Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (538)

Search Parameters:
Keywords = remote diagnosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1211 KB  
Review
Locally Advanced Cervical Cancer: Multiparametric MRI in Gynecologic Oncology and Precision Medicine
by Sara Boemi, Matilde Pavan, Roberta Siena, Carla Lo Giudice, Alessia Pagana, Marco Marzio Panella and Maria Teresa Bruno
Diagnostics 2025, 15(22), 2858; https://doi.org/10.3390/diagnostics15222858 - 12 Nov 2025
Viewed by 304
Abstract
Background: Locally advanced cervical cancer (LACC) represents a significant challenge in oncology, requiring accurate assessment of local extent and metastatic spread. Multiparametric magnetic resonance imaging (mpMRI) has assumed a central role in the loco-regional characterization of the tumor due to its high soft-tissue [...] Read more.
Background: Locally advanced cervical cancer (LACC) represents a significant challenge in oncology, requiring accurate assessment of local extent and metastatic spread. Multiparametric magnetic resonance imaging (mpMRI) has assumed a central role in the loco-regional characterization of the tumor due to its high soft-tissue resolution and the ability to integrate functional information. Objectives: In this narrative review, we explore the use of mpMRI in the diagnosis, staging, and treatment response of LACC, comparing its performance with that of PET/CT, which remains complementary for remote staging. The potential of whole-body magnetic resonance imaging (WB-MRI) and hybrid PET/MRI techniques is also analyzed, as well as the emerging applications of radiomics and artificial intelligence. The paper also discusses technical limitations, interpretative variability, and the importance of protocol standardization. The goal is to provide an updated and translational summary of imaging in LACC, with implications for clinical practice and future research. Methods: Prospective and retrospective studies, systematic reviews, and meta-analyses on adult patients with cervical cancer were included. Results: Fifty-two studies were included. MRI demonstrated a sensitivity and specificity greater than 80% for parametrial and bladder invasion, but limited sensitivity (45–60%) for lymph node disease, lower than PET/CT. Multiparametric MRI was useful in early prediction of response to chemotherapy and radiotherapy and in distinguishing residual disease from fibrosis. The integration of MRI into Image-Guided Adaptive Brachytherapy (IGABT) resulted in improved oncological outcomes and reduced toxicity. The applications of radiomics and AI demonstrated enormous potential in predicting therapeutic response and lymph node status in the MRI study, but multicenter validation is still needed. Conclusions: MRI is the cornerstone of the local–regional staging of advanced cervical cancer; it has become an essential and crucial tool in treatment planning. Its use, combined with PET/CT for lymph node assessment and metastatic disease staging, is now the standard of care. Future prospects include the use of whole-body MRI and the development of predictive models based on radiomics and artificial intelligence. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

18 pages, 1562 KB  
Article
NS-Assist: Nephrotic Syndrome Assistance System for Pediatric Decision-Making in Pandemic Situations
by Nada Zendaoui, Nardjes Bouchemal, Naila Bouchemal, Imane Boussebough and Galina Ivanova
Appl. Sci. 2025, 15(21), 11433; https://doi.org/10.3390/app152111433 - 26 Oct 2025
Viewed by 476
Abstract
The COVID-19 pandemic has underscored the need for telemedicine to ensure continuity of pediatric care during health emergencies. This paper presents NS-Assist, a hybrid web–mobile decision support system for managing Idiopathic Nephrotic Syndrome (INS) in children. The system combines rule-based reasoning and fuzzy [...] Read more.
The COVID-19 pandemic has underscored the need for telemedicine to ensure continuity of pediatric care during health emergencies. This paper presents NS-Assist, a hybrid web–mobile decision support system for managing Idiopathic Nephrotic Syndrome (INS) in children. The system combines rule-based reasoning and fuzzy inference to assist clinicians in diagnosis, treatment adjustment, and relapse monitoring, while enabling caregivers to record and track daily health data. Implemented using Spring Boot, ReactJS, and Flutter with a secure MySQL database, NS-Assist integrates medical expertise with computational intelligence to support remote decision-making. A pilot evaluation involving 40 participants, including clinicians and caregivers, showed improved communication, reduced consultation time, and enhanced follow-up continuity. These results highlight the system’s potential as a reliable and adaptable framework for pediatric telemedicine in resource-constrained and emergency settings. Full article
(This article belongs to the Special Issue Applications in Neural and Symbolic Artificial Intelligence)
Show Figures

