Processing math: 100%
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = relativistic quantum information

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 722 KiB  
Article
Thermal Fisher Information for a Rotating BTZ Black Hole
by Everett A. Patterson and Robert B. Mann
Entropy 2025, 27(5), 478; https://doi.org/10.3390/e27050478 - 28 Apr 2025
Viewed by 169
Abstract
Relativistic quantum metrology provides a framework within which we can quantify the quality of measurement and estimation procedures while accounting for both quantum and relativistic effects. The chief measure for describing such procedures is the Fisher information, which quantifies how sensitive a given [...] Read more.
Relativistic quantum metrology provides a framework within which we can quantify the quality of measurement and estimation procedures while accounting for both quantum and relativistic effects. The chief measure for describing such procedures is the Fisher information, which quantifies how sensitive a given estimation is to a variance in some underlying parameter. Recently, the Fisher information has been used to quantify the spacetime information accessible to two-level quantum particle detectors. We have previously shown that such a system is capable of discerning black hole mass for static black holes in 2 + 1 dimensions. Here, we extend these results to the astrophysically interesting case of rotating black holes and show that the Fisher information is also sensitive to the rotation of a black hole. Full article
(This article belongs to the Special Issue Applications of Fisher Information in Sciences II)
Show Figures

Figure 1

19 pages, 290 KiB  
Article
Fisher Information and Electromagnetic Interacting Dirac Spinors
by Asher Yahalom
Axioms 2025, 14(3), 229; https://doi.org/10.3390/axioms14030229 - 20 Mar 2025
Viewed by 261
Abstract
In earlier works, it was demonstrated that Schrödinger’s equation, which includes interactions with electromagnetic fields, can be derived from a fluid dynamic Lagrangian framework. This approach treats the system as a charged potential flow interacting with an electromagnetic field. The emergence of quantum [...] Read more.
In earlier works, it was demonstrated that Schrödinger’s equation, which includes interactions with electromagnetic fields, can be derived from a fluid dynamic Lagrangian framework. This approach treats the system as a charged potential flow interacting with an electromagnetic field. The emergence of quantum behavior was attributed to the inclusion of Fisher information terms in the classical Lagrangian. This insight suggests that quantum mechanical systems are influenced not just by electromagnetic fields but also by information, which plays a fundamental role in driving quantum dynamics. This methodology was extended to Pauli’s equations by relaxing the constraint of potential flow and employing the Clebsch formalism. Although this approach yielded significant insights, certain terms remained unexplained. Some of these unresolved terms appear to be directly related to aspects of the relativistic Dirac theory. In a recent work, the analysis was revisited within the context of relativistic flows, introducing a novel perspective for deriving the relativistic quantum theory but neglecting the interaction with electromagnetic fields for simplicity. This is rectified in the current work, which shows the implications of the field in the current context. Full article
(This article belongs to the Special Issue Recent Advances in Quantum Mechanics and Mathematical Physics)
31 pages, 4117 KiB  
Article
A Decentralized Storage and Security Engine (DeSSE) Using Information Fusion Based on Stochastic Processes and Quantum Mechanics
by Gerardo Iovane and Riccardo Amatore
Appl. Sci. 2025, 15(2), 759; https://doi.org/10.3390/app15020759 - 14 Jan 2025
Cited by 1 | Viewed by 1143
Abstract
In the context of data security, this work aims to present a novel solution that, rather than addressing the topic of endpoint security—which has already garnered significant attention within the international scientific community—offers a different perspective on the subject. In other words, the [...] Read more.
In the context of data security, this work aims to present a novel solution that, rather than addressing the topic of endpoint security—which has already garnered significant attention within the international scientific community—offers a different perspective on the subject. In other words, the focus is not on device security but rather on the protection and security of the information contained within those devices. As we will see, the result is a next-generation decentralized infrastructure that simultaneously integrates two cognitive areas: data storage and its protection and security. In this context, an innovative Multiscale Relativistic Quantum (MuReQua) chain is considered to realize a novel decentralized and security solution for storing data. This engine is based on the principles of Quantum Mechanics, stochastic processes, and a new approach of decentralization for data storage focused on information security. The solution is broken down into four main components, considered four levels of security against attackers: (i) defocusing, (ii) fogging, (iii) puzzling, and (iv) crypto agility. The defocusing is realized thanks to a fragmentation of the contents and their distributions on different allocations, while the fogging is a component consisting of a solution of hybrid cyphering. Then, the puzzling is a unit of Information Fusion and Inverse Information Fusion, while the crypto agility component is a frontier component based on Quantum Computing, which gives a stochastic dynamic to the information and, in particular, to its data fragments. The data analytics show a very effective and robust solution, with executions time comparable with cloud technologies, but with a level of security that is a post quantum one. In the end, thanks to a specific application example, going beyond purely technical and technological aspects, this work introduces a new cognitive perspective regarding (i) the distinction between data and information, and (ii) the differentiation between the owner and the custodian of data. Full article
(This article belongs to the Special Issue New Advances in Computer Security and Cybersecurity)
Show Figures

