Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (414)

Search Parameters:
Keywords = root functional traits

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4767 KB  
Article
Diversity and Function Potentials of Seed Endophytic Microbiota in a Chinese Medicinal Herb Panax notoginseng
by Hong-Yan Hu, Yun Wen, Shu-Cun Geng, Yu-Nuo Zhang, Yu-Bo Zhao, Xiao-Xia Pan, You-Yong Zhu, Xia-Hong He and Ming-Zhi Yang
Horticulturae 2025, 11(10), 1162; https://doi.org/10.3390/horticulturae11101162 - 29 Sep 2025
Abstract
As an important complementation of plant genetic traits, seed endophytes (SEs) have garnered significant attention due to their crucial roles in plant germination and early seedling establishment. In this study, we employed both culture-dependent and amplicon sequencing-based approaches to characterize the endophytic microbiome [...] Read more.
As an important complementation of plant genetic traits, seed endophytes (SEs) have garnered significant attention due to their crucial roles in plant germination and early seedling establishment. In this study, we employed both culture-dependent and amplicon sequencing-based approaches to characterize the endophytic microbiome in seed samples derived from different individual Panax notoginseng plants. Additionally, we evaluated the antagonistic activity of isolated culturable bacterial SEs against the root rot pathogens Fusarium solani and F. oxysporum. Our results demonstrated that a greater sampling quantity substantially increased the species richness (Observed OTUs) and diversity of seed endophytic microbiota, underscoring the importance of seed population size in facilitating the vertical transmission of diverse endophytes to progeny. The endophytic communities (including both fungi and bacteria) exhibited a conserved core microbiota alongside host-specific rare taxa, forming a phylogenetically and functionally diverse endophytic resource pool. Core bacterial genera included Streptococcus, Methylobacterium-Methylorubrum, Sphingomonas, Burkholderia-Caballeronia-Paraburkholderia, Pantoea, Halomonas, Acinetobacter, Pseudomonas, Vibrio, and Luteibacter, while core fungal genera comprised Davidiella, Thermomyces, Botryotinia, Myrothecium, Haematonectria, and Chaetomium. Among 256 isolated endophytic bacterial strains, 11 exhibited strong inhibitory effects on the mycelial growth of F. solani and F. oxysporum. Further evaluation revealed that two antagonistic strains, Bacillus cereus and B. toyonensis, significantly enhanced seed germination and plant growth in P. notoginseng, and effectively suppressed root rot disease in seedlings. These findings highlight the potential use of SEs as biocontrol agents and growth promoters in sustainable agriculture. Full article
Show Figures

Figure 1

21 pages, 2235 KB  
Article
Root Growth and Branching of Two Cycas Species Are Influenced by Form of Nitrogen Fertilizer
by Thomas E. Marler
Agronomy 2025, 15(10), 2280; https://doi.org/10.3390/agronomy15102280 - 26 Sep 2025
Abstract
Horticultural research into the group of plants known as cycads has been deficient, and this includes the study of root growth and function. The form of nitrogen (N) available to plants is known to influence root growth and morphology. The response of cycad [...] Read more.
Horticultural research into the group of plants known as cycads has been deficient, and this includes the study of root growth and function. The form of nitrogen (N) available to plants is known to influence root growth and morphology. The response of cycad roots to N has not been studied to date. Cycas revoluta and Cycas edentata seedlings were grown in hydroponic culture and provided urea, nitrate, or ammonium forms of N. Solutions with all three forms of N increased root growth and branching when compared with nutrient solution devoid of N, with ammonium eliciting the greatest increases. Ammonium increased lateral root length 210% for C. revoluta and 164% for C. edentata. Ammonium decreased specific root length 38% for C. revoluta and 39% for C. edentata. The influence of the N source on stem and leaf growth was minimal. Ammonium increased the root-to-shoot ratio 15% for C. revoluta and 51% for C. edentata, but urea and nitrate did not influence this plant trait. A mixture of nitrate and ammonium generated plant responses that were no different from ammonium alone. The plants supplied with N in the solution produced coralloid root growth that was 14% of the no-N plants for C. revoluta and 22% of the no-N plants for C. edentata. This initial determination of the cycad plant response to the N form indicated that root plasticity was considerable and ammonium stimulated root growth more so than urea or nitrate. Long-term growth studies in mineral soils and nursery container medium are needed to determine if these findings from the hydroponic culture of small seedlings translate to general recommendations for the preferential use of ammonium for cycad culture. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