Figure 1

21 pages, 3443 KB  
Review
Artificial Intelligence in the Management of Infectious Diseases in Older Adults: Diagnostic, Prognostic, and Therapeutic Applications
by Antonio Pinto, Flavia Pennisi, Stefano Odelli, Emanuele De Ponti, Nicola Veronese, Carlo Signorelli, Vincenzo Baldo and Vincenza Gianfredi
Biomedicines 2025, 13(10), 2525; https://doi.org/10.3390/biomedicines13102525 - 16 Oct 2025
Viewed by 1219
Abstract
Background: Older adults are highly vulnerable to infectious diseases due to immunosenescence, multimorbidity, and atypical presentations. Artificial intelligence (AI) offers promising opportunities to improve diagnosis, prognosis, treatment, and continuity of care in this population. This review summarizes current applications of AI in [...] Read more.
Background: Older adults are highly vulnerable to infectious diseases due to immunosenescence, multimorbidity, and atypical presentations. Artificial intelligence (AI) offers promising opportunities to improve diagnosis, prognosis, treatment, and continuity of care in this population. This review summarizes current applications of AI in the management of infections in older adults across diagnostic, prognostic, therapeutic, and preventive domains. Methods: We conducted a narrative review of peer-reviewed studies retrieved from PubMed, Scopus, and Web of Science, focusing on AI-based tools for infection diagnosis, risk prediction, antimicrobial stewardship, prevention of healthcare-associated infections, and post-discharge care in individuals aged ≥65 years. Results: AI models, including machine learning, deep learning, and natural language processing techniques, have demonstrated high performance in detecting infections such as sepsis, pneumonia, and healthcare-associated infections (Area Under the Curve AUC up to 0.98). Prognostic algorithms integrating frailty and functional status enhance the prediction of mortality, complications, and readmission. AI-driven clinical decision support systems contribute to optimized antimicrobial therapy and timely interventions, while remote monitoring and telemedicine applications support safer hospital-to-home transitions and reduced 30-day readmissions. However, the implementation of these technologies is limited by the underrepresentation of frail older adults in training datasets, lack of real-world validation in geriatric settings, and the insufficient explainability of many models. Additional barriers include system interoperability issues and variable digital infrastructure, particularly in long-term care and community settings. Conclusions: AI has strong potential to support predictive and personalized infection management in older adults. Future research should focus on developing geriatric-specific, interpretable models, improving system integration, and fostering interdisciplinary collaboration to ensure safe and equitable implementation. Full article
(This article belongs to the Special Issue Feature Reviews in Infection and Immunity)
Show Figures