Figure 1

9 pages, 238 KiB  
Article
Dirac Equation and Fisher Information
by Asher Yahalom
Entropy 2024, 26(11), 971; https://doi.org/10.3390/e26110971 - 12 Nov 2024
Cited by 2 | Viewed by 1067
Abstract
Previously, it was shown that Schrödinger’s theory can be derived from a potential flow Lagrangian provided a Fisher information term is added. This approach was later expanded to Pauli’s theory of an electron with spin, which required a Clebsch flow Lagrangian with non-zero [...] Read more.
Previously, it was shown that Schrödinger’s theory can be derived from a potential flow Lagrangian provided a Fisher information term is added. This approach was later expanded to Pauli’s theory of an electron with spin, which required a Clebsch flow Lagrangian with non-zero vorticity. Here, we use the recent relativistic flow Lagrangian to represent Dirac’s theory with the addition of a Lorentz invariant Fisher information term as is required by quantum mechanics. Full article
(This article belongs to the Special Issue Applications of Fisher Information in Sciences II)
24 pages, 1486 KiB  
Article
Finite Nuclear Size Effect on the Relativistic Hyperfine Splittings of 2s and 2p Excited States of Hydrogen-like Atoms
by Katharina Lorena Franzke and Uwe Gerstmann
Foundations 2024, 4(4), 513-536; https://doi.org/10.3390/foundations4040034 - 1 Oct 2024
Viewed by 1247
Abstract
Hyperfine splittings play an important role in quantum information and spintronics applications. They allow for the readout of the spin qubits, while at the same time providing the dominant mechanism for the detrimental spin decoherence. Their exact knowledge is thus of prior relevance. [...] Read more.
Hyperfine splittings play an important role in quantum information and spintronics applications. They allow for the readout of the spin qubits, while at the same time providing the dominant mechanism for the detrimental spin decoherence. Their exact knowledge is thus of prior relevance. In this work, we analytically investigate the relativistic effects on the hyperfine splittings of hydrogen-like atoms, including finite-size effects of the nucleis’ structure. We start from exact solutions of Dirac’s equation using different nuclear models, where the nucleus is approximated by (i) a point charge (Coulomb potential), (ii) a homogeneously charged full sphere, and (iii) a homogeneously charged spherical shell. Equivalent modelling has been done for the distribution of the nuclear magnetic moment. For the 1s ground state and 2s excited state of the one-electron systems H1, H2, H3, and He+3, the calculated finite-size related hyperfine shifts are quite similar for the different structure models and in excellent agreement with those estimated by comparing QED and experiment. This holds also in a simplified approach where relativistic wave functions from a Coulomb potential combined with spherical-shell distributed nuclear magnetic moments promises an improved treatment without the need for an explicit solution of Dirac’s equation within the nuclear core. Larger differences between different nuclear structure models are found in the case of the anisotropic 2p3/2 orbitals of hydrogen, rendering these excited states as promising reference systems for exploring the proton structure. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

