these compounds demonstrate anti-microbial properties against both Gram-negative and Gram-positive bacteria. Chemical profiling of thirty [...] Read more.
Australian plants of the family Haemodoraceae have been a reliable source of new secondary metabolites, particularly those of the ‘phenylphenalenone’ class, and related chromenes and xanthones. Some of these compounds demonstrate anti-microbial properties against both Gram-negative and Gram-positive bacteria. Chemical profiling of thirty individual ethanolic extracts from six separate species of Australian plants belonging to the family Haemodoraceae was conducted using an HPLC-MS approach reinforced by HRLC(ESI)-MS. Six of the extracts were further explored by employing HRLC(ESI)-MS and the compounds present were characterised and confirmed based on a comparison to the original data. All thirty extracts were assessed for biological activity against the parasitic nematode Haemonchus contortus in vitro. The chemical profiling methodology adopted resulted in the identification of thirty-four previously reported compounds, identifying on average 64% of the previously reported secondary metabolites across the species Haemodorum simulans, Haemodorum spicatum, Haemodorum brevisepalum and Macropidia fuliginosa. Furthermore, compounds from the phenylbenzoisoquinolindone class were detected in the bulbs of Haemodorum simulans and Haemodorum coccineum, representing the first report of the structure class in extracts of the genus Haemodorum. Extracts of the H. simulans stems, M. fuliginosa bulbs and H. distichophyllum roots and bulbs exhibited anthelmintic activity in vitro. The chemical profiling HPLC-MS methodology adopted was successful in the rapid identification of most of the previously reported secondary metabolites across the Haemodoracae species, indicating that the analytical approach was robust. This study demonstrates the effectiveness of dereplication via HPLC-MS-based chemical profiling across six Australian Haemodoraceae species, identifying numerous known and putatively novel secondary metabolites. It also reports, for the first time, anthelmintic activity in selected species and marks the first detailed phytochemical investigation of H. distichophyllum since its initial pigment analysis over 50 years ago. Full article
Show Figures

Figure 1

23 pages, 4647 KB  
Article
Dynamic Response and Damage Mechanism of CFRP Composite Laminates Subjected to Underwater Impulsive Loading
by Zhenqian Wei and Jili Rong
Appl. Sci. 2025, 15(20), 10888; https://doi.org/10.3390/app152010888 - 10 Oct 2025
Viewed by 76
Abstract
CFRP composite laminates have been widely used in shipbuilding and marine engineering fields, but there is currently a lack of comparative analysis of their blast resistance and dynamic performance under different anisotropic and load conditions. This study aims to characterize the damage response [...] Read more.
CFRP composite laminates have been widely used in shipbuilding and marine engineering fields, but there is currently a lack of comparative analysis of their blast resistance and dynamic performance under different anisotropic and load conditions. This study aims to characterize the damage response of thick composite laminates with different impact strengths, layer orientations, and laminate thicknesses under water-based explosive loads. By conducting underwater impact tests on laminated panels and combining fluid structure coupling simulations, the study focuses on understanding the deformation and failure mechanisms and quantifying the damage caused by structural properties and loading rates. The results show that while composite laminates show elastic deformation and high recoverability, they are susceptible to matrix tensile damage, particularly at edges and centers. This study reveals that maximum out-of-plane displacement is proportional to impact intensity, while damage dissipation energy is quadratically related. Optimal ply orientations can reduce anisotropy and mitigate damage. Increasing laminate thickness from 3 mm to 8 mm reduces the maximum out-of-plane displacement by 32%, with diminishing returns observed beyond 6 mm thickness. This research offers valuable insights for optimizing composite laminate design to enhance impact resistance and efficiency. Full article
Show Figures