Graphical abstract

26 pages, 2931 KB  
Review
Prospects of AI-Powered Bowel Sound Analytics for Diagnosis, Characterization, and Treatment Management of Inflammatory Bowel Disease
by Divyanshi Sood, Zenab Muhammad Riaz, Jahnavi Mikkilineni, Narendra Nath Ravi, Vineeta Chidipothu, Gayathri Yerrapragada, Poonguzhali Elangovan, Mohammed Naveed Shariff, Thangeswaran Natarajan, Jayarajasekaran Janarthanan, Naghmeh Asadimanesh, Shiva Sankari Karuppiah, Keerthy Gopalakrishnan and Shivaram P. Arunachalam
Med. Sci. 2025, 13(4), 230; https://doi.org/10.3390/medsci13040230 - 13 Oct 2025
Cited by 1 | Viewed by 1125
Abstract
Background: This narrative review examines the role of artificial intelligence (AI) in bowel sound analysis for the diagnosis and management of inflammatory bowel disease (IBD). Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, presents a significant clinical burden due to its [...] Read more.
Background: This narrative review examines the role of artificial intelligence (AI) in bowel sound analysis for the diagnosis and management of inflammatory bowel disease (IBD). Inflammatory bowel disease (IBD), encompassing Crohn’s disease and ulcerative colitis, presents a significant clinical burden due to its unpredictable course, variable symptomatology, and reliance on invasive procedures for diagnosis and disease monitoring. Despite advances in imaging and biomarkers, tools such as colonoscopy and fecal calprotectin remain costly, uncomfortable, and impractical for frequent or real-time assessment. Meanwhile, bowel sounds—an overlooked physiologic signal—reflect underlying gastrointestinal motility and inflammation but have historically lacked objective quantification. With recent advances in artificial intelligence (AI) and acoustic signal processing, there is growing interest in leveraging bowel sound analysis as a novel, non-invasive biomarker for detecting IBD, monitoring disease activity, and predicting disease flares. This approach holds the promise of continuous, low-cost, and patient-friendly monitoring, which could transform IBD management. Objectives: This narrative review assesses the clinical utility, methodological rigor, and potential future integration of artificial intelligence (AI)-driven bowel sound analysis in inflammatory bowel disease (IBD), with a focus on its potential as a non-invasive biomarker for disease activity, flare prediction, and differential diagnosis. Methods: This manuscript reviews the potential of AI-powered bowel sound analysis as a non-invasive tool for diagnosing, monitoring, and managing inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis. Traditional diagnostic methods, such as colonoscopy and biomarkers, are often invasive, costly, and impractical for real-time monitoring. The manuscript explores bowel sounds, which reflect gastrointestinal motility and inflammation, as an alternative biomarker by utilizing AI techniques like convolutional neural networks (CNNs), transformers, and gradient boosting. We analyze data on acoustic signal acquisition (e.g., smart T-shirts, smartphones), signal processing methodologies (e.g., MFCCs, spectrograms, empirical mode decomposition), and validation metrics (e.g., accuracy, F1 scores, AUC). Studies were assessed for clinical relevance, methodological rigor, and translational potential. Results: Across studies enrolling 16–100 participants, AI models achieved diagnostic accuracies of 88–96%, with AUCs ≥ 0.83 and F1 scores ranging from 0.71 to 0.85 for differentiating IBD from healthy controls and IBS. Transformer-based approaches (e.g., HuBERT, Wav2Vec 2.0) consistently outperformed CNNs and tabular models, yielding F1 scores of 80–85%, while gradient boosting on wearable multi-microphone recordings demonstrated robustness to background noise. Distinct acoustic signatures were identified, including prolonged sound-to-sound intervals in Crohn’s disease (mean 1232 ms vs. 511 ms in IBS) and high-pitched tinkling in stricturing phenotypes. Despite promising performance, current models remain below established biomarkers such as fecal calprotectin (~90% sensitivity for active disease), and generalizability is limited by small, heterogeneous cohorts and the absence of prospective validation. Conclusions: AI-powered bowel sound analysis represents a promising, non-invasive tool for IBD monitoring. However, widespread clinical integration requires standardized data acquisition protocols, large multi-center datasets with clinical correlates, explainable AI frameworks, and ethical data governance. Future directions include wearable-enabled remote monitoring platforms and multi-modal decision support systems integrating bowel sounds with biomarker and symptom data. This manuscript emphasizes the need for large-scale, multi-center studies, the development of explainable AI frameworks, and the integration of these tools within clinical workflows. Future directions include remote monitoring using wearables and multi-modal systems that combine bowel sounds with biomarkers and patient symptoms, aiming to transform IBD care into a more personalized and proactive model. Full article
Show Figures

Figure 1

32 pages, 6841 KB  
Article
Integration of UAV and Remote Sensing Data for Early Diagnosis and Severity Mapping of Diseases in Maize Crop Through Deep Learning and Reinforcement Learning
by Jerry Gao, Krinal Gujarati, Meghana Hegde, Padmini Arra, Sejal Gupta and Neeraja Buch
Remote Sens. 2025, 17(20), 3427; https://doi.org/10.3390/rs17203427 - 13 Oct 2025
Viewed by 1155
Abstract
Accurate and timely prediction of diseases in water-intensive crops is critical for sustainable agriculture and food security. AI-based crop disease management tools are essential for an optimized approach, as they offer significant potential for enhancing yield and sustainability. This study centers on maize, [...] Read more.
Accurate and timely prediction of diseases in water-intensive crops is critical for sustainable agriculture and food security. AI-based crop disease management tools are essential for an optimized approach, as they offer significant potential for enhancing yield and sustainability. This study centers on maize, training deep learning models on UAV imagery and satellite remote-sensing data to detect and predict disease. The performance of multiple convolutional neural networks, such as ResNet-50, DenseNet-121, etc., is evaluated by their ability to classify maize diseases such as Northern Leaf Blight, Gray Leaf Spot, Common Rust, and Blight using UAV drone data. Remotely sensed MODIS satellite data was used to generate spatial severity maps over a uniform grid by implementing time-series modeling. Furthermore, reinforcement learning techniques were used to identify hotspots and prioritize the next locations for inspection by analyzing spatial and temporal patterns, identifying critical factors that affect disease progression, and enabling better decision-making. The integrated pipeline automates data ingestion and delivers farm-level condition views without manual uploads. The combination of multiple remotely sensed data sources leads to an efficient and scalable solution for early disease detection. Full article
Show Figures

