Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = restrained condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 8115 KB  
Article
Experimental Investigation of Bond Performance Between GFRP Bars and Concrete Considering Confinement Effect
by Zhiyong Li, Zhifeng Wu, Jinhai Fu and Duanfeng Zhao
Buildings 2025, 15(18), 3385; https://doi.org/10.3390/buildings15183385 - 18 Sep 2025
Viewed by 137
Abstract
To investigate the influence of transverse confinement on the bond performance between glass-fiber reinforced polymer (GFRP) bars and concrete, an experimental study involving 28 beam-type bond specimens was designed and conducted. The effects of key parameters, including the spacing of transverse stirrup confinement [...] Read more.
To investigate the influence of transverse confinement on the bond performance between glass-fiber reinforced polymer (GFRP) bars and concrete, an experimental study involving 28 beam-type bond specimens was designed and conducted. The effects of key parameters, including the spacing of transverse stirrup confinement (60, 80, and 120 mm), concrete strength (C30 and C50), concrete cover thickness (1.5d and 2.5d), surface characteristics of GFRP bars (ribbed and sand coated), bar diameter (16 and 20 mm), and bond length (5d and 10d), on the bond-slip behavior and failure modes were systematically examined. The results indicate that transverse stirrup confinement effectively restrains the development of splitting cracks, thereby significantly enhancing bond strength and improving the ductility of the bond interface. Both the bond strength and residual bond strength increase as stirrup spacing decreases. Under confined conditions, the bond strength of ribbed GFRP bars is 17.26% to 41.72% higher than that of sand-coated bars. Additionally, bond strength increases with higher concrete strength and greater concrete cover thickness but decreases with longer bond lengths. This study provides an experimental basis and theoretical reference for the design of GFRP-reinforced concrete structures that consider the transverse confinement effect. Full article
Show Figures

Figure 1

23 pages, 2128 KB  
Article
Fully-Distributed Bipartite Consensus for Linear Multiagent Systems with Dynamic Event-Triggered Mechanism Under Signed Topology Network
by Han Sun, Xiaogong Lin and Dawei Zhao
Actuators 2025, 14(9), 451; https://doi.org/10.3390/act14090451 - 13 Sep 2025
Viewed by 216
Abstract
This article investigates the bipartite consensus control problem of general linear multiagent systems over an antagonistic interaction topology using a dynamic event-triggered mechanism. Primarily, for each agent, a distributed dynamic event-triggered control scheme is proposed based on a signed cooperative–competitive communication graph. Controller [...] Read more.
This article investigates the bipartite consensus control problem of general linear multiagent systems over an antagonistic interaction topology using a dynamic event-triggered mechanism. Primarily, for each agent, a distributed dynamic event-triggered control scheme is proposed based on a signed cooperative–competitive communication graph. Controller updates and triggering condition monitoring are executed only when a specified event is triggered, thereby reducing communication overhead. Subsequently, by integrating the time-varying control gain into the presented control strategy, a fully distributed bipartite controller architecture is defined without using global topology information. As a result, the influence of coupling weights on each agent can be restrained, enabling the realization of bipartite consensus for multiagent systems. Moreover, the proposed dynamic event-triggered control protocol is rigorously proven to exclude Zeno behavior over the entire time horizon. Finally, numerical simulations are presented to demonstrate the effectiveness of the proposed method. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
Show Figures

Figure 1

22 pages, 3244 KB  
Article
Assessing the Potential of Distinctive Greek White Cultivars in Winemaking: Relationship Between Sensory Sorting Tasks and GC-MS Data
by Evangelia Anastasia Tsapou, George Ntourtoglou, Vassilis Dourtoglou and Elisabeth Koussissi
Beverages 2025, 11(5), 135; https://doi.org/10.3390/beverages11050135 - 10 Sep 2025
Viewed by 329
Abstract
This study explores the chemical and sensory differentiation of Greek white wines produced from five indigenous grape varieties—Savvatiano, Vidiano, Moschofilero, Assyrtiko, and Malagouzia—across diverse terroirs in Greece. A targeted analytical approach was employed to quantify 12 key volatile aroma compounds derived primarily from [...] Read more.
This study explores the chemical and sensory differentiation of Greek white wines produced from five indigenous grape varieties—Savvatiano, Vidiano, Moschofilero, Assyrtiko, and Malagouzia—across diverse terroirs in Greece. A targeted analytical approach was employed to quantify 12 key volatile aroma compounds derived primarily from amino acid metabolism and lipid degradation, using GC-MS and GC-FID. The selected volatiles, including isoamyl alcohol, phenylethyl alcohol, tyrosol, and hexanoic acid ethyl ester, were chosen for their sensory relevance and their biosynthetic linkage to nitrogenous precursors. Principal Component Analysis (PCA) of wines from the 2019 and 2020 vintages revealed clear varietal clustering, under standardized winemaking conditions. Malagouzia wines were characterized by rich and diverse volatile profiles, particularly long-chain fatty acids and esters, while Vidiano exhibited a consistently restrained aromatic expression. Sensory analysis using sorting and ultra-flash profiling confirmed the chemical clustering, with Moschofilero, Vidiano and Malagouzia wines forming distinct sensory groups. The findings demonstrate that key amino acid-derived volatiles can serve as biochemical markers of varietal typicity and support the use of volatile profiling as a tool for terroir-driven wine classification and quality assessment in Greek white wines. Full article
Show Figures