Figure 1

13 pages, 2805 KB  
Article
Facile Synthesis of Mg-MOF-74 Thin Films for Enhanced CO2 Detection
by Yujing Zhang, Evan J. Haning, Hao Sun, Tzer-Rurng Su, Alan X. Wang, Ki-Joong Kim, Paul R. Ohodnicki and Chih-Hung Chang
Nanomaterials 2025, 15(20), 1541; https://doi.org/10.3390/nano15201541 - 10 Oct 2025
Viewed by 189
Abstract
Metal–organic frameworks (MOFs) are a class of highly ordered nanoporous crystals that possess a designable framework and unique chemical versatility. MOF thin films are ideal for nanotechnology-enabling applications, such as optoelectronics, catalytic coatings, and sensing. Mg-MOF-74 has been drawing increasing attention due to [...] Read more.
Metal–organic frameworks (MOFs) are a class of highly ordered nanoporous crystals that possess a designable framework and unique chemical versatility. MOF thin films are ideal for nanotechnology-enabling applications, such as optoelectronics, catalytic coatings, and sensing. Mg-MOF-74 has been drawing increasing attention due to its remarkable CO2 uptake capacity among MOFs and other commonly used CO2 absorbents. Mg-MOF-74 thin films are currently fabricated by immersing selected substrates in precursor solutions, followed by a traditional solvothermal synthesis process. Herein, we introduce a rapid, easy, and cost-effective synthesis protocol to fabricate MOF thin films in an additive manner. In this work, the controllable synthesis of Mg-MOF-74 thin films directly on optical supports is reported for the first time. Dense, continuous, and uniform Mg-MOF-74 thin films are successfully fabricated on bare glass slides, with an average growth rate of up to 85.3 nm min−1. The structural and optical properties of the resulting Mg-MOF-74 thin films are characterized using X-ray diffraction, atomic force microscopy, scanning electron microscopy, UV-Vis-NIR spectroscopy, and Fourier Transform Infrared Spectroscopy (FTIR). The CO2 adsorption performance of the resulting Mg-MOF-74 thin films is studied using FTIR for the first time, which demonstrates that, as per the length of the light path for gas absorption, 1 nm Mg-MOF-74 thin film could provide 400.9 ± 18.0 nm absorption length for CO2, which is achieved via the extraordinary CO2 adsorption by Mg-MOF-74. The synthesis protocol enables the rapid synthesis of MOF thin films, highlighting Mg-MOF-74 in more CO2-related applications, such as enhanced CO2 adsorption and MOF-enhanced infrared gas sensing. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

19 pages, 7053 KB  
Article
Investigating the Therapeutic Mechanisms of Shen-Ling-Bai-Zhu-San in Type 2 Diabetes and Ulcerative Colitis Comorbidity: A Network Pharmacology and Molecular Simulation Approach
by Qian Yu, Shijie Sun, Tao Han, Haishui Li, Fan Yao, Dongsheng Zong and Zuojing Li
Pharmaceuticals 2025, 18(10), 1516; https://doi.org/10.3390/ph18101516 - 10 Oct 2025
Viewed by 88
Abstract
Objectives: Shen-Ling-Bai-Zhu-San (SLBZS) is a classical traditional Chinese herbal formula with spleen-invigorating and dampness-resolving properties. Recent pharmacological studies suggest its potential to regulate immune and metabolic disorders. Type 2 diabetes mellitus (T2D) and ulcerative colitis (UC) often coexist as comorbidities characterized by [...] Read more.
Objectives: Shen-Ling-Bai-Zhu-San (SLBZS) is a classical traditional Chinese herbal formula with spleen-invigorating and dampness-resolving properties. Recent pharmacological studies suggest its potential to regulate immune and metabolic disorders. Type 2 diabetes mellitus (T2D) and ulcerative colitis (UC) often coexist as comorbidities characterized by chronic inflammation, microbial imbalance, and insulin dysregulation, yet effective therapies remain limited. This study aimed to investigate the molecular mechanisms through which SLBZS may benefit T2D–UC comorbidity. Methods: An integrative multi-omics strategy was applied, combining network pharmacology, structural bioinformatics, and ensemble molecular docking–dynamics simulations. These complementary approaches were used to identify SLBZS bioactive compounds, predict their putative targets, and examine their interactions with disease-related biological networks. Results: The analyses revealed that flavonoids in SLBZS act on the SLC6A14/PI3K–AKT signaling axis, thereby modulating immune responses and improving insulin sensitivity. In addition, SLBZS was predicted to regulate the NF-κB/MAPK signaling pathways, key hubs linking inflammation and metabolic dysfunction in T2D–UC. These dual actions suggest that SLBZS can intervene in both inflammatory and metabolic processes. Conclusions: SLBZS demonstrates promising therapeutic potential for T2D–UC by targeting interconnected immune–metabolic networks. These findings not only provide mechanistic insights bridging traditional therapeutic concepts with modern pharmacology but also establish a theoretical basis for future experimental validation and clinical application. Full article
(This article belongs to the Special Issue Emerging Therapies for Diabetes and Obesity)
Show Figures

