Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (328)

Search Parameters:
Keywords = rotor noise

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4625 KB  
Article
Design of Intersect Consequent Pole Rotor for a Radial-Flux IPMSM to Reduce Rare-Earth Magnet Usage
by Yun-Ha Song, Si-Woo Song, Do-Hyeon Choi, Su-Bin Jeon and Won-Ho Kim
Actuators 2025, 14(10), 482; https://doi.org/10.3390/act14100482 - 3 Oct 2025
Abstract
Interior Permanent Magnet Synchronous Motors (IPMSMs) are widely used in the electrification sector; however, reliance on rare-earth magnets imposes constraints stemming from supply instability and mining-related environmental impacts, raising sustainability concerns. To address these issues, this study investigates an IPMSM employing a consequent [...] Read more.
Interior Permanent Magnet Synchronous Motors (IPMSMs) are widely used in the electrification sector; however, reliance on rare-earth magnets imposes constraints stemming from supply instability and mining-related environmental impacts, raising sustainability concerns. To address these issues, this study investigates an IPMSM employing a consequent pole (CP) structure, in which one permanent magnet pole is replaced by iron. Because flux asymmetry in CP IPMSMs can cause torque ripple and associated vibration and noise, we propose an Intersect Consequent Pole (ICP) rotor geometry and evaluate it against a conventional IPMSM under identical stator conditions. The proposed ICP topology reduces permanent magnet usage and provides a rare-earth-reduced design alternative that addresses the vibration/noise trade-off, with a particular focus on electric power steering (EPS) applications. Electromagnetic characteristics and performance were analyzed using finite element analysis (FEA) and verified via FEA-based comparisons. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

29 pages, 13345 KB  
Article
Fault Diagnosis and Fault-Tolerant Control of Permanent Magnet Synchronous Motor Position Sensors Based on the Cubature Kalman Filter
by Jukui Chen, Bo Wang, Shixiao Li, Yi Cheng, Jingbo Chen and Haiying Dong
Sensors 2025, 25(19), 6030; https://doi.org/10.3390/s25196030 - 1 Oct 2025
Abstract
To address the issue of output anomalies that frequently occur in position sensors of permanent magnet synchronous motors within electromechanical actuation systems operating in harsh environments and can lead to degradation in system performance or operational interruptions, this paper proposes an integrated method [...] Read more.
To address the issue of output anomalies that frequently occur in position sensors of permanent magnet synchronous motors within electromechanical actuation systems operating in harsh environments and can lead to degradation in system performance or operational interruptions, this paper proposes an integrated method for fault diagnosis and fault-tolerant control based on the Cubature Kalman Filter (CKF). This approach effectively combines state reconstruction, fault diagnosis, and fault-tolerant control functions. It employs a CKF observer that utilizes innovation and residual sequences to achieve high-precision reconstruction of rotor position and speed, with convergence assured through Lyapunov stability analysis. Furthermore, a diagnostic mechanism that employs dual-parameter thresholds for position residuals and abnormal duration is introduced, facilitating accurate identification of various fault modes, including signal disconnection, stalling, drift, intermittent disconnection, and their coupled complex faults, while autonomously triggering fault-tolerant strategies. Simulation results indicate that the proposed method maintains excellent accuracy in state reconstruction and fault tolerance under disturbances such as parameter perturbations, sudden load changes, and noise interference, significantly enhancing the system’s operational reliability and robustness in challenging conditions. Full article
(This article belongs to the Topic Industrial Control Systems)
Show Figures