12 pages, 1910 KB  
Article
High-Frequency Generation of Homozygous/Biallelic Mutants via CRISPR/Cas9 Driven by AtKu70/80 Promoters
by Huihui Zhang, Chong Teng, Shanhua Lyu and Yinglun Fan
Int. J. Mol. Sci. 2025, 26(18), 9094; https://doi.org/10.3390/ijms26189094 - 18 Sep 2025
Viewed by 240
Abstract
CRISPR/Cas9 gene editing technology is widely used in plant gene editing to verify gene function or improve agronomic traits. In the CRISPR/Cas9 system, Cas9 expression hinges on promoter choice, and CRISPR/Cas9 driven by a strong promoter or cell division-specific promoter has a higher [...] Read more.
CRISPR/Cas9 gene editing technology is widely used in plant gene editing to verify gene function or improve agronomic traits. In the CRISPR/Cas9 system, Cas9 expression hinges on promoter choice, and CRISPR/Cas9 driven by a strong promoter or cell division-specific promoter has a higher editing efficiency. The CRISPR/Cas9 mechanism involves the CAS9 enzyme, which, directed by guide RNA, cleaves target double-stranded DNA and subsequently induces insertions or deletions (InDels) through the non-homologous end joining (NHEJ) repair pathway. The Ku protein plays a central role in the NHEJ repair process. It remains unclear whether driving Cas9 with promoters of AtKu70 and AtKu80, which are subunits of the Ku protein, will enhance gene editing efficiency. In this study, the promoters of AtKu70 and AtKu80 were cloned and used to drive Cas9 in the CRISPR/Cas9 system. Four different genes, GmRj7, GmNNL1, AtPDS3, and AtBRI1, were designed for soybean hairy root transformation and Arabidopsis transformation. The results showed that the CRISPR/Cas9 systems driven by the promoters of AtKu70 and AtKu80 achieved higher homozygous/biallelic mutation efficiencies than the CRISPR/Cas9 system driven by the 35S promoter in hairy root transformation by Rhizobium rhizogenes and stable genetic transformation with Rhizobium tumefaciens. Full article
Show Figures

Figure 1

21 pages, 3637 KB  
Article
Short-Term Photovoltaic Power Prediction Model Based on Variational Modal Decomposition and Improved RIME Optimization Algorithm
by Lingling Xie, Long Li, Xiaoping Xiong, Jiajia Cai, Hanzhong Cui and Haoyuan Li
Electronics 2025, 14(18), 3612; https://doi.org/10.3390/electronics14183612 - 11 Sep 2025
Viewed by 217
Abstract
Photovoltaic (PV) power generation is highly stochastic and volatile, a trait that presents a notable challenge to the prediction accuracy of distributed PV systems. To address this challenge, this study proposes a short-term photovoltaic power prediction strategy that integrates variational modal decomposition (VMD) [...] Read more.
Photovoltaic (PV) power generation is highly stochastic and volatile, a trait that presents a notable challenge to the prediction accuracy of distributed PV systems. To address this challenge, this study proposes a short-term photovoltaic power prediction strategy that integrates variational modal decomposition (VMD) for feature extraction with an improved RIME (IRIME) optimization algorithm for parameter optimization. Firstly, the raw PV power data are split into several intrinsic mode functions (IMFs) using VMD. The decomposed IMFs are reconstructed by using the sample entropy (SE) method, and a new subsequence with enhanced features is obtained. Secondly, a bidirectional gated recurrent unit (BIGRU) prediction model is established, and its structural parameters are optimized by the IRIME algorithm. Finally, the prediction results of each subsequence are summarized to obtain the final prediction value. Information from a centralized PV power station located in southern China is employed to verify the suggested prediction model. Experimental findings indicate that in comparison with other models, the proposed model achieves the smallest PV power prediction error; the mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) of the proposed model are reduced at least by 21.95%, 3.03%, and 12.33%, respectively. The coefficient of determination (R2) is increased at least by 10.56‰. The method presented in this research is capable of improving prediction accuracy efficiently and holds specific engineering practicality. Full article
Show Figures