Figure 1

17 pages, 6549 KB  
Article
Horizontal Bone Augmentation with Natural Collagen Porcine Pericardium Membranes: A Prospective Cohort Study
by Pier Paolo Poli, Luca Giboli, Mattia Manfredini, Shahnavaz Khijmatgar, Francisley Ávila Souza and Carlo Maiorana
Medicina 2025, 61(10), 1814; https://doi.org/10.3390/medicina61101814 - 10 Oct 2025
Viewed by 173
Abstract
Background and Objectives: Adequate buccal bone thickness is critical for long-term peri-implant health and stability. When residual alveolar bone volume is insufficient, guided bone regeneration (GBR) is a widely adopted technique. While non-resorbable membranes provide structural support, they carry a higher risk [...] Read more.
Background and Objectives: Adequate buccal bone thickness is critical for long-term peri-implant health and stability. When residual alveolar bone volume is insufficient, guided bone regeneration (GBR) is a widely adopted technique. While non-resorbable membranes provide structural support, they carry a higher risk of complications and require secondary surgery. Resorbable collagen membranes, offer promising biological properties and easier clinical handling, yet clinical data remain limited. This prospective cohort study aimed to evaluate the clinical and radiographic outcomes of horizontal GBR using a native, non–cross-linked resorbable porcine pericardium membrane fixed with titanium pins, in conjunction with simultaneous implant placement. Materials and Methods: Eighteen patients (26 implants) with horizontal alveolar defects (<6 mm) underwent implant placement and GBR with deproteinized bovine bone mineral and a porcine pericardium collagen membrane. Horizontal bone gain and buccal bone thickness were measured at baseline and 6 months post-operatively. Post-operative complications, patient-reported outcomes (PROMs), and peri-implant tissue health were assessed up to 1 year post-loading. Results: Mean bone gain was 2.95 ± 0.95 mm, and all sites achieved a buccal bone thickness ≥ 1.5 mm. No membrane-related complications occurred. PROMs revealed low morbidity. At 1-year follow-up, marginal bone loss averaged 0.54 ± 0.7 mm, mean probing depth was 2.79 ± 0.78 mm, 92% of sites exhibited keratinized mucosa ≥ 2 mm. Conclusions: Native resorbable porcine pericardium membranes, when combined with DBBM and mechanical stabilization, seem to be effective for horizontal bone regeneration. Full article
(This article belongs to the Special Issue New Regenerative Medicine Strategies in Oral Surgery)
Show Figures

Figure 1

25 pages, 1817 KB  
Article
Effect of Varying Dairy Cow Size and Live Weight on Soil Structure and Pasture Attributes
by Mary Negrón, Ignacio F. López, José Dörner, Andrew D. Cartmill, Oscar A. Balocchi and Eladio Saldivia
Agronomy 2025, 15(10), 2367; https://doi.org/10.3390/agronomy15102367 - 10 Oct 2025
Viewed by 331
Abstract
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in [...] Read more.
Grazing systems’ production efficiency is a dynamic interaction between soil, pasture, livestock, and climate. The magnitude of the changes is related to the mechanical stress applied by the livestock and their feeding behaviour. In Southern Chile, dairy cattle present a high heterogeneity in breeds, size, live weight, and milk production. This study investigated whether cows of contrasting size/live weight can improve degraded pasture and positively modify soil (Andosol-Duric Hapludand) physical features. Three pasture types were used as follows: (i) cultivated fertilised Lolium perenne L. (perennial ryegrass) and Trifolium repens L. (white clover) mixture (BM); (ii) cultivated fertilised L. perenne, T. repens, Bromus valdivianus Phil. (pasture brome), Holcus lanatus L. (Yorkshire fog), and Dactylis glomerata L. (cocksfoot) mixture (MSM); and (iii) naturalised fertilised pasture Agrostis capillaris L. (browntop), B. valdivianus, and T. repens (NFP). Pastures were grazed with two groups of dairy cows of contrasting size and live weight: light cows (LC) [live weight: 464 ± 5.4 kg; height at the withers: 132 ± 0.6 cm (average ± s.e.m.)] and heavy cows (HC) [live weight: 600 ± 8.7 kg; height at the withers: 141 ± 0.9 cm (average ± s.e.m.)]. Hoof area was measured, and the pressure applied by cows on the soil was calculated. Soil differences in penetration resistance (PR) and macro-porosity (wCP > 50 μm) between pastures were explained by tillage and seeding, rather than as a result of livestock presence and movement (animal trampling). The PR variation during the year was associated with the soil water content (SWC). Grazing dairy cows of contrasting live weight caused changes in soil and pasture attributes, and they behaved differently during grazing. Light cows were linked to more intense grazing, a stable soil structure, and pastures with competitive species and greater tiller density. In MSM, pasture consumption increased, and the soil was more resilient to hoof compression. In general, grazing with heavy cows in these three different pasture systems did not negatively impact soil physical properties. These findings indicate that volcanic soils are resilient and that during renovation, the choice of pasture type has a greater initial impact on soil structure than the selection of cow size, but incorporating lighter cows can be a strategy to promote denser pasture swards in these grazing systems. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

