Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (369)

Search Parameters:
Keywords = rosette

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 13272 KB  
Article
The MADS-Box Transcription Factor BoAGL8 Is Involved in Regulating Flowering in Broccoli
by Yuanyuan Li, Hanbing Yang, Peini Jia, Zairong Li, Yan Wang, Yajie Jiang, Xia He, Boyue Wen, Chensi Huo, Wei Zhang, Wenchen Chai, Shijiang Yan and Jing Zhang
Horticulturae 2025, 11(10), 1227; https://doi.org/10.3390/horticulturae11101227 - 11 Oct 2025
Viewed by 163
Abstract
Broccoli (Brassica oleracea L. var. italica) is a biennial or annual herbaceous plant belonging to the species Brassica oleracea in the genus Brassica of the Cruciferae family. The green flower curd serves as the primary edible organ, with its development and [...] Read more.
Broccoli (Brassica oleracea L. var. italica) is a biennial or annual herbaceous plant belonging to the species Brassica oleracea in the genus Brassica of the Cruciferae family. The green flower curd serves as the primary edible organ, with its development and preservation critically determining broccoli yield and quality. Given that these processes are regulated by flowering time, understanding the mechanisms underlying floral transition is essential for enhancing broccoli yield and quality. This study aimed to identify the MADS-box family in broccoli and to investigate the function of the BoAGL8 gene in floral induction. We identified a total of 176 MADS-box genes, of which 54 genes were up-regulated and 50 genes were down-regulated under low-temperature treatment. Notably, the expression of BoAGL8 was up-regulated by 6.70-fold under low-temperature induction, prompting us to select and clone this gene for further analysis. Tissue-specific expression profiling further revealed that BoAGL8 is expressed at relatively high level in both mature and young leaves. After 15 days of low-temperature treatment, BoAGL8 expression in shoot tip was significantly upregulated compared to untreated controls. Subcellular localization analysis showed that BoAGL8 protein was located to the nucleus. Ectopic over-expression of BoAGL8 in Arabidopsis exhibited accelerated bolting and flowering, reduced rosette leaf number, and increased seed yield per plant compared to wild-type plants. Furthermore, compared to wild-type controls, transgenic lines exhibited upregulated expression of AtFT, AtAP1 and AtSEP3, alongside downregulation of SVP expression. The above results indicate that BoAGL8 may play a key regulatory role in the process of floral organ development in broccoli, providing an important theoretical basis for future research on flowering time regulation and breeding in broccoli. Full article
(This article belongs to the Topic Genetic Breeding and Biotechnology of Garden Plants)
Show Figures

Figure 1

18 pages, 8385 KB  
Article
Genome-Wide Identification of the TCP Gene Family in Chimonanthus praecox and Functional Analysis of CpTCP2 Regulating Leaf Development and Flowering in Transgenic Arabidopsis
by Yinzhu Cao, Gangyu Guo, Huafeng Wu, Xia Wang, Bin Liu, Ximeng Yang, Qianli Dai, Hengxing Zhu, Min Lu, Haoxiang Zhu, Zheng Li, Chunlian Jin, Shenchong Li and Shunzhao Sui
Plants 2025, 14(19), 3039; https://doi.org/10.3390/plants14193039 - 1 Oct 2025
Viewed by 328
Abstract
TCP transcription factors represent a crucial family of plant regulators that contribute significantly to growth and developmental processes. Although the TCP gene family has been extensively studied in various plant species, research on Chimonanthus praecox (wintersweet) remains limited. Here, we performed genome-wide identification [...] Read more.
TCP transcription factors represent a crucial family of plant regulators that contribute significantly to growth and developmental processes. Although the TCP gene family has been extensively studied in various plant species, research on Chimonanthus praecox (wintersweet) remains limited. Here, we performed genome-wide identification and analysis of the TCP gene family in C. praecox and identified 22 CpTCP genes. We further systematically examined the associated physicochemical properties, evolutionary relationships, gene structures, and regulatory features. Analysis revealed that all CpTCP proteins possess a conserved TCP domain, and subcellular localization prediction indicated their localization in the nucleus. Promoter analysis revealed that multiple cis-elements are associated with abiotic stress responses and plant growth regulation. Further analysis revealed high CpTCP2 expression in the leaves and stamen, with significantly increased levels during flower senescence. CpTCP2 expression was upregulated in response to methyl jasmonate (MeJA), salicylic acid, abscisic acid, and shade. CpTCP2 overexpression in Arabidopsis thaliana resulted in a reduced leaf area, delayed flowering, and increased rosette leaf numbers. Moreover, MeJA treatment accelerated leaf senescence in CpTCP2 transgenic Arabidopsis. These findings provide insights into the evolutionary characteristics of the TCP family in C. praecox, highlighting the functional role of CpTCP2 in regulating leaf development and flowering time in Arabidopsis, thereby offering valuable genetic resources for wintersweet molecular breeding. Full article
(This article belongs to the Special Issue Omics Approaches to Analyze Gene Regulation in Plants)
Show Figures