Figure 1

28 pages, 4004 KB  
Article
Influencing Factors and Adaptation Strategies of Stoichiometric Characteristics of Main Shrubs and Herbs in Karst Area at Microhabitat Scale
by Peng Wu, Hua Zhou, Wenjun Zhao, Guangneng Yang, Yingchun Cui, Yiju Hou, Chengjiang Tan, Ting Zhou, Run Liu and Fangjun Ding
Plants 2025, 14(18), 2839; https://doi.org/10.3390/plants14182839 - 11 Sep 2025
Viewed by 281
Abstract
In order to reveal the adaptation strategies of karst forest plants to “high-calcium (Ca)–low-phosphorus (P) heterogeneous” habitats, the dominant shrubs and herbs in the Maolan karst area were taken as the research objects. The carbon (C), nitrogen (N), P, potassium (K), Ca, and [...] Read more.
In order to reveal the adaptation strategies of karst forest plants to “high-calcium (Ca)–low-phosphorus (P) heterogeneous” habitats, the dominant shrubs and herbs in the Maolan karst area were taken as the research objects. The carbon (C), nitrogen (N), P, potassium (K), Ca, and magnesium (Mg) contents of plant components and their stoichiometric ratios in different microhabitats were systematically measured, and the environmental driving factors were analyzed by redundancy analysis (RDA) and variance partitioning analysis (VPA). The results showed that there were no significant differences in the plant nutrient contents and stoichiometric ratios in different microhabitats, but there were significant differences with respect to the components. The contents of N, P, K, and Mg in shrub leaves were significantly higher than those in branches and roots, while the contents of C/N, C/P, and C/K in branches and roots were significantly higher than those in leaves. The K content of herb leaves was significantly higher than that of roots. This reflects the functional differentiation of plant components and the different trade-off strategies for resource acquisition and storage. The stoichiometric characteristics of shrub leaves are dominated by species characteristics, while herb leaves are controlled by leaf tissue density (LTD), and soil-exchangeable Ca has a significant regulatory effect on the roots of both plant forms. Shrubs directly obtain bedrock slow-release nutrients through deep roots penetrating rock crevices and combine high C/N and C/P to improve nutrient utilization efficiency, forming a “mechanical resistance priority–metabolic cost optimization” adaptation strategy. Herbs respond to environmental fluctuations through functional trait plasticity and achieve rapid growth with high specific leaf area (SLA) and low LTD. Full article
(This article belongs to the Special Issue Advances in Plant Nutrition Responses and Stress)
Show Figures

Figure 1

22 pages, 3296 KB  
Article
Overexpression of the CAM-Derived NAC Transcription Factor KfNAC83 Enhances Photosynthesis, Water-Deficit Tolerance, and Yield in Arabidopsis
by Kumudu N. Rathnayake, Beate Wone, Madhavi A. Ariyarathne, Won C. Yim and Bernard W. M. Wone
Curr. Issues Mol. Biol. 2025, 47(9), 736; https://doi.org/10.3390/cimb47090736 - 10 Sep 2025
Viewed by 328
Abstract
Drought stress is a major constraint on plant photosynthesis, growth, and yield, particularly in the context of increasingly frequent and severe extreme weather events driven by global climate change. Enhancing photosynthetic efficiency and abiotic stress tolerance is therefore essential for sustaining crop productivity. [...] Read more.
Drought stress is a major constraint on plant photosynthesis, growth, and yield, particularly in the context of increasingly frequent and severe extreme weather events driven by global climate change. Enhancing photosynthetic efficiency and abiotic stress tolerance is therefore essential for sustaining crop productivity. In this study, we functionally characterized Kalanchoë fedtschenkoi NAC83 (KfNAC83), a transcription factor derived from a heat-tolerant obligate crassulacean acid metabolism (CAM) species, by constitutively overexpressing it in the C3 model plant Arabidopsis thaliana. Transgenic Arabidopsis lines overexpressing KfNAC83 exhibited significantly enhanced tolerance to water-deficit and NaCl stress, along with improved photosynthetic performance, biomass accumulation, and overall productivity. Transcriptomic analysis revealed that KfNAC83 overexpression increased key components of the jasmonate (JA) signaling pathway in both roots and shoots, suggesting a mechanistic link between KfNAC83 activity and enhanced abiotic stress responses. Additionally, the transgenic lines displayed increased nighttime decarboxylation activity, indicative of partial CAM-like metabolic traits. These findings demonstrate that KfNAC83 functions as a positive regulator of abiotic stress tolerance and growth, likely through modulation of jasmonate-mediated signaling and photosynthetic metabolism. This work highlights the potential of CAM-derived transcription factors for bioengineering abiotic stress-resilient crops in the face of climate change. Full article
(This article belongs to the Special Issue Molecular Mechanisms in Plant Stress Tolerance)
Show Figures