Graphical abstract

22 pages, 3789 KB  
Article
Addition of Earthworms to Continuous Cropping Soil Inhibits the Fusarium Wilt in Watermelon: Evidence Under Both Field and Pot Conditions
by Xin Zhao, Liang Zheng, Dong Liu, Ke Song, Ping Lu, Yefeng Yang, Lijuan Yang, Xiaoxiao Li, Yinsheng Li, Yue Zhang, Weiguang Lv and Xianqing Zheng
Horticulturae 2025, 11(9), 1088; https://doi.org/10.3390/horticulturae11091088 - 9 Sep 2025
Viewed by 451
Abstract
Fusarium wilt is a devastating soilborne disease that significantly reduces watermelon production worldwide. This disease is caused by Fusarium oxysporum subsp. niveum (E.F.Sm.) W.C. Snyder & H.N.Hansen. Earthworms can influence fungal populations either by consuming or dispersing fungal propagules, making them a promising [...] Read more.
Fusarium wilt is a devastating soilborne disease that significantly reduces watermelon production worldwide. This disease is caused by Fusarium oxysporum subsp. niveum (E.F.Sm.) W.C. Snyder & H.N.Hansen. Earthworms can influence fungal populations either by consuming or dispersing fungal propagules, making them a promising candidate for the biological control of Fusarium wilt. However, the underlying mechanisms remain poorly understood. In this study, we investigated the effects of adding the local earthworm species Metaphire guillelmi (Michaelsen, 1895) on Fusarium wilt in watermelon under field conditions, laboratory pot experiments, and laboratory pot experiments with sterilized soil. The results demonstrated that, compared to the control, the earthworm addition reduced the population of F. oxysporum by approximately 105 copies/mg and suppressed the incidence of Fusarium wilt by 84.4%. A correlation analysis revealed that the abundance of F. oxysporum was negatively correlated with soil organic matter (SOM), available nitrogen (AN), and available phosphorus (AP). The relative interaction index values indicated that earthworms could enhance SOM and AN levels in the soil. A two-factor network relationship analysis showed that the earthworm addition could inhibit bacteria and fungi to stimulate growth of F. oxysporum while restraining them. A metabolomics analysis revealed that most differential metabolites associated with F. oxysporum were upregulated in the presence of earthworms. Overall, M. guillelmi can reduce the occurrence of Fusarium wilt by improving soil fertility, the relationship of F. oxysporum and microorganisms, and may influence the metabolic process, which need further exploration. It is a potential pathway for the biocontrol of Fusarium wilt. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