Figure 1

19 pages, 19814 KB  
Article
Comparative Leaf Anatomy of Balkan Representatives of Gentiana L. Sect. Ciminalis (Adans.) Dum. (Gentianaceae): Implications for Species Delimitation
by Žarko Mladenović, Nevena Kuzmanović, Dmitar Lakušić and Danilo Stojanović
Plants 2025, 14(19), 2977; https://doi.org/10.3390/plants14192977 - 25 Sep 2025
Viewed by 285
Abstract
The present study investigates the leaf anatomical traits of representatives of Gentiana section Ciminalis in the Balkan Peninsula, focusing on the ecologically and geographically vicariant species Gentiana acaulis, G. clusii, and G. dinarica. These species are distributed across a variety [...] Read more.
The present study investigates the leaf anatomical traits of representatives of Gentiana section Ciminalis in the Balkan Peninsula, focusing on the ecologically and geographically vicariant species Gentiana acaulis, G. clusii, and G. dinarica. These species are distributed across a variety of mountainous habitats, including calcareous and siliceous rocky grounds, and exhibit pronounced morphological similarities that have led to misidentifications in the past. In order to address the challenges in species delimitation, a comparative analysis of leaf anatomical traits was performed on cross-sections of ten rosette leaves from each population. Statistical data analyses were conducted on 18 morphometric traits. A range of statistical techniques were used to assess variability and identify important discriminating traits, including descriptive statistics, principal component analysis, and discriminant analysis. The results indicate that the species can be distinguished based on leaf anatomy, particularly mesophyll thickness and number of cells that contain calcium oxalate crystals. The leaf of G. acaulis has a smaller mesophyll thickness (mean value: 164.31 μm), G. dinarica a larger mesophyll thickness (mean value: 365.85 μm), while G. clusii lies between these two (mean value: 305.35 μm). Crystal-containing cells are most abundant in G. clusii, where they are distributed throughout the entire leaf mesophyll; followed by G. dinarica, where the distribution of these cells are mainly in the upper half of the leaf; while they are sparse or absent in G. acaulis. These results suggest that leaf anatomy is a valuable diagnostic tool for distinguishing taxa within the section Ciminalis of the genus Gentiana. Full article
(This article belongs to the Section Plant Systematics, Taxonomy, Nomenclature and Classification)
Show Figures

Figure 1

43 pages, 50632 KB  
Article
Immunohistochemical and Ultrastructural Analysis of Adult Neurogenesis Involving Glial and Non-Glial Progenitors in the Cerebellum of Juvenile Chum Salmon Oncorhynchus keta
by Evgeniya V. Pushchina, Mariya E. Bykova, Evgeniya E. Vekhova and Evgeniya A. Pimenova
Int. J. Mol. Sci. 2025, 26(19), 9267; https://doi.org/10.3390/ijms26199267 - 23 Sep 2025
Viewed by 302
Abstract
The ultrastructural organization of different cell types involved in homeostatic growth in the cerebellum of juvenile chum salmon (Oncorhynchus keta) was investigated using transmission and scanning electron microscopy. The organization of astrocytes, oligodendrocytes, dark cells, adult-type glial and non-glial progenitors, stellate [...] Read more.
The ultrastructural organization of different cell types involved in homeostatic growth in the cerebellum of juvenile chum salmon (Oncorhynchus keta) was investigated using transmission and scanning electron microscopy. The organization of astrocytes, oligodendrocytes, dark cells, adult-type glial and non-glial progenitors, stellate neurons, and eurydendroid cells (EDCs) in the molecular and granular layers and granular eminences was characterized. The organization of dendritic bouquets of Purkinje cells and climbing fibers was studied for the first time at the ultrastructural level, and the ultrastructural features of mossy fibers and the rosettes they form were characterized. Scanning electron microscopy (SEM) revealed the presence of single and paired adult-type neural stem/progenitor cells (aNSPCs) on the cerebellar surface and stromal clusters of aNSPCs outside the dorsal matrix zone (DMZ). Immunohistochemical (IHC) verification of proliferating cell nuclear antigen (PCNA) revealed five types of proliferating cells in the cerebellum of juvenile chum salmon: neuroepithelial cells (NECs), glial aNSPCs, and non-glial aNSPCs. A glial fibrillary acidic protein-positive (GFAP) complex consisting of radial glial fibers and aNSPCs was detected in the DMZ. At the same time, a complex of GFAP+ cerebellar afferents, consisting of differentiating mossy and climbing fibers, was found to develop in the cerebellum of juvenile chum salmon. Nestin+ non-glial aNSPCs and small nestin+ resident cells were detected in the dorsal, lateral, and basal areas, as well as in the granular layer (GrL) and granular eminences (GrEm). These cell types may contribute to the homeostatic growth of the cerebellum by acting as both active participants (PCNA+) and resident (silent) aNSPCs. Studying vimentin-positive systems in the cerebellum revealed a widespread presence of proliferating glial aNSPCs that actively contribute to homeostatic growth, as well as small resident immunopositive cells throughout the cerebellum of juvenile chum salmon. Immunolocalization of the neuronal RNA-binding protein marker (HuCD) was detected in numerous molecular layer (ML) cells at the early stages of neuronal differentiation in the dorsal and lateral regions of the cerebellum of juvenile chum salmon. HuCD + EDCs were detected for the first time in the dorsal (DZ) and basal (BZ) zones, forming broad axonal arborization. Immunolabeling of HuCD in combination with transmission electron microscopy (TEM) allowed EDCs to be characterized in the cerebellum of juvenile chum salmon for the first time. Full article
Show Figures