40 pages, 5798 KiB  
Review
Global Realism with Bipolar Strings: From Bell Test to Real-World Causal-Logical Quantum Gravity and Brain-Universe Similarity for Entangled Machine Thinking and Imagination
by Wen-Ran Zhang
Information 2024, 15(8), 456; https://doi.org/10.3390/info15080456 - 1 Aug 2024
Cited by 1 | Viewed by 3674
Abstract
Following Einstein’s prediction that “Physics constitutes a logical system of thought” and “Nature is the realization of the simplest conceivable mathematical ideas”, this topical review outlines a formal extension of local realism limited by the speed of light to [...] Read more.
Following Einstein’s prediction that “Physics constitutes a logical system of thought” and “Nature is the realization of the simplest conceivable mathematical ideas”, this topical review outlines a formal extension of local realism limited by the speed of light to global realism with bipolar strings (GRBS) that unifies the principle of locality with quantum nonlocality. The related literature is critically reviewed to justify GRBS which is shown as a necessary and inevitable consequence of the Bell test and an equilibrium-based axiomatization of physics and quantum information science for brain–universe similarity and human-level intelligence. With definable causality in regularity and mind–light–matter unity for quantum superposition/entanglement, bipolar universal modus ponens (BUMP) in GRBS makes quantum emergence and submergence of spacetime logically ubiquitous in both the physical and mental worlds—an unexpected but long-sought simplification of quantum gravity with complete background independence. It is shown that GRBS forms a basis for quantum intelligence (QI)—a spacetime transcendent, quantum–digital compatible, analytical quantum computing paradigm where bipolar strings lead to bipolar entropy as a nonlinear bipolar dynamic and set–theoretic unification of order and disorder as well as linearity and nonlinearity for energy/information conservation, regeneration, and degeneration toward quantum cognition and quantum biology (QCQB) as well as information-conservational blackhole keypad compression and big bang data recovery. Subsequently, GRBS is justified as a real-world quantum gravity (RWQG) theory—a bipolar relativistic causal–logical reconceptualization and unification of string theory, loop quantum gravity, and M-theory—the three roads to quantum gravity. Based on GRBS, the following is posited: (1) life is a living bipolar superstring regulated by bipolar entropy; (2) thinking with consciousness and memory growth as a prerequisite for human-level intelligence is fundamentally mind–light–matter unitary QI logically equivalent to quantum emergence (entanglement) and submergence (collapse) of spacetime. These two posits lead to a positive answer to the question “If AI machine cannot think, can QI machine think?”. Causal–logical brain modeling (CLBM) for entangled machine thinking and imagination (EMTI) is proposed and graphically illustrated. The testability and falsifiability of GRBS are discussed. Full article
Show Figures