23 pages, 7920 KB  
Article
Dynamic Behavior of a Rotationally Restrained Pipe Conveying Gas-Liquid Two-Phase Flow
by Guangming Fu, Huilin Jiao, Aixia Zhang, Xiao Wang, Boying Wang, Baojiang Sun and Jian Su
J. Mar. Sci. Eng. 2025, 13(8), 1524; https://doi.org/10.3390/jmse13081524 - 8 Aug 2025
Viewed by 289
Abstract
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported [...] Read more.
This study explores the dynamic behavior of a vertical pipe conveying gas-liquid two-phase flow with rotationally restrained boundaries, employing the generalized integral transform technique (GITT). The rotationally restrained boundary conditions are more realistic for practical engineering applications in comparison to the classical simply-supported and clamped boundary conditions, which can be viewed as limiting scenarios of the rotationally restrained boundary conditions when rotational stiffness approaches zero and infinity, respectively. Utilizing the small-deflection Euler-Bernoulli beam theory, the governing equation of motion for the deflection of the pipe is transformed into an infinite set of coupled ordinary differential equations, which is then numerically solved following truncation at a finite order NW. The proposed integral transform solution was initially validated against extant literature results. Numerical findings demonstrate that as the gas volume fraction increases, there is a reduction in both the first-order critical flow velocity and the vibration frequency of the pipe conveying two-phase flow. Conversely, as the rotational stiffness factor enhances, both the first-order critical velocity and vibration frequency increase, resulting in improved stability of the pipe. The impact of the bottom-end rotational stiffness factor r2 on the dynamic stability of the pipe is more pronounced compared to the top-end rotational factor r1. The variation in two-phase flow parameters is closely associated with the damping and stiffness matrices. Modifying the gas volume fraction in the two-phase flow alters the distribution of centrifugal and Coriolis forces within the pipeline system, thereby affecting the pipeline’s natural frequency. The results illustrate that an increase in the gas volume fraction leads to a decrease in both the pipeline’s critical velocity and vibration frequency, culminating in reduced stability. The findings suggest that both the gas volume fraction and boundary rotational stiffness exert a significant influence on the dynamic behavior and stability of the pipe conveying gas-liquid two-phase flow. Full article
Show Figures

Figure 1

10 pages, 6824 KB  
Article
Locomotory Effect of Reversibly Restraining the Pectines of Scorpions
by Douglas D. Gaffin, Sofía E. Gálvez Falcón and Mariëlle H. Hoefnagels
Arthropoda 2025, 3(3), 12; https://doi.org/10.3390/arthropoda3030012 - 6 Aug 2025
Viewed by 551
Abstract
Scorpions possess unique, ornate mid-ventral sensory organs called pectines. The pectines are used to process chemo- and mechanosensory information acquired from the ground as the animal walks, and they are implicated in a variety of behaviors including navigation and detection of mates and [...] Read more.
Scorpions possess unique, ornate mid-ventral sensory organs called pectines. The pectines are used to process chemo- and mechanosensory information acquired from the ground as the animal walks, and they are implicated in a variety of behaviors including navigation and detection of mates and prey. Many previous researchers have investigated pecten function by cutting the organs from the animals (full ablation) and comparing their behaviors with those of intact scorpions. This drastic approach is likely to not only cause enormous stress to the ablated animals but also change their behavior. Here, we have developed a method for gently and reversibly impairing the pectines by partially covering them to prevent them from lowering to the ground. Specifically, we fabricated small rectangles of a commercially available lightly adhesive foil tape that we placed across the pectines and secured to the body wall with a thin strip of a more strongly adhesive lab tape. Using a repeated measures design, we monitored the animals’ locomotory activity overnight in small behavioral arenas under three conditions: unmodified (intact) control, pectines restrained, and sham control. We found that scorpions with their pectines restrained had a significant increase in both the distance and duration of movement when compared to unmodified and sham control animals. Our method allows for temporary, reversible compromise of pecten function and should be useful in fully understanding the role of pectines in behavior. Full article
Show Figures