Figure 1

23 pages, 3286 KB  
Review
Towards Understanding the Factors Shaping the Composition and Function of the Noccaea Microbiome in Metal-Contaminated Environments
by Marjana Regvar, Valentina Bočaj, Jure Mravlje, Teja Pelko, Matevž Likar, Paula Pongrac and Katarina Vogel-Mikuš
Int. J. Mol. Sci. 2025, 26(17), 8748; https://doi.org/10.3390/ijms26178748 - 8 Sep 2025
Viewed by 627
Abstract
Noccaea species (formerly Thlaspi) are Brassicaceae plants renowned for their capacity to hyperaccumulate zinc (Zn), cadmium (Cd), and nickel (Ni), which has made them model systems in studies of metal tolerance, phytoremediation, and plant adaptation to extreme environments. While their physiological and [...] Read more.
Noccaea species (formerly Thlaspi) are Brassicaceae plants renowned for their capacity to hyperaccumulate zinc (Zn), cadmium (Cd), and nickel (Ni), which has made them model systems in studies of metal tolerance, phytoremediation, and plant adaptation to extreme environments. While their physiological and genetic responses to metal stress are relatively well characterised, the extent to which these traits influence microbiome composition and function remains largely unexplored. These species possess compact genomes shaped by ancient whole-genome duplications and rearrangements, and such genomic traits may influence microbial recruitment through changes in secondary metabolism, elemental composition, and tissue architecture. Here, we synthesise the current findings on how genome size, metal hyperaccumulation, structural adaptations, and glucosinolate diversity affect microbial communities in Noccaea roots and leaves. We review evidence from bioimaging, molecular profiling, and physiological studies, highlighting interactions with bacteria and fungi adapted to metalliferous soils. At present, the leaf microbiome of Noccaea species remains underexplored. Analyses of root microbiome, however, reveal a consistent taxonomic core dominated by Actinobacteria and Proteobacteria among bacterial communities and Ascomycetes, predominantly Dothideomycetes and Leotiomycetes among fungi. Collectively, these findings suggest that metal-adapted microbes provide several plant-beneficial functions, including metal detoxification, nutrient cycling, growth promotion, and enhanced metal extraction in association with dark septate endophytes. By contrast, the status of mycorrhizal associations in Noccaea remains debated and unresolved, although evidence points to functional colonisation by selected fungal taxa. These insights indicate that multiple plant traits interact to shape microbiome assembly and activity in Noccaea species. Understanding these dynamics offers new perspectives on plant–microbe co-adaptation, ecological resilience, and the optimisation of microbiome-assisted strategies for sustainable phytoremediation. Full article
(This article belongs to the Special Issue Molecular Advances in Understanding Plant-Microbe Interactions)
Show Figures