Figure 1

36 pages, 421 KiB  
Review
Mathematics of a Process Algebra Inspired by Whitehead’s Process and Reality: A Review
by William Sulis
Mathematics 2024, 12(13), 1988; https://doi.org/10.3390/math12131988 - 27 Jun 2024
Viewed by 930
Abstract
Process algebras have been developed within computer science and engineering to address complicated computational and manufacturing problems. The process algebra described herein was inspired by the Process Theory of Whitehead and the theory of combinatorial games, and it was developed to explicitly address [...] Read more.
Process algebras have been developed within computer science and engineering to address complicated computational and manufacturing problems. The process algebra described herein was inspired by the Process Theory of Whitehead and the theory of combinatorial games, and it was developed to explicitly address issues particular to organisms, which exhibit generativity, becoming, emergence, transience, openness, contextuality, locality, and non-Kolmogorov probability as fundamental characteristics. These features are expressed by neurobehavioural regulatory systems, collective intelligence systems (social insect colonies), and quantum systems as well. The process algebra has been utilized to provide an ontological model of non-relativistic quantum mechanics with locally causal information flow. This paper provides a pedagical review of the mathematics of the process algebra. Full article
(This article belongs to the Special Issue Theories of Process and Process Algebras)
45 pages, 697 KiB  
Article
The Computational Universe: Quantum Quirks and Everyday Reality, Actual Time, Free Will, the Classical Limit Problem in Quantum Loop Gravity and Causal Dynamical Triangulation
by Piero Chiarelli and Simone Chiarelli
Quantum Rep. 2024, 6(2), 278-322; https://doi.org/10.3390/quantum6020020 - 20 Jun 2024
Viewed by 1616
Abstract
The simulation analogy presented in this work enhances the accessibility of abstract quantum theories, specifically the stochastic hydrodynamic model (SQHM), by relating them to our daily experiences. The SQHM incorporates the influence of fluctuating gravitational background, a form of dark energy, into quantum [...] Read more.
The simulation analogy presented in this work enhances the accessibility of abstract quantum theories, specifically the stochastic hydrodynamic model (SQHM), by relating them to our daily experiences. The SQHM incorporates the influence of fluctuating gravitational background, a form of dark energy, into quantum equations. This model successfully addresses key aspects of objective-collapse theories, including resolving the ‘tails’ problem through the definition of quantum potential length of interaction in addition to the De Broglie length, beyond which coherent Schrödinger quantum behavior and wavefunction tails cannot be maintained. The SQHM emphasizes that an external environment is unnecessary, asserting that the quantum stochastic behavior leading to wavefunction collapse can be an inherent property of physics in a spacetime with fluctuating metrics. Embedded in relativistic quantum mechanics, the theory establishes a coherent link between the uncertainty principle and the constancy of light speed, aligning seamlessly with finite information transmission speed. Within quantum mechanics submitted to fluctuations, the SQHM derives the indeterminacy relation between energy and time, offering insights into measurement processes impossible within a finite time interval in a truly quantum global system. Experimental validation is found in confirming the Lindemann constant for solid lattice melting points and the 4He transition from fluid to superfluid states. The SQHM’s self-consistency lies in its ability to describe the dynamics of wavefunction decay (collapse) and the measure process. Additionally, the theory resolves the pre-existing reality problem by showing that large-scale systems naturally decay into decoherent states stable in time. Continuing, the paper demonstrates that the physical dynamics of SQHM can be analogized to a computer simulation employing optimization procedures for realization. This perspective elucidates the concept of time in contemporary reality and enriches our comprehension of free will. The overall framework introduces an irreversible process impacting the manifestation of macroscopic reality at the present time, asserting that the multiverse exists solely in future states, with the past comprising the formed universe after the current moment. Locally uncorrelated projective decays of wavefunction, at the present time, function as a reduction of the multiverse to a single universe. Macroscopic reality, characterized by a foam-like consistency where microscopic domains with quantum properties coexist, offers insights into how our consciousness perceives dynamic reality. It also sheds light on the spontaneous emergence of gravity in discrete quantum spacetime evolution, and the achievement of the classical general relativity limit in quantum loop gravity and causal dynamical triangulation. The simulation analogy highlights a strategy focused on minimizing information processing, facilitating the universal simulation in solving its predetermined problem. From within, reality becomes the manifestation of specific physical laws emerging from the inherent structure of the simulation devised to address its particular issue. In this context, the reality simulation appears to employ an optimization strategy, minimizing information loss and data management in line with the simulation’s intended purpose. Full article
Show Figures

Figure 1

18 pages, 416 KiB  
Article
Quantum Brain Dynamics: Optical and Acoustic Super-Radiance via a Microtubule
by Akihiro Nishiyama, Shigenori Tanaka and Jack A. Tuszynski
Foundations 2024, 4(2), 288-305; https://doi.org/10.3390/foundations4020019 - 18 Jun 2024
Cited by 1 | Viewed by 3494
Abstract
We aim to derive a super-radiance solution of coherent light and sound waves involving water degrees of freedom in the environment of a microtubule. We introduce a Lagrangian density functional of quantum electrodynamics with non-relativistic charged bosons as a model of quantum brain [...] Read more.
We aim to derive a super-radiance solution of coherent light and sound waves involving water degrees of freedom in the environment of a microtubule. We introduce a Lagrangian density functional of quantum electrodynamics with non-relativistic charged bosons as a model of quantum brain dynamics (QBD) involving water molecular conformational states and photon fields. We also introduce the model of charged boson fields (water degrees of freedom) coupled with phonons. Both optical and acoustic super-radiance solutions are derived in our approach. An acoustic super-radiance mechanism involving information transfer is proposed as an additional candidate to solve the binding problem and to achieve acoustic holography. Our results can be applied to achieve holographic memory storage and information processing in QBD. Full article
(This article belongs to the Section Physical Sciences)
Show Figures