Figure 1

35 pages, 9464 KB  
Article
Numerical Investigation of Progressive Collapse Resistance in Fully Bonded Prestressed Precast Concrete Spatial Frame Systems with and Without Precast Slabs
by Manrong Song, Zhe Wang, Xiaolong Chen, Bingkang Liu, Shenjiang Huang and Jiaxuan He
Buildings 2025, 15(15), 2743; https://doi.org/10.3390/buildings15152743 - 4 Aug 2025
Cited by 1 | Viewed by 597
Abstract
Preventing progressive collapse induced by accidental events poses a critical challenge in the design and construction of resilient structures. While substantial progress has been made in planar structures, the progressive collapse mechanisms of precast concrete spatial structures—particularly regarding the effects of precast slabs—remain [...] Read more.
Preventing progressive collapse induced by accidental events poses a critical challenge in the design and construction of resilient structures. While substantial progress has been made in planar structures, the progressive collapse mechanisms of precast concrete spatial structures—particularly regarding the effects of precast slabs—remain inadequately explored. This study develops a refined finite element modeling approach to investigate progressive collapse mechanisms in fully bonded prestressed precast concrete (FB-PPC) spatial frames, both with and without precast slabs. The modeling approach was validated against available test data from related sub-assemblies, and applied to assess the collapse performance. A series of pushdown analyses were conducted on the spatial frames under various column removal scenarios. The load–displacement curves, slab contribution, and failure modes under different conditions were compared and analyzed. A simplified energy-based dynamic assessment was additionally employed to offer a rapid estimation of the dynamic collapse capacity. The results show that when interior or side columns fail, the progressive collapse process can be divided into the beam action stage and the catenary action (CA) stage. During the beam action stage, the compressive membrane action (CMA) of the slabs and the compressive arch action (CAA) of the beams work in coordination. Additionally, the tensile membrane action (TMA) of the slabs strengthens the CA in the beams. When the corner columns fail, the collapse stages comprise the beam action stage followed by the collapse stage. Due to insufficient lateral restraints around the failed column, the development of CA is limited. The membrane action of the slabs cannot be fully mobilized. The contribution of the slabs is significant, as it can substantially enhance the vertical resistance and restrain the lateral displacement of the columns. The energy-based dynamic assessment further reveals that FB-PPC spatial frames exhibit high ductility and residual strength following sudden column removal, with dynamic load–displacement curves showing sustained plateaus or gentle slopes across all scenarios. The inclusion of precast slabs consistently enhances both the peak load capacity and the residual resistance in dynamic collapse curves. Full article
(This article belongs to the Special Issue Research on the Seismic Performance of Reinforced Concrete Structures)
Show Figures

Figure 1

12 pages, 783 KB  
Article
Decreased Memory Suppression Ability in Restrained Eaters on Food Information—Evidence from ERP Experiment
by Qi Qi, Ke Cui, Li Luo, Yong Liu and Jia Zhao
Nutrients 2025, 17(15), 2523; https://doi.org/10.3390/nu17152523 - 31 Jul 2025
Viewed by 449
Abstract
Background/Objectives: Food-related memory influences appetite regulation, with memory inhibition potentially reducing cravings. While obesity is linked to inhibitory deficits, how restrained eating affects memory suppression in healthy-weight individuals remains unclear. This study examined the cognitive and neural mechanisms of food-memory suppression in young [...] Read more.
Background/Objectives: Food-related memory influences appetite regulation, with memory inhibition potentially reducing cravings. While obesity is linked to inhibitory deficits, how restrained eating affects memory suppression in healthy-weight individuals remains unclear. This study examined the cognitive and neural mechanisms of food-memory suppression in young women. Methods: Forty-two female participants completed a think/no-think task with high-/low-calorie food cues while an EEG was recorded. Event-related potentials (ERPs) were assessed and time–frequency analyses (theta/beta oscillations) were performed. Results: Restrained eaters showed reduced memory control for both food types. The ERP analysis revealed significant N200 amplitude differences between think/no-think conditions (p = 0.03) and a significant interaction between food calories and think/no-think conditions (p = 0.032). Theta oscillations differed by group, food calories, and conditions (p = 0.038), while beta oscillations reflected food-cue processing variations. Conclusions: In conclusion, restrained eaters exhibit distinct neural processing and attenuated food-memory suppression. These results elucidate the neurocognitive mechanisms underlying dietary behavior, suggesting that targeted interventions for maladaptive eating could strengthen memory inhibition. Full article
Show Figures

Figure 1

23 pages, 4027 KB  
Article
Ecology, Culture, and Tourism Integration Efficiency, Spatial Evolution, and Influencing Factors in China
by Ruihan Zheng and Yufei Zhang
Sustainability 2025, 17(14), 6614; https://doi.org/10.3390/su17146614 - 19 Jul 2025
Viewed by 820
Abstract
To explore the integration efficiency of ecology, culture and tourism in China, this study uses a Super-Efficiency SBM model with undesirable outputs to measure integration efficiency, employs kernel density estimation (KDE) to analyze dynamic spatial distribution characteristics, applies the standard deviational ellipse (SDE) [...] Read more.
To explore the integration efficiency of ecology, culture and tourism in China, this study uses a Super-Efficiency SBM model with undesirable outputs to measure integration efficiency, employs kernel density estimation (KDE) to analyze dynamic spatial distribution characteristics, applies the standard deviational ellipse (SDE) to examine the migration trend of the spatial agglomeration center of gravity, and uses Tobit regression to identify spatiotemporal influencing factors. The findings show that: the national integration efficiency presents a trend that first decreases and then increases, with North and South China having relatively high integration efficiency. The national integration efficiency has gone through three stages: narrowing differences, coexistence of slow efficiency, and gradient effects, and increasing efficiency with weakened multipolarization. The degree of spatial agglomeration has gradually increased, and the center of gravity has shifted eastward as a whole. The internal gaps in East and South China have expanded, while the internal balance in North China has improved; the internal differences in other regions have narrowed. The influencing factors of integration efficiency have shifted from traditional economy-led to innovation and institutional collaboration. Economic development level and market openness have a positive impact on the overall integration efficiency, while transportation conditions show a restraining effect. Full article
Show Figures