Figure 1

16 pages, 1137 KB  
Article
Functional Traits of Native Plant Species That Inhibit the Seedling Growth of the Exotic Invader Solidago canadensis
by Ruixiang Ma, Jili Liang, Keyi Zuo, Ming Wu and Xiaoqi Ye
Plants 2025, 14(17), 2806; https://doi.org/10.3390/plants14172806 - 8 Sep 2025
Viewed by 455
Abstract
Rising biological invasions continue to threaten biodiversity conservation worldwide. To protect native ecosystems and biodiversity, improve resilience against invasions, and lower ecological management costs, it is crucial to identify native plant species that can endure the competitive pressures from invasive plants. This greenhouse [...] Read more.
Rising biological invasions continue to threaten biodiversity conservation worldwide. To protect native ecosystems and biodiversity, improve resilience against invasions, and lower ecological management costs, it is crucial to identify native plant species that can endure the competitive pressures from invasive plants. This greenhouse study examined the competition between Solidago canadensis and 32 native plant species to identify key functional traits of these native plant species that influence their competitive effects on and responses to S. canadensis. The results indicated that S. canadensis seedlings were unable to suppress the growth of most of the native species studied, while most native species could significantly suppress growth of S. canadensis, reducing its biomass by 12–92%. The suppression effects by native plants were closely related to their root functional traits. Specifically, annuals with higher root–shoot ratio, specific root lengths, stem biomass, plant height by day 10, and smaller number of root tips showed stronger inhibition of S. canadensis. On the other hand, perennials with smaller average root diameter, or greater root biomass and plant heights by day 60, were also more inhibitory towards S. canadensis. This study concluded that the competitive effect of seedlings of S. canadensis have weaker competitive impacts compared to most the studied native plants. Root traits are essential in the competition between native plants and S. canadensis, potentially aiding in the identification of native plant species with high resistance to invasion. Full article
(This article belongs to the Special Issue Plant Invasions and Their Interactions with the Environment)
Show Figures

Figure 1

25 pages, 3939 KB  
Article
Exogenous Application of ENOD40 and CEP1 Peptides Boosts Symbiotic Signaling Gene Expression and Productivity in Common Bean
by Hector Cántaro-Segura and Doris Zúñiga-Dávila
Plants 2025, 14(17), 2786; https://doi.org/10.3390/plants14172786 - 5 Sep 2025
Viewed by 462
Abstract
Small signaling peptides play crucial roles in the regulation of legume–rhizobia symbiosis, yet their potential as exogenous biostimulants remains largely unexplored. In this study, we evaluated the effects of foliar application of the synthetic peptides ENOD40 and CEP1 on common bean (Phaseolus [...] Read more.
Small signaling peptides play crucial roles in the regulation of legume–rhizobia symbiosis, yet their potential as exogenous biostimulants remains largely unexplored. In this study, we evaluated the effects of foliar application of the synthetic peptides ENOD40 and CEP1 on common bean (Phaseolus vulgaris) under both greenhouse and field conditions. Using a factorial design, we examined gene expression patterns, nodulation parameters, and yield-related traits in response to peptide treatments alone or in combination with Rhizobium. Results showed that ENOD40 and CEP1 significantly enhanced the transcription of key symbiotic signaling genes (PvENOD40, PvSYMRK, PvCCaMK, PvCYCLOPS, PvVAPYRIN) and modulated defense-related genes (PvAOS, PvICS), with the strongest effects observed at concentrations of 10−7 M and 10−8 M. In greenhouse assays, peptide-treated plants exhibited increased root and shoot biomass, nodule number, and seed yield. Field trials confirmed these responses, with CEP1 10−7 M + Rhizobium treatment achieving the highest grain yield (3322 kg ha−1). Our findings provide the first evidence that ENOD40 and CEP1 peptides can function as foliar-applied biostimulants to enhance nodulation efficiency and improve yield in legumes. This approach offers a promising and sustainable strategy to reduce chemical nitrogen inputs and support biological nitrogen fixation in agricultural systems. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