Figure 1

21 pages, 4076 KB  
Article
Comparative Transcriptomics of Olfactory Rosettes Reveals Expression Divergence and Adaptive Evolution in Herbivorous and Carnivorous Xenocyprididae Fishes
by Hua Xue, Hailong Gu, Liu Yang, Jingchen Chen and Wenqiao Tang
Animals 2025, 15(18), 2741; https://doi.org/10.3390/ani15182741 - 19 Sep 2025
Viewed by 365
Abstract
Olfaction plays a crucial role in fish feeding behaviors and ecological adaptation. However, systematic studies on its transcriptional regulation and molecular evolutionary mechanisms in herbivorous and carnivorous fishes remain scarce. In this study, we analyzed four Xenocyprididae species: two herbivorous (Ctenopharyngodon idella [...] Read more.
Olfaction plays a crucial role in fish feeding behaviors and ecological adaptation. However, systematic studies on its transcriptional regulation and molecular evolutionary mechanisms in herbivorous and carnivorous fishes remain scarce. In this study, we analyzed four Xenocyprididae species: two herbivorous (Ctenopharyngodon idella and Megalobrama amblycephala) and two carnivorous (Elopichthys bambusa and Culter alburnus), using olfactory rosette transcriptome sequencing and cross-species comparisons. The number of unigenes per species ranged from 40,229 to 42,405, with BUSCO completeness exceeding 89.2%. Functional annotation was performed using six major databases. Olfactory-related candidate genes were identified based on Pfam domains (7tm_4) and KEGG pathways (ko04740), revealing 8–19 olfactory receptor genes per species. These candidate genes were predominantly enriched in the olfactory transduction and neuroactive ligand–receptor interaction pathways. A total of 3681 single-copy orthologous genes were identified, and their expression profiles exhibited clear interspecific divergence without forming strict clustering by dietary type. High-threshold differentially expressed trend genes (|log2FC| ≥ 4) were enriched in pathways related to RNA processing, metabolite transport, and xenobiotic metabolism, suggesting that the olfactory system may participate in diverse adaptive responses. Ka/Ks analysis indicated that most homologous genes were under purifying selection, with only 0.87–2.07% showing positive selection. These positively selected genes were enriched in pathways related to immune response and neural regulation, implying potential roles in adaptive evolution associated with ecological behavior. Furthermore, the olfactory-related gene oard1 exhibited Ka/Ks > 1 in the E. bambusa vs. C. idella comparison. qRT-PCR validation confirmed the reliability of the RNA-Seq data. This work is the first to integrate two complementary indicators—expression trends and evolutionary rates—to systematically investigate the transcriptional regulation and molecular evolution of the olfactory system in Xenocyprididae species under the context of dietary differentiation, providing valuable reference data for understanding the perceptual basis of dietary adaptation in freshwater fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