Figure 1

31 pages, 2314 KB  
Article
Green and Low-Carbon Strategy of Logistics Enterprises Under “Dual Carbon”: A Tripartite Evolutionary Game Simulation
by Liping Wang, Zhonghao Ye, Tongtong Lei, Kaiyue Liu and Chuang Li
Systems 2025, 13(7), 590; https://doi.org/10.3390/systems13070590 - 15 Jul 2025
Viewed by 514
Abstract
In the low-carbon era, there is a serious challenge of climate change, which urgently needs to promote low-carbon consumption behavior in order to build sustainable low-carbon consumption patterns. The establishment of this model not only requires in-depth theoretical research as support, but also [...] Read more.
In the low-carbon era, there is a serious challenge of climate change, which urgently needs to promote low-carbon consumption behavior in order to build sustainable low-carbon consumption patterns. The establishment of this model not only requires in-depth theoretical research as support, but also requires tripartite cooperation between the government, enterprises and the public to jointly promote the popularization and practice of the low-carbon consumption concept. Therefore, by constructing a tripartite evolutionary game model and simulation analysis, this study deeply discusses the mechanism of government policy on the strategy choice of logistics enterprises. The stability strategy and satisfying conditions are deeply analyzed by constructing a tripartite evolutionary game model of the logistics industry, government, and consumers. With the help of MATLAB R2023b simulation analysis, the following key conclusions are drawn: (1) The strategic choice of logistics enterprises is affected by various government policies, including research and development intensity, construction intensity, and punishment intensity. These government policies and measures guide logistics enterprises toward low-carbon development. (2) The government’s research, development, and punishment intensity are vital in determining whether logistics enterprises adopt low-carbon strategies. R&D efforts incentivize logistics companies to adopt low-carbon technologies by driving technological innovation and reducing costs. The penalties include economic sanctions to restrain companies that do not comply with low-carbon standards. In contrast, construction intensity mainly affects the consumption behavior of consumers and then indirectly affects the strategic choice of logistics enterprises through market demand. (3) Although the government’s active supervision is a necessary guarantee for logistics enterprises to implement low-carbon strategies, more is needed. This means that in addition to the government’s policy support, it also needs the active efforts of the logistics enterprises themselves and the improvement of the market mechanism to promote the low-carbon development of the logistics industry jointly. This study quantifies the impact of different factors on the system’s evolution, providing a precise decision-making basis for policymakers and helping promote the logistics industry’s and consumers’ low-carbon transition. It also provides theoretical support for the logistics industry’s low-carbon development and green low-carbon consumption and essential guidance for sustainable development. Full article
Show Figures

Figure 1

15 pages, 7741 KB  
Article
Experimental Study on Low-Shrinkage Concrete Mix Proportion for Post-Casting Belt of Full-Section Casting in Immersed Tube
by Bang-Yan Liang, Wen-Huo Sun, Chun-Lin Deng, Qian Hu and Yong-Hui Huang
Materials 2025, 18(14), 3315; https://doi.org/10.3390/ma18143315 - 14 Jul 2025
Viewed by 336
Abstract
Full-section interval casting technology was adopted for the integral immersed tube of the Chebei Immersed Tunnel. Field tests (Chebei Immersed Tunnel) were conducted to establish the time-dependent development of the concrete shrinkage strain of the full-section casting segments. And laboratory experiments were then [...] Read more.
Full-section interval casting technology was adopted for the integral immersed tube of the Chebei Immersed Tunnel. Field tests (Chebei Immersed Tunnel) were conducted to establish the time-dependent development of the concrete shrinkage strain of the full-section casting segments. And laboratory experiments were then carried out to investigate the influence of factors such as the reinforcement ratio and stress, expansive agent content and composition, fly ash content, and curing temperature and humidity on the expansive effect of calcium–magnesium composite expansive agents. Field tests revealed that casting segments exhibit initial expansion followed by shrinkage, reaching a final strain of 348 με (microstrain). Laboratory investigations demonstrated that reinforcement (20–30 MPa stress) in post-casting belts effectively restrains segments without compromising the performance of calcium–magnesium composite expansive agents. The optimal 5:3:2 ratio of CaO, MgO 90s, and MgO 200s agents controlled shrinkage strain within 80 με by combining CaO’s rapid early expansion with MgO’s sustained effect. Field validation confirmed the mix’s effectiveness in preventing cracking, with key findings: (1) fly ash content and curing conditions significantly influence expansive behavior, and (2) shrinkage development can be precisely regulated through agent composition adjustments. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