28 pages, 5359 KB  
Article
Biochar Enhances Nutrient Uptake, Yield, and NHX Gene Expression in Chinese Cabbage Under Salinity Stress
by Periyasamy Rathinapriya, Theivanayagam Maharajan, Tae-Jun Lim, Byeongeun Kang and Seung Tak Jeong
Plants 2025, 14(17), 2743; https://doi.org/10.3390/plants14172743 - 2 Sep 2025
Viewed by 529
Abstract
Salinity is a major limiting factor for all food crops, mainly Chinese cabbage. This study aimed to investigate the effects of biochar (BC) on physiological, biochemical, and molecular responses of Chinese cabbage grown under salinity stress in an open field. We supplied three [...] Read more.
Salinity is a major limiting factor for all food crops, mainly Chinese cabbage. This study aimed to investigate the effects of biochar (BC) on physiological, biochemical, and molecular responses of Chinese cabbage grown under salinity stress in an open field. We supplied three concentrations of BC (5, 10, and 15 t/ha) to the 200 mM NaCl salinity-stress-induced field, which enhanced physical and chemical properties of the soil. Under salinity stress, BC increased photosynthetic pigments and reduced proline and H2O2 contents. Notably, 5 t/ha BC boosted plant growth, biomass, and yield by >40% and inhibited ROS accumulation under salinity stress. BC also promoted the concentrations of various key micronutrients, particularly Fe and Zn, in Chinese cabbage under salinity stress, which may contribute to improving the nutrient content. BC under salinity stress significantly induced the expression of NHX family genes (BoNHX1 and BoNHX2). Among these, the BoNHX1 gene was found to be highly expressed in shoot and root tissues of Chinese cabbage grown under salinity stress with BC. Identification of this key candidate gene will lay the groundwork for further functional characterization studies to elucidate its role under salinity stress with BC. This study comprehensively analyzes the physiological, biochemical, and molecular impacts of BC application in Chinese cabbage under salinity stress. This study found that the application of 5 t/ha significantly improved various physiological and biochemical traits of Chinese cabbage under salinity stress compared to the other treatments. The outcome of this study provides novel insights into the bioprotective role of BC, offering a valuable foundation of organic supplements for farmers while also highlighting potential research directions for enhancing crop resilience and productivity in economically important crops. Full article
Show Figures

Figure 1

30 pages, 6830 KB  
Article
Genome-Wide Identification and Expression Analysis of the Growth Regulatory Factor (GRF) and Growth-Regulating Interacting Factor (GIF) Gene Families in Cassava
by Rou Xu, Tianyu Li, Linling Zheng, Yuhua Chen, Assane Hamidou Abdoulaye, Yating Feng, Wenlong Wen and Yinhua Chen
Horticulturae 2025, 11(9), 1046; https://doi.org/10.3390/horticulturae11091046 - 2 Sep 2025
Viewed by 408
Abstract
Growth regulatory factors (GRFs) and growth-regulating interacting factors (GIFs) play significant roles in plant growth, development, and environmental stress responses. Previous studies have reported the functions of GRF and GIF genes in model plants such as Arabidopsis and rice. [...] Read more.
Growth regulatory factors (GRFs) and growth-regulating interacting factors (GIFs) play significant roles in plant growth, development, and environmental stress responses. Previous studies have reported the functions of GRF and GIF genes in model plants such as Arabidopsis and rice. Nevertheless, the GRF and GIF genes remained unexplored in cassava. Cassava (Manihot esculenta Crantz) is an important tropical economic crop. Its starchy storage roots serve as a major source of food and industrial raw materials, while its protein-rich leaves are widely consumed as leafy vegetables in Africa and other regions, offering high nutritional value and significant horticultural potential. This study identified 28 MeGRFs distributed on 13 chromosomes and 5 MeGIFs on 4 chromosomes through bioinformatic analysis and expression profiling. Promoter analysis uncovered cis-acting elements associated with growth, hormone signaling, and biotic stress responses. Under different tissues and biotic (e.g., cassava bacterial blight, CBB) and abiotic (e.g., drought, low temperature) stress conditions, GRF and GIF genes exhibited differential expression patterns. Real-time quantitative PCR analysis showed a significant expression for 11 MeGRFs and 3 MeGIFs under the Xanthomonas phaseoli pv. manihotis (Xpm) treatment. VIGS functional validation demonstrated that MeGRF28 and MeGIF4 could enhance cassava resistance to bacterial blight, and protein–protein interaction network analysis suggested that they may form a core GRF-GIF complex. This study provides a theoretical basis for understanding the functional evolution of the GRF and GIF gene families in cassava and their roles in horticultural trait development and stress resistance mechanisms. Full article
(This article belongs to the Special Issue Breeding by Design: Advances in Vegetables)
Show Figures