Figure 1

18 pages, 478 KiB  
Article
A Simple Quantum Picture of the Relativistic Doppler Effect
by Daniel Hodgson, Sara Kanzi and Almut Beige
Symmetry 2024, 16(3), 279; https://doi.org/10.3390/sym16030279 - 28 Feb 2024
Cited by 1 | Viewed by 2556
Abstract
The relativistic Doppler effect comes from the fact that observers in different inertial reference frames experience space and time differently, while the speed of light always remains the same. Consequently, a wave packet of light exhibits different frequencies, wavelengths, and amplitudes. In this [...] Read more.
The relativistic Doppler effect comes from the fact that observers in different inertial reference frames experience space and time differently, while the speed of light always remains the same. Consequently, a wave packet of light exhibits different frequencies, wavelengths, and amplitudes. In this paper, we present a local approach to the relativistic Doppler effect based on relativity, spatial and time translational symmetries, and energy conservation. Afterwards, we investigate the implications of the relativistic Doppler effect for the quantum state transformations of wave packets of light and show that a local photon is a local photon at the same point in the spacetime diagram in all inertial frames. Full article
(This article belongs to the Special Issue Noether and Space-Time Symmetries in Physics—Volume Ⅱ)
Show Figures

Figure 1

25 pages, 2234 KiB  
Article
Holographic Brain Theory: Super-Radiance, Memory Capacity and Control Theory
by Akihiro Nishiyama, Shigenori Tanaka, Jack A. Tuszynski and Roumiana Tsenkova
Int. J. Mol. Sci. 2024, 25(4), 2399; https://doi.org/10.3390/ijms25042399 - 18 Feb 2024
Cited by 7 | Viewed by 3938
Abstract
We investigate Quantum Electrodynamics corresponding to the holographic brain theory introduced by Pribram to describe memory in the human brain. First, we derive a super-radiance solution in Quantum Electrodynamics with non-relativistic charged bosons (a model of molecular conformational states of water) for coherent [...] Read more.
We investigate Quantum Electrodynamics corresponding to the holographic brain theory introduced by Pribram to describe memory in the human brain. First, we derive a super-radiance solution in Quantum Electrodynamics with non-relativistic charged bosons (a model of molecular conformational states of water) for coherent light sources of holograms. Next, we estimate memory capacity of a brain neocortex, and adopt binary holograms to manipulate optical information. Finally, we introduce a control theory to manipulate holograms involving biological water’s molecular conformational states. We show how a desired waveform in holography is achieved in a hierarchical model using numerical simulations. Full article
Show Figures

Figure 1

15 pages, 310 KiB  
Article
A Fluid Perspective of Relativistic Quantum Mechanics
by Asher Yahalom
Entropy 2023, 25(11), 1497; https://doi.org/10.3390/e25111497 - 30 Oct 2023
Cited by 3 | Viewed by 1683
Abstract
In previous papers, it has been shown how Schrödinger’s equation which includes an electromagnetic field interaction can be deduced from a fluid dynamical Lagrangian of a charged potential flow that interacts with an electromagnetic field. The quantum behaviour is derived from Fisher information [...] Read more.
In previous papers, it has been shown how Schrödinger’s equation which includes an electromagnetic field interaction can be deduced from a fluid dynamical Lagrangian of a charged potential flow that interacts with an electromagnetic field. The quantum behaviour is derived from Fisher information terms added to the classical Lagrangian, showing that a quantum mechanical system is driven by information and not only electromagnetic fields. This program was applied to Pauli’s equations by removing the restriction of potential flow and using the Clebsch formalism. Although the analysis was quite successful, there were terms that did not admit interpretation, a number of which can be easily traced to the relativistic Dirac theory. Here, this analysis is repeated for a relativistic flow, pointing to a new approach for deriving relativistic quantum mechanics. Full article
(This article belongs to the Special Issue Causal Relativistic Hydrodynamics for Viscous Fluids)
Show Figures