19 pages, 10464 KB  
Article
Callovian-Oxfordian Ironstones at the Northwestern Margin of the Neo-Tethys Ocean, with Mineralogically Diverse Iron Ooids: Example from Kutch Basin, India
by Arpita Chakraborty, Santanu Banerjee, Suraj Arjun Bhosale and Sabyasachi Mandal
Minerals 2025, 15(9), 990; https://doi.org/10.3390/min15090990 - 18 Sep 2025
Viewed by 429
Abstract
Multiple ironstone beds formed during the Callovian-Oxfordian times as a consequence of intense continental weathering, upwelling, and hydrothermal activity. This study examines the compositional differences between core and rim, and the origin of iron ooids along the northwestern margin of the Neo-Tethys Ocean [...] Read more.
Multiple ironstone beds formed during the Callovian-Oxfordian times as a consequence of intense continental weathering, upwelling, and hydrothermal activity. This study examines the compositional differences between core and rim, and the origin of iron ooids along the northwestern margin of the Neo-Tethys Ocean to highlight sea-level fluctuations, redox conditions, and elemental influx. An integrated sedimentological study, including petrography, mineralogy, micro-texture, and mineral chemistry, was carried out to explain the origin and implications of ironstones. The ~14 m thick Callovian-Oxfordian, marginal marine deposits in the Kutch Basin, in western India, exhibit iron ooids, predominantly formed in oolitic shoals during transgression, associated with lagoonal siliciclastics. Callovian shoals interbedded with lagoonal facies record minor sea-level fluctuations, whereas the Oxfordian deposit records a major transgression and condensation, resulting in extensive ironstone deposits. The ooid cortices and nuclei exhibit distinctive mineralogy and micro-textures: glauconitic smectite exhibits poorly-developed rosettes, chamosite displays flower-like, and goethite shows rod-like features. Three types of ooids are formed: (i) monomineralic ooids are entirely of chamosite or goethite, (ii) quartz-nucleated ooids, and (iii) composite ooids with either chamosite core and goethite rim, or chamosite core and glauconitic smectite rim. The assemblages within iron ooids reflect variation in depositional redox conditions: glauconitic smectite develops under suboxic lagoonal flank, chamosite forms in anoxic central lagoon, and goethite precipitates on oxic shoals. Full article
(This article belongs to the Special Issue Tectonic Setting and Provenance of Sedimentary Rocks)
Show Figures

Figure 1

19 pages, 11017 KB  
Article
Functional Recovery by Transplantation of Human iPSC-Derived A2B5 Positive Neural Progenitor Cell After Spinal Cord Injury in Mice
by Yiyan Zheng, Xiaohui Chen, Ping Bu, Haipeng Xue, Dong H. Kim, Hongxia Zhou, Xugang Xia, Ying Liu and Qilin Cao
Int. J. Mol. Sci. 2025, 26(18), 8940; https://doi.org/10.3390/ijms26188940 - 13 Sep 2025
Viewed by 730
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great potential for patient-specific therapies. Transplantation of hiPSC-derived neural progenitor cells (NPCs) is a promising reparative strategy for spinal cord injury (SCI), but clinical translation requires efficient differentiation into desired neural lineages and purification before transplantation. [...] Read more.
Human induced pluripotent stem cells (hiPSCs) hold great potential for patient-specific therapies. Transplantation of hiPSC-derived neural progenitor cells (NPCs) is a promising reparative strategy for spinal cord injury (SCI), but clinical translation requires efficient differentiation into desired neural lineages and purification before transplantation. Here, differentiated hiPSCs—reprogrammed from human skin fibroblasts using Sendai virus-mediated expression of OCT4, SOX2, KLF4, and C-MYC—into neural rosettes expressing SOX1 and PAX6, followed by neuronal precursors (β-tubulin III+/NESTIN+) and glial precursors (GFAP+/NESTIN+). Both neuronal and glial precursors expressed the A2B5 surface antigen. A2B5+ NPCs, purified by fluorescence-activated cell sorting (FACS), proliferated in vitro with mitogens, and differentiated into mature neurons and astrocytes under lineage-specific conditions. Then, NOD-SCID mice received a T9 contusion injury followed by transplantation of A2B5+ NPCs, human fibroblasts, or control medium at 8 days post-injury. At two months, grafted NPCs showed robust survival, progressive neuronal maturation (β-tubulin III+→doublecortin+→NeuN+), and astrocytic differentiation (GFAP+), particularly in spared white matter. Transplantation significantly increased spared white matter volume and improved hindlimb locomotor recovery, with no teratoma formation observed. These results demonstrate that hiPSC-derived, FACS-purified A2B5+ NPCs can survive, differentiate into neurons and astrocytes, and enhance functional recovery after SCI. This approach offers a safe and effective candidate cell source for treating SCI and potentially other neurological disorders. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Spinal Cord Injury and Repair)
Show Figures