Figure 1

13 pages, 1060 KB  
Article
Automated Shoulder Girdle Rigidity Assessment in Parkinson’s Disease via an Integrated Model- and Data-Driven Approach
by Fatemeh Khosrobeygi, Zahra Abouhadi, Ailar Mahdizadeh, Ahmad Ashoori, Negin Niksirat, Maryam S. Mirian and Martin J. McKeown
Sensors 2025, 25(19), 6019; https://doi.org/10.3390/s25196019 - 1 Oct 2025
Viewed by 527
Abstract
Parkinson’s disease (PD) is characterized by motor symptoms, with key diagnostic features, such as rigidity, traditionally assessed through subjective clinical scales. This study proposes a novel hybrid framework integrating model-driven biomechanical features (damping ratio, decay rate) and data-driven statistical features (maximum detail coefficient) [...] Read more.
Parkinson’s disease (PD) is characterized by motor symptoms, with key diagnostic features, such as rigidity, traditionally assessed through subjective clinical scales. This study proposes a novel hybrid framework integrating model-driven biomechanical features (damping ratio, decay rate) and data-driven statistical features (maximum detail coefficient) from wearable sensor data during a modified pendulum test to quantify shoulder girdle rigidity objectively. Using weak supervision, these features were unified to generate robust labels from limited data, achieving a 10% improvement in PD/healthy control classification accuracy (0.71 vs. 0.64) over data-driven methods and matching model-driven performance (0.70). The damping ratio and decay rate, aligning with Wartenberg pendulum test metrics like relaxation index, revealed velocity-dependent aspects of rigidity, challenging its clinical characterization as velocity-independent. Outputs correlated strongly with UPDRS rigidity scores (r = 0.78, p < 0.001), validating their clinical utility as novel biomechanical biomarkers. This framework enhances interpretability and scalability, enabling remote, objective rigidity assessment for early diagnosis and telemedicine, advancing PD management through innovative sensor-based neurotechnology. Full article
Show Figures

Figure 1

17 pages, 1752 KB  
Article
Methodological Study on Maize Water Stress Diagnosis Based on UAV Multispectral Data and Multi-Model Comparison
by Jiaxin Zhu, Sien Li, Wenyong Wu, Pinyuan Zhao, Xiang Ao and Haochong Chen
Agronomy 2025, 15(10), 2318; https://doi.org/10.3390/agronomy15102318 - 30 Sep 2025
Viewed by 448
Abstract
In response to water scarcity and low agricultural water-use efficiency in arid regions in Northwest China, this study conducted field experiments in Wuwei, Gansu Province, from 2023 to 2024. It aimed to develop a water stress diagnosis model for spring maize to provide [...] Read more.
In response to water scarcity and low agricultural water-use efficiency in arid regions in Northwest China, this study conducted field experiments in Wuwei, Gansu Province, from 2023 to 2024. It aimed to develop a water stress diagnosis model for spring maize to provide a scientific basis for precision irrigation and water management. In this work, two irrigation methods—plastic film-mulched drip irrigation (FD, where drip lines are laid on the soil surface and covered with film) and plastic film-mulched shallow-buried drip irrigation (MD, where drip lines are buried 3–7 cm below the surface under film)—were tested under five irrigation gradients. Multispectral UAV remote sensing data were collected from key growth stages (i.e., the jointing stage, the tasseling stage, and the grain filling stage). Then, vegetation indices were extracted, and the leaf water content (LWC) was retrieved. LWC inversion models were established using Partial Least Squares Regression (PLSR), Random Forest (RF), and Support Vector Regression (SVR). Different irrigation treatments significantly affected LWC in spring maize, with higher LWC under sufficient water supply. In the correlation analysis, plant height (hc) showed the strongest correlation with LWC under both MD and FD treatments, with R2 values of −0.87 and −0.82, respectively. Among the models tested, the RF model under the MD treatment achieved the highest prediction accuracy (training set: R2 = 0.98, RMSE = 0.01; test set: R2 = 0.88, RMSE = 0.02), which can be attributed to its ability to capture complex nonlinear relationships and reduce multicollinearity. This study can provide theoretical support and practical pathways for precision irrigation and integrated water–fertilizer regulation in smart agriculture, boasting significant potential for broader application of such models. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