Figure 1

12 pages, 623 KB  
Article
Antagonistic Interaction Between Microplastics and Herbivory on the Growth of Native and Invasive Plants
by Jeffrey Okundi, Ling Yuan, Guanlin Li, Daolin Du and Junmin Li
Plants 2025, 14(17), 2692; https://doi.org/10.3390/plants14172692 - 28 Aug 2025
Viewed by 538
Abstract
Microplastic pollution and herbivory are increasingly recognized as significant stressors in terrestrial ecosystems, yet their interactive effects on native and invasive plants remain poorly understood. In this study, we investigated the individual and combined effects of polyethylene microplastics (PE-MPs) and herbivory by Helicoverpa [...] Read more.
Microplastic pollution and herbivory are increasingly recognized as significant stressors in terrestrial ecosystems, yet their interactive effects on native and invasive plants remain poorly understood. In this study, we investigated the individual and combined effects of polyethylene microplastics (PE-MPs) and herbivory by Helicoverpa armigera on the growth and functional traits of twelve plant species (six invasive and six native). Exposure to PE-MPs significantly reduced biomass accumulation, with larger reductions in shoot, root, and total biomass for native plants than for invasive ones. Herbivory also significantly reduced biomass accumulation. When combined, PE-MPs and herbivory produced antagonistic effects on shoot, root, and total biomass. No significant three-way interaction was found among PE-MPs, herbivory, and plant status. Both PE-MPs and herbivory significantly reduced the root mass fraction and root-to-shoot ratio (RSR) while increasing the shoot mass fraction, with the PE-MP-induced reduction in RSR being stronger in native plants. Our findings suggest that multiple anthropogenic stressors can act as ecological filters, reshaping plant competitive dynamics and accelerating community shifts toward stress-tolerant species. Full article
(This article belongs to the Special Issue Plant Invasions and Their Interactions with the Environment)
Show Figures

Figure 1

19 pages, 2812 KB  
Article
Elemental Stoichiometry of Tropical Peatland Trees: Implications for Adaptation and Carbon Sequestration
by Moh Syukron Ismail, Sulistijorini Sulistijorini, Mafrikhul Muttaqin, Zakaria Al Anshori, Muhammad Rifki Rizaldi, Lahiru Wijedasa, Jared Moore, Randi Agusti, Sanjay Swarup and Triadiati Triadiati
Forests 2025, 16(9), 1379; https://doi.org/10.3390/f16091379 - 28 Aug 2025
Viewed by 699
Abstract
Indonesia has 13.43 million hectares of tropical peatlands, the largest in Southeast Asia, which are crucial for carbon sequestration. This function is influenced by vegetation nutrient content, particularly carbon (C), nitrogen (N), phosphorus (P), and potassium (K), which regulate biogeochemical cycles and peat [...] Read more.
Indonesia has 13.43 million hectares of tropical peatlands, the largest in Southeast Asia, which are crucial for carbon sequestration. This function is influenced by vegetation nutrient content, particularly carbon (C), nitrogen (N), phosphorus (P), and potassium (K), which regulate biogeochemical cycles and peat formation. This study analyzed stoichiometric profiles of tree species in South Sumatra peatlands based on (1) C:N ratios across roots, stems, twigs, and leaves, and identified species with traits associated with high carbon sequestration potential, and (2) leaf N:P:K stoichiometry to infer nutrient limitations. Research was conducted in a 1-hectare primary peatland plot within the PT. Tri Pupa Jaya conservation area. C, N, P, and K contents were measured using Kjeldahl distillation, spectrophotometry, flame photometry, and the Walkley–Black method following acid digestion. Stoichiometric distribution was visualized with violin-box plots and species grouped through hierarchical clustering. Among 153 identified species, stems showed the highest mean C:N ratio (314.9 ± 210.8), while leaves had the lowest (29.7 ± 13.0). Species were grouped into three clusters by C:N ratios across four organs, with six in clusters 1 and 2 showing high carbon sequestration potential. Leaf N:P:K stoichiometry suggested nitrogen, phosphorus, or combined N + P limitations. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