Figure 1

15 pages, 3707 KB  
Article
Conserved miR156 Mediates Phase-Specific Coordination Between Cotyledon Morphogenesis and Embryo Dormancy During Somatic Embryogenesis in Larix kaempferi
by Xin Li, Yuqin Huang, Wenhua Yang, Liwang Qi, Lifeng Zhang and Chenghao Li
Int. J. Mol. Sci. 2025, 26(17), 8206; https://doi.org/10.3390/ijms26178206 - 23 Aug 2025
Viewed by 569
Abstract
The miR156 family, crucial for phase transition and stress responses in plants, remains functionally uncharacterized in the ecologically and commercially important gymnosperm Larix kaempferi. This study systematically investigated L. kaempferi miR156 through phylogenetic analysis, structural prediction, expression profiling during somatic embryogenesis, and [...] Read more.
The miR156 family, crucial for phase transition and stress responses in plants, remains functionally uncharacterized in the ecologically and commercially important gymnosperm Larix kaempferi. This study systematically investigated L. kaempferi miR156 through phylogenetic analysis, structural prediction, expression profiling during somatic embryogenesis, and heterologous functional validation in Arabidopsis. Four MIR156 family members (LkMIR156s) were identified in Larix kaempferi, each with a characteristic stem-loop structure and highly conserved mature sequences. Computational predictions indicated that these LkMIR156s target four LkSPL family genes (LkSPL1, LkSPL2, LkSPL3, and LkSPL9). qRT-PCR analysis showed that mature LkmiR156s expression remained relatively low during early embryonic development but was significantly upregulated at the cotyledonary stage (21–42 days). Precursor transcript levels peaked earlier (around 28 days) than those of the mature LkmiR156, which remained highly expressed throughout cotyledonary embryo development. This sustained high expression coincided with cotyledon morphogenesis and embryonic dormancy. Functional validation via heterologous overexpression of LkMIR156b1 in Arabidopsis resulted in increased rosette leaf numbers (42.86% ± 6.19%) and individual leaf area (54.90% ± 6.86%), phenotypically consistent with the established role of miR156 in growth regulation. This study reveals the temporal expression dynamics of LkmiR156s during L. kaempferi somatic embryogenesis and its coordinated expression patterns with cotyledon development and embryonic dormancy. The functional conservation of the miR156-SPL module was confirmed in a model plant, providing key molecular insights into the developmental regulatory network of conifers. These findings offer potential strategies for optimizing somatic embryogenesis techniques in conifer species. Full article
(This article belongs to the Special Issue Plant Breeding and Genetics: New Findings and Perspectives)
Show Figures

Figure 1

18 pages, 4642 KB  
Article
Botanical Assessment of Disturbed Urban Population of Threatened Gopher Tortoise (Gopherus polyphemus) Habitat in SE Florida During Drought
by George Rogers
Biology 2025, 14(8), 1038; https://doi.org/10.3390/biology14081038 - 12 Aug 2025
Viewed by 502
Abstract
Gopher tortoises (Gopherus polyphemus) are threatened burrowing keystone ecosystem engineers indigenous to open uplands in the Southeastern United States. Perils to the species include habitat degradation and fragmentation, anthropogenic disturbances, predation, parasites, and disease. Problems are severe in the SE Florida [...] Read more.
Gopher tortoises (Gopherus polyphemus) are threatened burrowing keystone ecosystem engineers indigenous to open uplands in the Southeastern United States. Perils to the species include habitat degradation and fragmentation, anthropogenic disturbances, predation, parasites, and disease. Problems are severe in the SE Florida study area due to coastal urban sprawl, confining the tortoises in small, scattered, unnatural pockets subject to novel stresses. The annual South Florida February to ca. late May dry season became a severe drought in 2025. The present project centered on the broad question of foodplant resilience through the drought. The tortoise-grazed areas host three dominant groundcover species, in order of abundance: non-native Richardia grandiflora, native grass Paspalum setaceum, and non-native sedge Fimbristylis cymosa. Key findings were as follows: 1. The most abundant and most-often grazed species, Richardia grandiflora, when tortoises were excluded, expanded despite the drought (from 39% to 49.5% mean coverage). Under combined drought and grazing, that species cover decreased slightly (42.5% to 39.4%). Tortoise-free, Paspalum setaceum declined slightly during the drought (32.7% to 27.1% mean coverage), and showed mixed results with little net effect exposed to drought and to grazing. Never observed to be grazed during the study, Fimbristylis cymosa formed a nearly monospecific lawn in a sizeable portion of the study area. During the drought, it mostly browned, retaining green rosette centers, and tortoise exclusion showed no discernable effect. With transition to late spring, however, with increased rainfall, tortoise exclusion allowed rapid competition from grasses among the Fimbristylis rosettes. Adjacent unenclosed grazing, by contrast, maintained the Fimbristylis lawn without increase in grass coverage. Conclusions are that the two chief “fodder” species, Richardia grandiflora and Paspalum setaceum, were robust to drought and grazing. The introduced Fimbristylis cymosa appears to be facilitated by selective grazing-suppressing grass competitors. Full article
Show Figures