22 pages, 1013 KB  
Article
“We Just Get Whispers Back”: Perspectives of Primary and Hospital Health Care Providers on Between-Service Communication for Aboriginal People with Cancer in the Northern Territory
by Emma V. Taylor, Amy Elson, Bronte Avishai, Philip Mayo, Christine Sanderson and Sandra C. Thompson
Cancers 2025, 17(19), 3155; https://doi.org/10.3390/cancers17193155 - 28 Sep 2025
Viewed by 571
Abstract
Background/Objectives: Cancer is a leading cause of death for Aboriginal and Torres Strait Islander people, with remoteness increasing the risk for poorer outcomes. Primary health care (PHC) clinics have an important role in cancer screening, diagnosis, and post-discharge cancer care, particularly in remote [...] Read more.
Background/Objectives: Cancer is a leading cause of death for Aboriginal and Torres Strait Islander people, with remoteness increasing the risk for poorer outcomes. Primary health care (PHC) clinics have an important role in cancer screening, diagnosis, and post-discharge cancer care, particularly in remote communities, so accurate, timely communication between hospitals, specialists and PHC clinics is vital. This paper analyses the perspectives of Northern Territory health care professionals on communication between PHC and hospital services related to providing care for Aboriginal people with cancer and recommends strategies for improving communication between services. Methods: A qualitative study was undertaken in which semi-structured interviews were conducted with fifty staff from 15 health services (8 regional, remote, and very remote PHC clinics; 3 hospitals; one cancer centre and 3 cancer support services) between 2016 and 2019. Transcripts were thematically analysed, with findings categorized into barriers and enablers to communication. Results: Deficiencies in communication impeded patient care and support. A major barrier was fragmented, inefficient information systems; IT systems across health services were unable to interface, resulting in delayed/missing patient information that impacted discharge and follow up. Other barriers included PHC staff with limited knowledge of cancer, high turnover of PHC staff and tertiary hospital staff with limited understanding of remote health care challenges. Individuals used workarounds to overcome system failures and made substantial efforts around individual patients to improve communication. Specific roles and the use of telehealth between services and centralised cancer care services supported better between-service communication. Conclusions: Communication between hospital services and remote PHC clinics is essential to care for Aboriginal cancer patients; our research identified communication as inadequate in terms of consistency and timeliness. Commitment to more timely communication, health care IT systems that facilitate sharing information, designated staff in PHC clinics to support patients with cancer, dedicated Aboriginal cancer roles and additional resourcing to coordinate telehealth appointments could improve communication and sharing of patient information between services. Full article
(This article belongs to the Special Issue Health Services Research in Cancer Care)
Show Figures

Figure 1

25 pages, 11727 KB  
Article
An Interpretable Ensemble Learning Framework Based on Remote Sensing for Ecological–Geological Environment Evaluation: The Case of Laos
by Zhengyao Wang, Yunhui Kong, Keyan Xiao, Changjie Cao, Yunhe Li, Yixiao Wu, Miao Xie, Rui Tang, Cheng Li and Chengjie Gong
Remote Sens. 2025, 17(18), 3240; https://doi.org/10.3390/rs17183240 - 19 Sep 2025
Viewed by 739
Abstract
As a critical ecological security barrier in the Indo-China Peninsula, the Lao People’s Democratic Republic (Lao PDR) is increasingly threatened by forest degradation, frequent geological hazards, and intensified anthropogenic disturbances. To address the urgent need for a scientific evaluation of eco-geological environmental quality, [...] Read more.
As a critical ecological security barrier in the Indo-China Peninsula, the Lao People’s Democratic Republic (Lao PDR) is increasingly threatened by forest degradation, frequent geological hazards, and intensified anthropogenic disturbances. To address the urgent need for a scientific evaluation of eco-geological environmental quality, this study develops a comprehensive assessment framework integrating multi-source remote sensing imagery, geological maps, and socio-economic datasets. A total of ten indicators were selected across four dimensions—geology, topography, ecology, and human activity. A stacking ensemble learning model was constructed by combining seven heterogeneous base classifiers—AdaBoost, KNN, Gradient Boosting, Random Forest, SVC, MLP, and XGBoost—with a logistic regression meta-learner. Model interpretability was enhanced using SHAP values to quantify the contribution of each input variable. The stacking model outperformed all individual models, achieving an accuracy of 91.14%, an F1 score of 93.62%, and an AUC of 95.05%. NDVI, GDP, and slope were identified as the most influential factors: vegetation coverage showed a strong positive relationship with environmental quality, while economic development intensity and steep terrain were associated with degradation. Spatial zoning results indicate that high-quality eco-geological zones are concentrated in the low-disturbance plains of the northeast and southeast, whereas vulnerable areas are primarily distributed around the Vientiane metropolitan region and tectonically active mountainous zones. This study offers a robust and interpretable methodological approach to support ecological diagnosis, zonal management, and sustainable development in tropical mountainous regions. Full article
Show Figures