Figure 1

13 pages, 3632 KB  
Article
Design and Analysis of Torque Ripple Reduction in Low-Pole Axial Flux Motor
by Si-Woo Song and Won-Ho Kim
Processes 2025, 13(9), 2913; https://doi.org/10.3390/pr13092913 - 12 Sep 2025
Viewed by 289
Abstract
With the growing demand for high-efficiency and high-performance electric motors in applications such as electric vehicles, drones, and industrial drive systems, Axial Flux Motors (AFMs) have gained significant attention due to their high torque density and compact structure. However, low-pole AFMs are prone [...] Read more.
With the growing demand for high-efficiency and high-performance electric motors in applications such as electric vehicles, drones, and industrial drive systems, Axial Flux Motors (AFMs) have gained significant attention due to their high torque density and compact structure. However, low-pole AFMs are prone to performance degradation and noise issues caused by magnetic saturation in the rotor back yoke and increased torque ripple. In this study, a conventional 6-pole, 9-slot Radial Flux Motor (RFM) was redesigned as an AFM within the same external volume. To minimize losses, the stator inner diameter and slot thickness were co-optimized. In addition, tapering techniques were applied to both the stator and magnets to reduce torque ripple, and a parametric analysis of magnet tapering was conducted to identify optimal design conditions. A rolling core fabrication method was adopted to ensure both electromagnetic performance and manufacturability. The final AFM design demonstrated a 1.4 percentage point improvement in efficiency. Additionally, torque ripple was reduced by 69.44%, thereby validating the effectiveness of the AFM redesign and ripple reduction strategy. Full article
Show Figures

Figure 1

34 pages, 16782 KB  
Article
Ultra-Short-Term Prediction of Monopile Offshore Wind Turbine Vibration Based on a Hybrid Model Combining Secondary Decomposition and Frequency-Enhanced Channel Self-Attention Transformer
by Zhenju Chuang, Yijie Zhao, Nan Gao and Zhenze Yang
J. Mar. Sci. Eng. 2025, 13(9), 1760; https://doi.org/10.3390/jmse13091760 - 11 Sep 2025
Viewed by 273
Abstract
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an [...] Read more.
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an OWT under combined ice–wind loading, this paper proposes a Discrete Element Method–Wind Turbine Integrated Analysis (DEM-WTIA) framework. The framework can synchronously simulate discontinuous ice-crushing processes and aeroelastic–structural dynamic responses through a holistic turbine model that incorporates rotor dynamics and control systems. To address the issue of insufficient prediction accuracy for dynamic responses, we introduced a multivariate time series forecasting method that integrates a secondary decomposition strategy with a hybrid prediction model. First, we developed a parallel signal processing mechanism, termed Adaptive Complete Ensemble Empirical Mode Decomposition with Improved Singular Spectrum Analysis (CEEMDAN-ISSA), which achieves adaptive denoising via permutation entropy-driven dynamic window optimization and multi-feature fusion-based anomaly detection, yielding a noise suppression rate of 76.4%. Furthermore, we propose the F-Transformer prediction model, which incorporates a Frequency-Enhanced Channel Attention Mechanism (FECAM). By integrating the Discrete Cosine Transform (DCT) into the Transformer architecture, the F-Transformer mines hidden features in the frequency domain, capturing potential periodicities in discontinuous data. Experimental results demonstrate that signals processed by ISSA exhibit increased signal-to-noise ratios and enhanced fidelity. The F-Transformer achieves a maximum reduction of 31.86% in mean squared error compared to the standard Transformer and maintains a coefficient of determination (R2) above 0.91 under multi-condition coupled testing. By combining adaptive decomposition and frequency-domain enhancement techniques, this framework provides a precise and highly adaptable ultra-short-term response forecasting tool for the safe operation and maintenance of offshore wind power in cold regions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

13 pages, 4039 KB  
Article
Electromagnetic and NVH Characteristic Analysis of Eccentric State for Surface-Mounted Permanent Magnet Synchronous Generators in Wave Power Applications
by Woo-Sung Jung, Yeon-Su Kim, Yeon-Tae Choi, Kyung-Hun Shin and Jang-Young Choi
Appl. Sci. 2025, 15(17), 9697; https://doi.org/10.3390/app15179697 - 3 Sep 2025
Viewed by 449
Abstract
This study investigates the electromagnetic and NVH characteristics of an outer-rotor surface-mounted permanent magnet synchronous generator (SPMSG) for wave energy applications, focusing on the effect of rotor eccentricity. To reflect potential fault due to manufacturing or assembly defects, a 0.5 mm rotor eccentricity [...] Read more.
This study investigates the electromagnetic and NVH characteristics of an outer-rotor surface-mounted permanent magnet synchronous generator (SPMSG) for wave energy applications, focusing on the effect of rotor eccentricity. To reflect potential fault due to manufacturing or assembly defects, a 0.5 mm rotor eccentricity was introduced in finite element method (FEM) simulations. The torque ripple waveform was analyzed using fast Fourier transform (FFT) to identify dominant harmonic components that generate unbalanced electromagnetic forces and induce structural vibration. These harmonic components were further examined under variable marine operating conditions to evaluate their impact on acoustic radiation and vibration responses. Based on the simulation and analysis results, a design-stage methodology is proposed for predicting vibration and noise by targeting critical harmonic excitations, providing practical insights for marine generator design and improving long-term operational reliability in wave energy systems. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Vibration)
Show Figures