30 pages, 2204 KB  
Review
Hydrogen Economy and Climate Change: Additive Manufacturing in Perspective
by Isaac Kwesi Nooni and Thywill Cephas Dzogbewu
Clean Technol. 2025, 7(4), 87; https://doi.org/10.3390/cleantechnol7040087 - 9 Oct 2025
Viewed by 91
Abstract
The hydrogen economy stands at the forefront of the global energy transition, and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping, [...] Read more.
The hydrogen economy stands at the forefront of the global energy transition, and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping, topology optimization, functional integration of cooling channels, and the fabrication of intricate, hierarchical, structured pores with precisely controlled connectivity. These features facilitate efficient heat and mass transfer, thereby improving hydrogen production, storage, and utilization efficiency. Furthermore, AM’s multi-material and functionally graded printing capability holds promise for producing components with tailored properties to mitigate hydrogen embrittlement, significantly extending operational lifespan. Collectively, these advances suggest that AM could lower manufacturing costs for hydrogen-related systems while improving performance and reliability. However, the current literature provides limited evidence on the integrated techno-economic advantages of AM in hydrogen applications, posing a significant barrier to large-scale industrial adoption. At present, the technological readiness level (TRL) of AM-based hydrogen components is estimated to be 4–5, reflecting laboratory-scale progress but underscoring the need for further development, validation and industrial-scale demonstration before commercialization can be realized. Full article
Show Figures

Figure 1

15 pages, 5568 KB  
Article
Development of Projection Optical Microscopy and Direct Observation of Various Nanoparticles
by Toshihiko Ogura
Optics 2025, 6(4), 50; https://doi.org/10.3390/opt6040050 - 9 Oct 2025
Viewed by 183
Abstract
The optical microscope is an indispensable observation instrument that has fundamentally contributed to progress in science and technology. Dark-field microscopy and scattered light imaging techniques enable high-contrast observation of nanoparticles in water. However, the scattered light is focused by the optical lenses, resulting [...] Read more.
The optical microscope is an indispensable observation instrument that has fundamentally contributed to progress in science and technology. Dark-field microscopy and scattered light imaging techniques enable high-contrast observation of nanoparticles in water. However, the scattered light is focused by the optical lenses, resulting in a blurred image of the nanoparticle structure. Here, we developed a projection optical microscope (PROM), which directly observes the scattered light from the nanoparticles without optical lenses. In this method, the sample is placed below the focus position of the microscope’s objective lens and the projected light is detected by an image sensor. This enables direct observation of the sample with a spatial resolution of approximately 20 nm. Using this method, changes in the aggregation state of nanoparticles in solution can be observed at a speed faster than the video frame rate. Moreover, the mechanism of such high-resolution observation may be related to the quantum properties of light, making it an interesting phenomenon from the perspective of optical engineering. We expect this method to be applicable to the observation and analysis of samples in materials science, biology and applied physics, and thus to contribute to a wide range of scientific, technological and industrial fields. Full article
(This article belongs to the Section Engineering Optics)
Show Figures

Figure 1

26 pages, 12809 KB  
Article
Coating Thickness Estimation Using a CNN-Enhanced Ultrasound Echo-Based Deconvolution
by Marina Perez-Diego, Upeksha Chathurani Thibbotuwa, Ainhoa Cortés and Andoni Irizar
Sensors 2025, 25(19), 6234; https://doi.org/10.3390/s25196234 - 8 Oct 2025
Viewed by 232
Abstract
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces [...] Read more.
Coating degradation monitoring is increasingly important in offshore industries, where protective layers ensure corrosion prevention and structural integrity. In this context, coating thickness estimation provides critical information. The ultrasound pulse-echo technique is widely used for non-destructive testing (NDT), but closely spaced acoustic interfaces often produce overlapping echoes, which complicates detection and accurate isolation of each layer’s thickness. In this study, analysis of the pulse-echo signal from a coated sample has shown that the front-coating reflection affects each main backwall echo differently; by comparing two consecutive backwall echoes, we can cancel the acquisition system’s impulse response and isolate the propagation path-related information between the echoes. This work introduces an ultrasound echo-based methodology for estimating coating thickness by first obtaining the impulse response of the test medium (reflectivity sequence) through a deconvolution model, developed using two consecutive backwall echoes. This is followed by an enhanced detection of coating layer thickness in the reflectivity function using a 1D convolutional neural network (1D-CNN) trained with synthetic signals obtained from finite-difference time-domain (FDTD) simulations with k-Wave MATLAB toolbox (v1.4.0). The proposed approach estimates the front-side coating thickness in steel samples coated on both sides, with coating layers ranging from 60μm to 740μm applied over 5 mm substrates and under varying coating and steel properties. The minimum detectable thickness corresponds to approximately λ/5 for an 8 MHz ultrasonic transducer. On synthetic signals, where the true coating thickness and speed of sound are known, the model achieves an accuracy of approximately 8μm. These findings highlight the strong potential of the model for reliably monitoring relative thickness changes across a wide range of coatings in real samples. Full article
(This article belongs to the Special Issue Nondestructive Sensing and Imaging in Ultrasound—Second Edition)
Show Figures

Figure 1

Back to TopTop