Figure 1

31 pages, 5071 KB  
Article
Feasibility of an AI-Enabled Smart Mirror Integrating MA-rPPG, Facial Affect, and Conversational Guidance in Realtime
by Mohammad Afif Kasno and Jin-Woo Jung
Sensors 2025, 25(18), 5831; https://doi.org/10.3390/s25185831 - 18 Sep 2025
Viewed by 1401
Abstract
This paper presents a real-time smart mirror system combining multiple AI modules for multimodal health monitoring. The proposed platform integrates three core components: facial expression analysis, remote photoplethysmography (rPPG), and conversational AI. A key innovation lies in transforming the Moving Average rPPG (MA-rPPG) [...] Read more.
This paper presents a real-time smart mirror system combining multiple AI modules for multimodal health monitoring. The proposed platform integrates three core components: facial expression analysis, remote photoplethysmography (rPPG), and conversational AI. A key innovation lies in transforming the Moving Average rPPG (MA-rPPG) model—originally developed for offline batch processing—into a real-time, continuously streaming setup, enabling seamless heart rate and peripheral oxygen saturation (SpO2) monitoring using standard webcams. The system also incorporates the DeepFace facial analysis library for live emotion, age detection, and a Generative Pre-trained Transformer 4o (GPT-4o)-based mental health chatbot with bilingual (English/Korean) support and voice synthesis. Embedded into a touchscreen mirror with Graphical User Interface (GUI), this solution delivers ambient, low-interruption interaction and real-time user feedback. By unifying these AI modules within an interactive smart mirror, our findings demonstrate the feasibility of integrating multimodal sensing (rPPG, affect detection) and conversational AI into a real-time smart mirror platform. This system is presented as a feasibility-stage prototype to promote real-time health awareness and empathetic feedback. The physiological validation was limited to a single subject, and the user evaluation constituted only a small formative assessment; therefore, results should be interpreted strictly as preliminary feasibility evidence. The system is not intended to provide clinical diagnosis or generalizable accuracy at this stage. Full article
(This article belongs to the Special Issue Sensors and Sensing Technologies for Social Robots)
Show Figures

Figure 1

11 pages, 894 KB  
Article
AI-Based Prediction of Bone Conduction Thresholds Using Air Conduction Audiometry Data
by Chul Young Yoon, Junhun Lee, Jiwon Kim, Sunghwa You, Chanbeom Kwak and Young Joon Seo
J. Clin. Med. 2025, 14(18), 6549; https://doi.org/10.3390/jcm14186549 - 17 Sep 2025
Viewed by 554
Abstract
Background/Objectives: This study evaluated the feasibility of predicting bone conduction (BC) thresholds and classifying air–bone gap (ABG) status using only air conduction (AC) data obtained from pure tone audiometry (PTA). Methods: A total of 60,718 PTA records from five tertiary hospitals in the [...] Read more.
Background/Objectives: This study evaluated the feasibility of predicting bone conduction (BC) thresholds and classifying air–bone gap (ABG) status using only air conduction (AC) data obtained from pure tone audiometry (PTA). Methods: A total of 60,718 PTA records from five tertiary hospitals in the Republic of Korea were utilized. Input features included AC thresholds (0.25–8 kHz), age, and sex, while outputs were BC thresholds (0.25–4 kHz) and ABG classification based on 10 dB and 15 dB criteria. Five machine learning models—deep neural network (DNN), long short-term memory (LSTM), bidirectional LSTM (BiLSTM), random forest (RF), and extreme gradient boosting (XGB)—were trained using 5-fold cross-validation with Synthetic Minority Over-sampling Technique (SMOTE). Model performance was evaluated based on accuracy, sensitivity, precision, and F1 score under ±5 dB and ±10 dB thresholds for BC prediction. Results: LSTM and BiLSTM outperformed DNN in predicting BC thresholds, achieving ~60% accuracy within ±5 dB and ~80% within ±10 dB. For ABG classification, all models performed better with the 10 dB criterion than the 15 dB. Tree-based models (RF, XGB) achieved the highest classification accuracy (up to 0.512) and precision (up to 0.827). Confidence intervals for all metrics were within ±0.01, indicating stable results. Conclusions: AI models can accurately predict BC thresholds and ABG status using AC data alone. These findings support the integration of AI-driven tools into clinical audiology and telemedicine, particularly for remote screening and diagnosis. Future work should focus on clinical validation and implementation to expand accessibility in hearing care. Full article
Show Figures