27 pages, 9584 KB  
Article
Dynamic Response of a Floating Dual Vertical-Axis Tidal Turbine System with Taut and Catenary Mooring Under Extreme Environmental Conditions in Non-Operating Mode
by Yunjun Lee, Jinsoon Park and Woo Chul Chung
J. Mar. Sci. Eng. 2025, 13(7), 1315; https://doi.org/10.3390/jmse13071315 - 8 Jul 2025
Viewed by 370
Abstract
This study analyzes the dynamic response of a floating dual vertical-axis tidal turbine platform under extreme environmental loads, focusing on two different mooring systems as follows: taut and catenary. The analysis assumes a non-operational turbine state where power generation is stopped, and the [...] Read more.
This study analyzes the dynamic response of a floating dual vertical-axis tidal turbine platform under extreme environmental loads, focusing on two different mooring systems as follows: taut and catenary. The analysis assumes a non-operational turbine state where power generation is stopped, and the vertical turbines are lifted for structural protection. Using time-domain simulations via OrcaFlex 11.4, the floating platform’s motion and mooring line effective tensions are evaluated under high waves, strong wind, and current loads. The results reveal that sway and heave motions are significantly influenced by wave excitation, with the catenary system exhibiting larger responses due to mooring system features, while the taut system experiences higher mooring effective tension but shows more restrained motion. Notably, in the roll direction, both systems exhibit peak frequencies unrelated to the wave spectrum, attributed instead to resonance with the system’s natural frequencies—0.12438 Hz for taut and 0.07332 Hz for catenary. Additionally, the failure scenario of ML02 (Mooring Line 02) and the application of dynamic power cables to the floating platform are analyzed. The results demonstrate that under non-operational and extreme load conditions, mooring system type plays a main role in determining platform stability and structural safety. This comparative analysis offers valuable insights for selecting and designing mooring configurations optimized for reliability in extreme environmental conditions. Full article
(This article belongs to the Special Issue Numerical Analysis and Modeling of Floating Structures)
Show Figures

Figure 1

21 pages, 4834 KB  
Article
Static and Dynamic Performance of Long-Span Suspension Bridges with Flexible CFRP Central Buckles
by Maoqiang Wang, Taike Zhang, Huaimao Yang, Yaoyu Zhu, Bin Liu and Yue Liu
Polymers 2025, 17(13), 1807; https://doi.org/10.3390/polym17131807 - 28 Jun 2025
Viewed by 412
Abstract
The central buckle is essential for maintaining longitudinal stability in suspension bridges. However, conventional steel buckles are often excessively stiff, leading to stress concentration and insufficient durability. Moreover, they tend to perform poorly under fatigue loading conditions. This study proposes a novel flexible [...] Read more.
The central buckle is essential for maintaining longitudinal stability in suspension bridges. However, conventional steel buckles are often excessively stiff, leading to stress concentration and insufficient durability. Moreover, they tend to perform poorly under fatigue loading conditions. This study proposes a novel flexible central buckle system based on a Carbon Fiber-Reinforced Polymer (CFRP) to address these limitations. This study proposes a novel flexible central buckle system based on Carbon Fiber-Reinforced Polymer (CFRP) to address these limitations. Taking the long-span Shiziyang Suspension Bridge as a case study, a finite element model is developed to investigate the effects of CFRP central buckles with eight different stiffness levels on the static and dynamic responses of the bridge. The results indicate that a CFRP central buckle with a low elastic modulus achieves comparable displacement control performance to that of traditional steel buckles, while inducing significantly lower internal forces, demonstrating strong potential as a substitute. Based on this finding, a coordinated control strategy combining the CFRP central buckle with end-span restraining devices is proposed. This integrated system reduces midspan displacement and central buckle internal force by 61.1% and 49.8%, respectively. Considering both performance and cost-efficiency, a low-modulus CFRP material such as T300 is recommended. The proposed approach offers a new and effective solution for longitudinal control in ultra-long-span suspension bridges. Full article
Show Figures