Graphical abstract

17 pages, 1276 KB  
Article
Exploring the Association Between Urinary Incontinence and Depression Based on a Series of Large-Scale National Health Studies in Türkiye
by Muhammed Furkan Dasdelen, Zehra Betul Dasdelen, Furkan Almas, Beyza Cokkececi, Pilar Laguna, Jean de la Rosette and Mehmet Kocak
J. Clin. Med. 2025, 14(15), 5213; https://doi.org/10.3390/jcm14155213 - 23 Jul 2025
Viewed by 1251
Abstract
Background: Urinary incontinence (UI) and depression are prevalent conditions affecting millions globally and are significantly associated with various demographic, health, and socio-economic factors. This study examines the associations between UI and depression over a 14-year period using nationwide data. Methods: We [...] Read more.
Background: Urinary incontinence (UI) and depression are prevalent conditions affecting millions globally and are significantly associated with various demographic, health, and socio-economic factors. This study examines the associations between UI and depression over a 14-year period using nationwide data. Methods: We analyzed cross-sectional data from the Turkish Health Studies Surveys conducted in seven different years between 2008 and 2022, including 125,276 participants aged 15 and older and excluding those with incomplete key health data. Variables included chronic conditions, BMI, depression severity (assessed by PHQ-8), socio-economic status, and lifestyle factors. Univariable and multivariable logistic regression models were used to investigate associations between UI and various risk factors over time. Results: The prevalence of UI and depression fluctuated over the 14 years, with a significant increase observed in 2014. Multivariate analysis confirmed a strong and consistent association between UI and depression across genders and age groups, even after adjusting for confounders. Higher depression severity increased the odds of experiencing UI. Age, multiple comorbidities, higher BMI, and lower socio-economic status were associated with an increased likelihood of UI. Obesity was a significant risk factor for UI in females but not in males. Urban living and higher education levels were inversely associated with UI. The simultaneous rise in UI and depression in 2014 may be linked to socio-economic changes during that period. Conclusions: The findings suggest a robust link between UI and depression, influenced by a complex interplay of health, demographic, and socio-economic factors, needing prospective studies to further investigate the causal pathway of these associations. Full article
Show Figures

Figure 1

28 pages, 3737 KB  
Article
Profiling Plant circRNAs Provides Insights into the Expression of Plant Genes Involved in Viral Infection
by Ghyda Murad Hashim, Travis Haight, Xinyang Chen, Athanasios Zovoilis and Srividhya Venkataraman
Life 2025, 15(7), 1143; https://doi.org/10.3390/life15071143 - 20 Jul 2025
Viewed by 648
Abstract
Investigations of endogenous plant circular RNAs (circRNAs) in several plant species have revealed changes in their circular RNA profiles in response to biotic and abiotic stresses. Recently, circRNAs have emerged as critical regulators of gene expression. The destructive impacts on agriculture due to [...] Read more.
Investigations of endogenous plant circular RNAs (circRNAs) in several plant species have revealed changes in their circular RNA profiles in response to biotic and abiotic stresses. Recently, circRNAs have emerged as critical regulators of gene expression. The destructive impacts on agriculture due to plant viral infections necessitate better discernment of the involvement of plant circRNAs during viral infection. However, few such studies have been conducted hitherto. Sobemoviruses cause great economic impacts on important crops such as rice, turnip, alfalfa, and wheat. Our current study investigates the dynamics of plant circRNA profiles in the host Arabidopsis thaliana (A. thaliana) during infections with the sobemoviruses Turnip rosette virus (TRoV) and Rice yellow mottle virus (RYMV), as well as the small circular satellite RNA of the Lucerne transient streak virus (scLTSV), focusing on circRNA dysregulation in the host plants and its potential implications in triggering plant cellular defense responses. Towards this, two rounds of deep sequencing were conducted on the RNA samples obtained from infected and uninfected plants followed by the analysis of circular RNA profiles using RNA-seq and extensive bioinformatic analyses. We identified 760 circRNAs, predominantly encoded in exonic regions and enriched in the chloroplast chromosome, suggesting them as key sites for circRNA generation during viral stress. Gene ontology (GO) analysis indicated that these circRNAs are mostly associated with plant development and protein binding, potentially influencing the expression of their host genes. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed photosynthesis as the most affected pathway. Interestingly, the non-coding exogenous scLTSV specifically induced several circRNAs, some of which contain open reading frames (ORFs) capable of encoding proteins. Our biochemical assays demonstrated that transgenic expression of scLTSV in A. thaliana enhanced resistance to TRoV, suggesting a novel strategy for improving plant viral resistance. Our results highlight the complexity of circRNA dynamics in plant–virus interactions and offer novel insights into potential circRNA-based strategies for enhancing plant disease resistance by modulating the differential expression of circRNAs. Full article
(This article belongs to the Special Issue Investigations of Circular RNAs in Plants)
Show Figures