Figure 1

4 pages, 742 KB  
Proceeding Paper
Development of a Microfluidic Liquid Dispensing System for Lab-on-Chips
by Masibulele T. Kakaza and Manfred R. Scriba
Eng. Proc. 2025, 109(1), 13; https://doi.org/10.3390/engproc2025109013 - 16 Sep 2025
Viewed by 496
Abstract
This paper presents an innovative and low-cost approach to the dispensing of multiple liquids on a microfluidic chip with the aim of dispensing liquids in a controlled sequence. The project focused on the design and development of a microfluidic liquid dispensing system that [...] Read more.
This paper presents an innovative and low-cost approach to the dispensing of multiple liquids on a microfluidic chip with the aim of dispensing liquids in a controlled sequence. The project focused on the design and development of a microfluidic liquid dispensing system that is an integral part of the Lab-on-Chip (LOC). Liquids are often dispensed into LOCs through blisters, syringes, or electric microfluidic pumps, but these can be impractical for Point-of-Care (POC) settings, especially in remote areas. Additionally, incorrect volumes of biochemical reagents and the introduction of reagents outside the sequence can distort the results of the diagnosis. The process undertaken involved designing and 3D printing prototypes of the dispensing system, along with laser cutting and manufacturing the Polymethyl Methacrylate (PMMA) LOC devices intended for receiving the liquids. The proposed novel low-cost dispensing system uses manually operated actuators and cams to disperse metered fluids sequentially to minimise end-user errors at POC settings. Full article
(This article belongs to the Proceedings of Micro Manufacturing Convergence Conference)
Show Figures

Figure 1

19 pages, 4356 KB  
Article
Output Filtering Capacitor Bank Monitoring for a DC–DC Buck Converter
by Dadiana-Valeria Căiman, Corneliu Bărbulescu, Sorin Nanu and Toma-Leonida Dragomir
Electronics 2025, 14(18), 3614; https://doi.org/10.3390/electronics14183614 - 11 Sep 2025
Viewed by 455
Abstract
The remote prognostic, diagnosis, and maintenance of electrolytic capacitors are research topics of interest due to their presence in numerous electronic devices and their increased susceptibility to degradation over time. The authors’ focus in this article is on the proposal of a new [...] Read more.
The remote prognostic, diagnosis, and maintenance of electrolytic capacitors are research topics of interest due to their presence in numerous electronic devices and their increased susceptibility to degradation over time. The authors’ focus in this article is on the proposal of a new diagram for monitoring the parameters of the capacitors that compose the filter bank of a DC–DC buck converter by connecting them in parallel. Each capacitor is modeled by an equivalent series R–C circuit composed of an equivalent capacitance and an equivalent series resistance (ESR). The method used allows successive investigation of the three capacitors that compose the bank by triggering discharge/charge sequences, acquiring the voltages at the capacitor terminals, and estimating the time constants of each capacitor using a parameter observer. During the estimation of the parameters of a capacitor, the converter uses the other two capacitors maintained in operation. The monitoring cycle of all capacitors of the bank lasts less than 40 ms, not significantly affecting the operation of the converter. The study undertaken is correlated with the thermal map of the board on which the converter is made. The dispersion of the measured values of the equivalent capacitances is below 0.25%, and of the ESR below 2.6%. The major advantage of the method is that the monitoring is performed online and in real time. Full article
(This article belongs to the Special Issue New Insights in Power Electronics: Prospects and Challenges)
Show Figures