21 pages, 6668 KB  
Article
Identification and Analysis of Differentially Expressed Genes in Sugarcane Roots Under Different Potassium Application Levels
by Rudan Li, Zhongfu Zhang, Yanye Li, Yong Zhao, Jiayong Liu and Jun Deng
Agronomy 2025, 15(9), 2060; https://doi.org/10.3390/agronomy15092060 - 27 Aug 2025
Viewed by 514
Abstract
Potassium (K) is a critical macronutrient for sugarcane (Saccharum spp.), playing a vital role in metabolic processes, sucrose accumulation, and yield formation. Herein, this study systematically evaluated the effects of potassium oxide (K2O) application on sugarcane (cultivar YZ1696) growth at [...] Read more.
Potassium (K) is a critical macronutrient for sugarcane (Saccharum spp.), playing a vital role in metabolic processes, sucrose accumulation, and yield formation. Herein, this study systematically evaluated the effects of potassium oxide (K2O) application on sugarcane (cultivar YZ1696) growth at the seedling and tillering stages. Hydroponic experiments demonstrated that 6 mmol/L K2O optimally promoted seedling growth, whereas field trials revealed that 150 kg/ha K2O maximized growth rate, yield, and sucrose content. Sugarcane growth exhibited a biphasic response—stimulation followed by inhibition—with increasing K2O dosage at both developmental stages. Transcriptomic profiling of sugarcane roots under low-potassium (K-deficient), optimal potassium, and high-potassium conditions identified 10,266 differentially expressed genes (DEGs), with the most pronounced transcriptional shifts occurring under K deficiency. Functional enrichment analysis identified DEGs associated with potassium transport, calcium signaling, and carbohydrate metabolism. Notably, potassium uptake was mediated by distinct mechanisms: Shaker family channels (AKT1, AKT2, SPIKE) and the TPK family member KCO1 were induced under optimal K supply, whereas HAK/KUP/KT transporters (HAK1/5/10/21/25) exhibited broad activation across K concentrations, underscoring their key role in K homeostasis. Furthermore, calcium signaling genes (e.g., CIPK23) displayed K-dependent expression patterns. Weighted gene co-expression network analysis identified key gene modules that correlated strongly with agronomic traits, including plant height, yield, and sucrose content. Optimal K conditions favored the expression of yield- and sucrose-associated genes, suggesting a molecular basis for K-mediated productivity enhancement. Our findings revealed the genetic and physiological mechanisms underlying K-dependent sugarcane improvement, providing actionable insights for precise potassium fertilization to maximize the yield and sugar content. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

21 pages, 6552 KB  
Article
Screening of Saline–Alkali-Tolerant Rapeseed Varieties Through Multi-Index Integrated Analysis Across the Entire Growth Cycle
by Hongyu Jiang, Hua An, Wenping Yang, Xiangyu Zhang, Jingjing Chai, Yani Hao, Bo Wang, Guangsheng Zhou, Tingdong Fu and Zhenping Yang
Agronomy 2025, 15(9), 2046; https://doi.org/10.3390/agronomy15092046 - 26 Aug 2025
Viewed by 641
Abstract
In order to identify saline–alkali-tolerant rapeseed varieties suitable for cultivation on moderately saline–alkali soils and to expand the use of such lands, six rapeseed varieties were selected as experimental materials. Field experiments were conducted to evaluate agronomic traits, photosynthesis, stress physiology, yield, and [...] Read more.
In order to identify saline–alkali-tolerant rapeseed varieties suitable for cultivation on moderately saline–alkali soils and to expand the use of such lands, six rapeseed varieties were selected as experimental materials. Field experiments were conducted to evaluate agronomic traits, photosynthesis, stress physiology, yield, and quality throughout the entire growth period. Statistical methods, including correlation analysis, principal component analysis, membership function analysis, and cluster analysis, were employed to evaluate and select saline–alkali-tolerant varieties. The results indicated that H62 and 20C14 yielded the highest seed production, reaching 2287.99 kg·hm−2 and 2277.15 kg·hm−2, respectively. During the mid-to-late growth stages, the majority of agronomic traits, photosynthetic parameters, and stress physiology indicators for 20C14 were significantly superior to those of the other varieties. The results of the principal component analysis showed that the total root length at maturity stage, root–shoot ratio at flowering stage, and proline content at maturity stage were the most important indicators for screening saline–alkali-tolerant rapeseed varieties. A comprehensive analysis of these indicators revealed the following descending order of saline–alkali tolerance among the varieties: 20C14 > 20C17 > 20C4 > H62 > H158 > 17C2. Cluster analysis was performed to classify the rapeseed into strong saline–alkali-tolerant type (20C14 and 20C17), moderate saline–alkali-tolerant type (20C4, H62, and H158), and weak saline–alkali-tolerant type (17C2). Consequently, 20C14 and 20C17 are recommended as suitable rapeseed varieties for cultivation on soda saline–alkali soils. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

Back to TopTop