Figure 1

20 pages, 5297 KB  
Article
The Validation and Discussion of a Comparative Method Based on Experiment to Determine the Effective Thickness of Composite Glass
by Dake Cao, Xiaogen Liu, Zhe Yang, Jiawei Huang, Ming Xu and Detian Wan
Buildings 2025, 15(14), 2542; https://doi.org/10.3390/buildings15142542 - 19 Jul 2025
Viewed by 494
Abstract
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness [...] Read more.
This study introduces and validates a comparative experiment-based method for determining the effective thickness of composite glass, including polymeric laminated glass (with polyvinyl butyral (PVB) and SentryGlas® (SGP) interlayers) and vacuum glazing. This method employs comparative four-point bending tests, defining effective thickness by equating the bending stress of a composite specimen to that of a reference monolithic glass specimen under identical loading and boundary conditions. Specimens with varying configurations (glass thicknesses of 5 mm, 6 mm and 8 mm) were tested using non-destructive four-point bending tests under a multi-stage loading protocol (100 N–1000 N). Strain rosettes measured maximum strains at each loading stage to calculate bending stress. Analysis of the bending stress state revealed that vacuum glazing and SGP laminated glass exhibit superior load-bearing capacity compared to PVB laminated glass. The proposed method successfully determined the effective thickness for both laminated glass and vacuum glazing. Furthermore, results demonstrate that employing a 12 mm monolithic reference glass provides the highest accuracy for effective thickness determination. Theoretical bending stress calculations using the effective thickness derived from the 12 mm reference glass showed less than 10% deviation from experimental values. Conversely, compared to established standards and empirical formulas, the proposed method offers superior accuracy, particularly for vacuum glazing. Additionally, the mechanical properties of the viscoelastic interlayers (PVB and SGP) were investigated through static tensile tests and dynamic thermomechanical analysis (DMA). Distinct tensile behaviors and differing time-dependent shear transfer capacities between the two interlayer materials are found out. Key factors influencing the reliability of the method are also discussed and analyzed. This study provides a universally practical and applicable solution for accurate and effective thickness estimation in composite glass design. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

13 pages, 2865 KB  
Article
Fine Mapping of BrTCP1 as a Key Regulator of Branching in Flowering Chinese Cabbage (Brassica rapa subsp. chinensis)
by Chuanhong Liu, Xinghua Qi, Shuo Fu, Chao Zheng, Chao Wu, Xiaoyu Li, Yun Zhang and Xueling Ye
Horticulturae 2025, 11(7), 824; https://doi.org/10.3390/horticulturae11070824 - 10 Jul 2025
Viewed by 555
Abstract
Branching is a critical agronomic trait in flowering Chinese cabbage (Brassica rapa subsp. chinensis), influencing plant architecture and yield. In this study, there was a highly significant difference between CX010 (single primary rosette branches) and BCT18 (multiple primary rosette branches). Phenotypic [...] Read more.
Branching is a critical agronomic trait in flowering Chinese cabbage (Brassica rapa subsp. chinensis), influencing plant architecture and yield. In this study, there was a highly significant difference between CX010 (single primary rosette branches) and BCT18 (multiple primary rosette branches). Phenotypic analysis revealed significant differences in primary rosette branch numbers, with BCT18 showing up to 15 branches and CX010 displaying only one main stem branch. Genetic analysis indicated that branching was controlled by quantitative trait loci (QTL) with a normal distribution of branch numbers. Using bulked segregant analysis coupled with sequencing (BSA-seq), we identified a candidate interval of approximately 2.96 Mb on chromosome A07 linked to branching. Fine mapping narrowed this to a 172 kb region containing 29 genes, with BraA07g032600.3C (BrTCP1) as the most likely candidate. cDNA cloning of the BrTCP1 gene revealed several variations in BCT18 compared to CX010, including a 6 bp insertion, 10 SNPs, and two single-nucleotide deletions. Expression analysis indicated that BrTCP1 was highly expressed in the rosette stems of CX010 compared to BCT18, consistent with its role as a branching suppressor. The heterologous mutants in Arabidopsis confirmed the conserved role of BrTCP1 in branch inhibition. These findings reveal that BrTCP1 might be a key regulator of branching in flowering Chinese cabbage, providing insights into the molecular mechanisms underlying this trait and offering a framework for genetic improvement in Brassica crops. Full article
(This article belongs to the Special Issue Genetics and Molecular Breeding of Brassica Crops)
Show Figures