Figure 1

18 pages, 808 KB  
Article
Towards AI-Based Strep Throat Detection and Interpretation for Remote Australian Indigenous Communities
by Prasanna Asokan, Thanh Thu Truong, Duc Son Pham, Kit Yan Chan, Susannah Soon, Andrew Maiorana and Cate Hollingsworth
Sensors 2025, 25(18), 5636; https://doi.org/10.3390/s25185636 - 10 Sep 2025
Viewed by 632
Abstract
Streptococcus pharyngitis (strep throat) poses a significant health challenge in rural and remote Indigenous communities in Australia, where access to medical resources is limited. Delays in diagnosis and treatment increase the risk of serious complications, including acute rheumatic fever and rheumatic heart disease. [...] Read more.
Streptococcus pharyngitis (strep throat) poses a significant health challenge in rural and remote Indigenous communities in Australia, where access to medical resources is limited. Delays in diagnosis and treatment increase the risk of serious complications, including acute rheumatic fever and rheumatic heart disease. This paper presents a proof-of-concept AI-based diagnostic model designed to support clinicians in underserved communities. The model combines a lightweight Swin Transformer–based image classifier with a BLIP-2-based explainable image annotation system. The classifier predicts strep throat from throat images, while the explainable model enhances transparency by identifying key clinical features such as tonsillar swelling, erythema, and exudate, with synthetic labels generated using GPT-4o-mini. The classifier achieves 97.1% accuracy and an ROC-AUC of 0.993, with an inference time of 13.8 ms and a model size of 28 million parameters; these results demonstrate suitability for deployment in resource-constrained settings. As a proof-of-concept, this work illustrates the potential of AI-assisted diagnostics to improve healthcare access and could benefit similar research efforts that support clinical decision-making in remote and underserved regions. Full article
Show Figures

Figure 1

14 pages, 962 KB  
Review
Artificial Intelligence and Advanced Digital Health for Hypertension: Evolving Tools for Precision Cardiovascular Care
by Ioannis Skalidis, Niccolo Maurizi, Adil Salihu, Stephane Fournier, Stephane Cook, Juan F. Iglesias, Pietro Laforgia, Livio D’Angelo, Philippe Garot, Thomas Hovasse, Antoinette Neylon, Thierry Unterseeh, Stephane Champagne, Nicolas Amabile, Neila Sayah, Francesca Sanguineti, Mariama Akodad, Henri Lu and Panagiotis Antiochos
Medicina 2025, 61(9), 1597; https://doi.org/10.3390/medicina61091597 - 4 Sep 2025
Cited by 1 | Viewed by 2238
Abstract
Background: Hypertension remains the leading global risk factor for cardiovascular morbidity and mortality, with suboptimal control rates despite guideline-directed therapies. Digital health and artificial intelligence (AI) technologies offer novel approaches for improving diagnosis, monitoring, and individualized treatment of hypertension. Objectives: To [...] Read more.
Background: Hypertension remains the leading global risk factor for cardiovascular morbidity and mortality, with suboptimal control rates despite guideline-directed therapies. Digital health and artificial intelligence (AI) technologies offer novel approaches for improving diagnosis, monitoring, and individualized treatment of hypertension. Objectives: To critically review the current landscape of AI-enabled digital tools for hypertension management, including emerging applications, implementation challenges, and future directions. Methods: A narrative review of recent PubMed-indexed studies (2019–2024) was conducted, focusing on clinical applications of AI and digital health technologies in hypertension. Emphasis was placed on real-world deployment, algorithmic explainability, digital biomarkers, and ethical/regulatory frameworks. Priority was given to high-quality randomized trials, systematic reviews, and expert consensus statements. Results: AI-supported platforms—including remote blood pressure monitoring, machine learning titration algorithms, and digital twins—have demonstrated early promise in improving hypertension control. Explainable AI (XAI) is critical for clinician trust and integration into decision-making. Equity-focused design and regulatory oversight are essential to prevent exacerbation of health disparities. Emerging implementation strategies, such as federated learning and co-design frameworks, may enhance scalability and generalizability across diverse care settings. Conclusions: AI-guided titration and digital twin approaches appear most promising for reducing therapeutic inertia, whereas cuffless blood pressure monitoring remains the least mature. Future work should prioritize pragmatic trials with equity and cost-effectiveness endpoints, supported by safeguards against bias, accountability gaps, and privacy risks. Full article
Show Figures

Figure 1

Back to TopTop