Figure 1

11 pages, 5608 KiB  
Article
Symmetry and the Nanoscale: Advances in Analytical Modeling in the Perspective of Holistic Unification
by Paolo Di Sia
Symmetry 2023, 15(8), 1611; https://doi.org/10.3390/sym15081611 - 21 Aug 2023
Cited by 2 | Viewed by 1279
Abstract
Analytical modeling presents symmetries and aesthetic-mathematical characteristics which are not catchable in numerical computation for science and technology; nanoscience plays a significant role in unification attempts, considering also models including holistic aspects of reality. In this paper we present new discovered results about [...] Read more.
Analytical modeling presents symmetries and aesthetic-mathematical characteristics which are not catchable in numerical computation for science and technology; nanoscience plays a significant role in unification attempts, considering also models including holistic aspects of reality. In this paper we present new discovered results about the complete analytical quantum-relativistic form of the mean square deviation of position R2(t) related to a recently introduced Drude–Lorentz-like model (DS model), already performed at classical, quantum and relativistic level. The function R2(t) gives precise information about the distance crossed by carriers (electrons, ions, etc.) inside a nanostructure, considering both quantum effects and relativistic velocities. The model has a wide scale range of applicability; the nanoscale is considered in this paper, but it holds application from sub-pico-level to macro-level because of the existence of a gauge factor, making it applicable to every oscillating process in nature. Examples of application and suggestions supplement this paper, as well as interesting developments to be studied related to the model and to one of the basic elements of a current unified holistic approach based on vacuum energy. Full article
Show Figures

Figure 1

19 pages, 783 KiB  
Article
Quantum Beam Scattering—Beam’s Coherence Length, Which-Path Information and Weak Values
by C. Aris Chatzidimitriou-Dreismann
Quantum Beam Sci. 2023, 7(3), 26; https://doi.org/10.3390/qubs7030026 - 15 Aug 2023
Viewed by 1692
Abstract
The conventional theory of neutron beams interacting with many-body systems treats the beam as a classical system, i.e., with its dynamical variables appearing in the quantum dynamics of the scattering process not as operators but only as c-numbers. Moreover, neutrons are described with [...] Read more.
The conventional theory of neutron beams interacting with many-body systems treats the beam as a classical system, i.e., with its dynamical variables appearing in the quantum dynamics of the scattering process not as operators but only as c-numbers. Moreover, neutrons are described with plane waves, i.e., the concept of a neutron’s (finite) coherence length is here irrelevant. The same holds for electron, atom or X-ray scattering. This simplification results in the full decoupling of the probe particle’s dynamics from the quantum dynamics of the scatterer—a well-known fact also reflected in the standard formalism of time-correlation functions (see textbooks). Making contact with modern quantum-theoretical approaches (e.g., quantum entanglement, “which-path information” versus interference, von Neumann measurement, Weak Values (WV), etc.), new observable effects of non-relativistic quantum beam scattering may be exposed and/or predicted, for instance, a momentum-transfer deficit and an intensity deficit in neutron scattering from protons of hydrogen-containing samples. A new WV-theoretical treatment is provided, which explains both these “deficit effects” from first principles and on equal footing. Full article
(This article belongs to the Special Issue Quantum Beam Science: Feature Papers 2023)
Show Figures

Figure 1

12 pages, 300 KiB  
Article
Derivation of Emergent Spacetime Metric, Gravitational Potential and Speed of Light in Superfluid Vacuum Theory
by Konstantin G. Zloshchastiev
Universe 2023, 9(5), 234; https://doi.org/10.3390/universe9050234 - 17 May 2023
Cited by 1 | Viewed by 1676
Abstract
Within the frameworks of the logarithmic superfluid model of physical vacuum, we demonstrate the emergence of four-dimensional curved spacetime from the dynamics of quantum Bose liquid in three-dimensional Euclidean space. We derive the metric tensor of this spacetime and study its special cases [...] Read more.
Within the frameworks of the logarithmic superfluid model of physical vacuum, we demonstrate the emergence of four-dimensional curved spacetime from the dynamics of quantum Bose liquid in three-dimensional Euclidean space. We derive the metric tensor of this spacetime and study its special cases and limits, such as the linear-phase flow and linearized gravity limit. We show that the value of speed of light, which is a fundamental parameter in a theory of relativity, is a derived notion in superfluid vacuum theory: its value is a combination of the Planck constant and original parameters of the background superfluid. As for the gravitational potential, then it can be defined in terms of the quantum information entropy of the background superfluid. Thus, relativistic gravity and curved spacetime are shown to result from the dynamics of quantum excitations of the background superfluid being projected onto the measurement apparatus of a relativistic observer. Full article
(This article belongs to the Section Gravitation)
Back to TopTop