Figure 1

27 pages, 8178 KB  
Article
Experiment and Finite Element Research on Mechanical Performance of Thin-Walled Steel–Wood Composite Columns Under Eccentric Compression
by Yangfa Zhu, Jianhua Shao, Anxiang Feng, Xianglan Li, Zhanguang Wang, Hongxuan Xu, Jiajun Gao and Boshi Ma
Buildings 2025, 15(12), 2114; https://doi.org/10.3390/buildings15122114 - 18 Jun 2025
Viewed by 500
Abstract
In order to conduct an in-depth and exhaustive investigation into the mechanical properties of steel tubes filled with wood, a thin-walled steel–wood composite column was elaborately designed. The damage progression, failure mode, and mechanical performance of this column under eccentric compression were systematically [...] Read more.
In order to conduct an in-depth and exhaustive investigation into the mechanical properties of steel tubes filled with wood, a thin-walled steel–wood composite column was elaborately designed. The damage progression, failure mode, and mechanical performance of this column under eccentric compression were systematically investigated through both experimental research and finite element simulations. The impacts of different numbers of bolts on the mechanical properties of the composite column were minutely analyzed, and the test results of composite columns were compared with the pure steel pipe column under the same experimental conditions. It was clearly observed that the pure thin-walled steel pipe specimen was highly susceptible to elastic instability under eccentric compression, and the high-strength and high-ductility potential of structural steel was not fully developed. However, after filling with wood and applying bolt restraints, the greater the number of bolts in the specimen of thin-walled steel–wood composite column under the identical eccentricity condition, the higher the ultimate load-bearing capacity. Specifically, the ultimate load-bearing capacity of the columns filled with wood increased by 77.78–114% in comparison with that of the pure steel pipe column. Through a meticulous comparison between the test and finite element analysis results, the error was ascertained to be in the range of 4.9–11.1%. In addition, filling the thin-walled steel tube with wood and restraining it with bolts can effectively enhance the lateral deformation resistance of the specimens, and the reduction rate of lateral deflection exceeded 50%. Moreover, the greater the number of filling bolts, the smaller the strain of components subjected to the eccentric compression occurred, and the better the mechanical properties. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

24 pages, 6135 KB  
Article
Development of Compounded Surfactant Foam and Its Application in Emergency Control of Piping in Dikes
by Jiakun Gong, Zuopeng Pang, Yuan Wang, Jie Ren, Tian Qi and Adam Bezuijen
Molecules 2025, 30(12), 2583; https://doi.org/10.3390/molecules30122583 - 13 Jun 2025
Viewed by 762
Abstract
Piping is a severe threat to dikes, which can lead to dike failure, and cause significant economic and human casualties. However, conventional measures necessitate substantial labor and material resources. A novel foam-based method for the rapid mitigation of piping was proposed to enhance [...] Read more.
Piping is a severe threat to dikes, which can lead to dike failure, and cause significant economic and human casualties. However, conventional measures necessitate substantial labor and material resources. A novel foam-based method for the rapid mitigation of piping was proposed to enhance piping emergency control efficiency, which demonstrates significant application potential. This study aims to develop a novel foam formulation and evaluate its performance in controlling piping in dikes. Through a combination of foam static-property characterization experiment and foam plugging capacity assessment experiment, a compounded anionic–cationic surfactant composed of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) is optimized. The formulation, at a 9:1 mass ratio and 1.5% total concentration, exhibits superior foam stability and plugging performance. An experiment on the ability of the foam to restrain piping demonstrated that, compared to single-component SDS foam, the compounded SDS-CTAB foam increased the critical hydraulic gradient for piping from 2.35 to 2.70, a 15% improvement. It also reduces the extent of piping channel development under equivalent hydraulic conditions. The foam storage area exhibits enhanced scour resistance and better preservation under prolonged water flow. Mechanistically, the SDS-CTAB foam benefits from synergistic hydrophobic interactions, electrostatic attraction, and hydrogen bonding between surfactant molecules, which enhance foam stability. Full article
Show Figures

Figure 1

Back to TopTop