Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = relief-bagging-SVM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2306 KB  
Article
Machine Learning-Based Classification of Soil Parent Materials Using Elemental Concentration and Vis-NIR Data
by Yüsra İnci, Ali Volkan Bilgili, Recep Gündoğan, Gafur Gözükara, Kerim Karadağ and Mehmet Emin Tenekeci
Sensors 2024, 24(16), 5126; https://doi.org/10.3390/s24165126 - 7 Aug 2024
Cited by 2 | Viewed by 2020
Abstract
In soil science, the allocation of soil samples to their respective origins holds paramount significance, as it serves as a crucial investigative tool. In recent times, with the increasing use of proximal sensing and advancements in machine-learning techniques, new approaches have accompanied these [...] Read more.
In soil science, the allocation of soil samples to their respective origins holds paramount significance, as it serves as a crucial investigative tool. In recent times, with the increasing use of proximal sensing and advancements in machine-learning techniques, new approaches have accompanied these developments, enhancing the effectiveness of soil utilization in soil science. This study investigates soil classification based on four parent materials. For this purpose, a total of 59 soil samples were collected from 12 profiles and the vicinity of each profile at a depth of 0–30 cm. Surface soil samples were analyzed for elemental concentrations using X-Ray fluorescence (XRF) and inductively coupled plasma–optical emission spectrometry (ICP-OES) and soil spectra using a visible near-infrared (Vis-NIR) spectrometer. Soil samples collected from soil profiles (12 soil samples) and surface (47 soil samples) were used to classify parent materials using machine learning-based algorithms such as Support Vector Machine (SVM), Ensemble Subspace k-Near Neighbor (ESKNN), and Ensemble Bagged Trees (EBTs). Additionally, as a validation of the classification techniques, the dataset was subjected to five-fold cross-validation and independent sample set splitting (80% calibration and 20% validation). Evaluation metrics such as accuracy, F score, and G mean were used to evaluate prediction performance. Depending on the dataset and algorithm used, the classification success rates varied between 70% and 100%. Overall, the ESKNN (99%) produced better results than other classification methods. Additionally, Relief algorithms were employed to identify key variables for each dataset (ICP-OES: CaO, Fe2O3, Al2O3, MgO, and MnO; XRF: SiO2, CaO, Fe2O3, Al2O, and MnO; Vis-NIR: 567, 571, 572, 573, and 574 nm). Subsequent soil reclassification using these reduced variables revealed reduced accuracies using Vis-NIR data, with ESKNN still yielding the best results. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

15 pages, 3320 KB  
Article
Recognition of Common Non-Normal Walking Actions Based on Relief-F Feature Selection and Relief-Bagging-SVM
by Pan Huang, Yanping Li, Xiaoyi Lv, Wen Chen and Shuxian Liu
Sensors 2020, 20(5), 1447; https://doi.org/10.3390/s20051447 - 6 Mar 2020
Cited by 12 | Viewed by 2952
Abstract
Action recognition algorithms are widely used in the fields of medical health and pedestrian dead reckoning (PDR). The classification and recognition of non-normal walking actions and normal walking actions are very important for improving the accuracy of medical health indicators and PDR steps. [...] Read more.
Action recognition algorithms are widely used in the fields of medical health and pedestrian dead reckoning (PDR). The classification and recognition of non-normal walking actions and normal walking actions are very important for improving the accuracy of medical health indicators and PDR steps. Existing motion recognition algorithms focus on the recognition of normal walking actions, and the recognition of non-normal walking actions common to daily life is incomplete or inaccurate, resulting in a low overall recognition accuracy. This paper proposes a microelectromechanical system (MEMS) action recognition method based on Relief-F feature selection and relief-bagging-support vector machine (SVM). Feature selection using the Relief-F algorithm reduces the dimensions by 16 and reduces the optimization time by an average of 9.55 s. Experiments show that the improved algorithm for identifying non-normal walking actions has an accuracy of 96.63%; compared with Decision Tree (DT), it increased by 11.63%; compared with k-nearest neighbor (KNN), it increased by 26.62%; and compared with random forest (RF), it increased by 11.63%. The average Area Under Curve (AUC) of the improved algorithm improved by 0.1143 compared to KNN, by 0.0235 compared to DT, and by 0.04 compared to RF. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

18 pages, 2717 KB  
Article
Construction of Metabolism Prediction Models for CYP450 3A4, 2D6, and 2C9 Based on Microsomal Metabolic Reaction System
by Shuai-Bing He, Man-Man Li, Bai-Xia Zhang, Xiao-Tong Ye, Ran-Feng Du, Yun Wang and Yan-Jiang Qiao
Int. J. Mol. Sci. 2016, 17(10), 1686; https://doi.org/10.3390/ijms17101686 - 9 Oct 2016
Cited by 11 | Viewed by 7199
Abstract
During the past decades, there have been continuous attempts in the prediction of metabolism mediated by cytochrome P450s (CYP450s) 3A4, 2D6, and 2C9. However, it has indeed remained a huge challenge to accurately predict the metabolism of xenobiotics mediated by these enzymes. To [...] Read more.
During the past decades, there have been continuous attempts in the prediction of metabolism mediated by cytochrome P450s (CYP450s) 3A4, 2D6, and 2C9. However, it has indeed remained a huge challenge to accurately predict the metabolism of xenobiotics mediated by these enzymes. To address this issue, microsomal metabolic reaction system (MMRS)—a novel concept, which integrates information about site of metabolism (SOM) and enzyme—was introduced. By incorporating the use of multiple feature selection (FS) techniques (ChiSquared (CHI), InfoGain (IG), GainRatio (GR), Relief) and hybrid classification procedures (Kstar, Bayes (BN), K-nearest neighbours (IBK), C4.5 decision tree (J48), RandomForest (RF), Support vector machines (SVM), AdaBoostM1, Bagging), metabolism prediction models were established based on metabolism data released by Sheridan et al. Four major biotransformations, including aliphatic C-hydroxylation, aromatic C-hydroxylation, N-dealkylation and O-dealkylation, were involved. For validation, the overall accuracies of all four biotransformations exceeded 0.95. For receiver operating characteristic (ROC) analysis, each of these models gave a significant area under curve (AUC) value >0.98. In addition, an external test was performed based on dataset published previously. As a result, 87.7% of the potential SOMs were correctly identified by our four models. In summary, four MMRS-based models were established, which can be used to predict the metabolism mediated by CYP3A4, 2D6, and 2C9 with high accuracy. Full article
(This article belongs to the Special Issue Chemical Bond and Bonding 2016)
Show Figures

Graphical abstract

Back to TopTop