Figure 1

14 pages, 5685 KB  
Article
Construction of an Overexpression Library for Chinese Cabbage Orphan Genes in Arabidopsis and Functional Analysis of BOLTING RESISTANCE 4-Mediated Flowering Delay
by Ruiqi Liao, Ruiqi Zhang, Xiaonan Li and Mingliang Jiang
Plants 2025, 14(13), 1947; https://doi.org/10.3390/plants14131947 - 25 Jun 2025
Cited by 2 | Viewed by 580
Abstract
Orphan genes (OGs), which are unique to a specific taxon and have no detectable sequence homology to any known genes across other species, play a pivotal role in governing species-specific phenotypic traits and adaptive evolution. In this study, 20 OGs of [...] Read more.
Orphan genes (OGs), which are unique to a specific taxon and have no detectable sequence homology to any known genes across other species, play a pivotal role in governing species-specific phenotypic traits and adaptive evolution. In this study, 20 OGs of Chinese cabbage (Brassica rapa OGs, BrOGs) were transferred into Arabidopsis thaliana by genetic transformation to construct an overexpression library in which 50% of the transgenic lines had a delayed flowering phenotype, 15% had an early flowering phenotype, and 35% showed no difference in flowering time compared to control plants. There were many other phenotypes attached to these transgenic lines, such as leaf color, number of rosette leaves, and silique length. To understand the impact of BrOGs on delayed flowering, BrOG142OE, which showed the most significantly delayed flowering phenotype, was chosen for further analysis, and BrOG142 was renamed BOLTING RESISTANCE 4 (BR4). In BR4OE, the expression of key flowering genes, including AtFT and AtSOC1, significantly decreased, and AtFLC and AtFRI expression increased. GUS staining revealed BR4 promoter activity mainly in the roots, flower buds and leaves. qRT-PCR showed that BR4 primarily functions in the flowers, flower buds, and leaves of Chinese cabbage. BR4 is a protein localized in the nucleus, cytoplasm, and cell membrane. The accelerated flowering time phenotype of BR4OE was observed under gibberellin and vernalization treatments, indicating that BR4 regulates flowering time in response to these treatments. These results provide a foundation for elucidating the mechanism by which OGs regulate delayed flowering and have significance for the further screening of bolting-resistant Chinese cabbage varieties. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

10 pages, 293 KB  
Article
Oncological and Functional Outcomes of Hemi-Ablation Versus Focal Ablation for Localized Prostate Cancer Using Irreversible Electroporation
by Michel Suberville, Kai Zhang, Jean Baptiste Woillard, Isabelle Herafa, Dorothée Ducoux, Rachid Nachef, Jeremy Teoh, Gang Zhu, Chi-Fai Ng, Pilar Laguna and Jean de la Rosette
Cancers 2025, 17(13), 2084; https://doi.org/10.3390/cancers17132084 - 22 Jun 2025
Viewed by 915
Abstract
Background: Irreversible electroporation (IRE) is a novel ablative treatment modality for localized prostate cancer and aims at achieving oncological control while minimizing the related side effects. We present the functional and oncological outcomes of focal IRE ablation versus hemi-ablation from a single-center [...] Read more.
Background: Irreversible electroporation (IRE) is a novel ablative treatment modality for localized prostate cancer and aims at achieving oncological control while minimizing the related side effects. We present the functional and oncological outcomes of focal IRE ablation versus hemi-ablation from a single-center patient series. Methods: Men with histologically confirmed low–intermediate risk prostate cancer received focal IRE ablation or hemi-ablation. All the patients were recommended an MRI-targeted fusion biopsy plus systematic biopsy at 1 year post-IRE ablation. The functional outcomes were measured by the International Prostate Symptom Score (IPSS) and International Index of Erectile Function (IIEF) questionnaires. Results: In total, 106 patients were recruited in this study. The median follow-up time was 24 months (IQR 15–36). Overall, 94 patients underwent repeat prostate biopsy at 12 months after IRE. Persistent tumor was detected in 72.2% in the focal ablation group and in 31% in the hemi-ablation group (p < 0.001). Clinically significant prostate cancer (Gleason ≥ 3 + 4) was detected in 25% in the focal ablation group and in 8.6% in the hemi-ablation group (p = 0.003). There was no significant difference between the two groups in terms of IPSS and IIEF at each follow-up time point. Conclusion: For men with localized low–intermediate risk prostate cancer, hemi-IRE ablation treatment displayed better oncological control than focal ablation without compromising on functional or sexual outcomes. Full article
(This article belongs to the Section Methods and Technologies Development)
Show Figures

Figure 1

Back to TopTop