Figure 1

18 pages, 5980 KB  
Article
Effect of Solidity on the Leakage Flow and Related Noise in Axial-Flow Fans with Rotating Shroud Operating at Fixed Performance
by Tayyab Akhtar, Edward Canepa, Andrea Cattanei, Matteo Dellacasagrande and Alessandro Nilberto
Int. J. Turbomach. Propuls. Power 2025, 10(3), 27; https://doi.org/10.3390/ijtpp10030027 - 2 Sep 2025
Viewed by 352
Abstract
This work presents an experimental study of the effect of blade count on the flow field and the radiated noise in a low-speed axial fan with a rotating shroud. A two-component Laser Doppler Velocimetry (LDV) system and Particle Image Velocimetry (PIV) instrumentation have [...] Read more.
This work presents an experimental study of the effect of blade count on the flow field and the radiated noise in a low-speed axial fan with a rotating shroud. A two-component Laser Doppler Velocimetry (LDV) system and Particle Image Velocimetry (PIV) instrumentation have been employed to investigate the flow in the gap region and in front of the rotor blades. Additionally, the fan has been installed in a hemi-anechoic chamber and far-field acoustic measurements have been taken with a microphone mounted on-axis upstream of the rotor to show changes in the spectral features of the radiated noise. The tested rotor is a variable-geometry one that has allowed for studying rotor configurations with different numbers of blades of the same chord and shape, i.e., of the same geometry but different solidity. Rotor pressure rise and flow rate are average quantities that have a relevant effect on the leakage flow. Keeping them fixed while varying solidity allows us to highlight the local effects of circumferential pressure non-uniformity caused by differing blade loading. The results show that, at low solidity, the flow leaving the gap is mainly directed radially outward and follows a longer path before being ingested by the rotor, thus losing strength due to mixing with the main flow. As solidity increases, the flow becomes less radial and is more rapidly ingested by the rotor. In all cases, the sound pressure level spectrum shows marked subharmonic humps and peaks originating from the interaction between the leakage flow and rotor. The departure of such peaks from the blade passing frequency increases with the solidity, while the associated energy increases up to seven blades and then decreases. Full article
Show Figures

Graphical abstract

21 pages, 44343 KB  
Article
The Effect of a Variable Cantilevered Stator on 1.5-Stage Transonic Compressor Performance
by Benedikt Radermacher, Fabian Sebastian Klausmann, Felix Jung, Jonas Bargon, Heinz-Peter Schiffer, Bernd Becker and Patrick Grothe
Int. J. Turbomach. Propuls. Power 2025, 10(3), 24; https://doi.org/10.3390/ijtpp10030024 - 2 Sep 2025
Viewed by 403
Abstract
Future aero engine designs must address environmental challenges and meet noise and emissions regulations. To increase efficiency and reduce size, axial compressors require higher pressure ratios and a more compact design, leading to necessary modifications in the variable stator vanes, especially in the [...] Read more.
Future aero engine designs must address environmental challenges and meet noise and emissions regulations. To increase efficiency and reduce size, axial compressors require higher pressure ratios and a more compact design, leading to necessary modifications in the variable stator vanes, especially in the stator hub region. This study examines the impact of a variable cantilevered stator on the performance and aerodynamics of a 1.5-stage transonic compressor, representative of a high-pressure compressor front stage. Experimental tests at the transonic compressor test rig at Technical University of Darmstadt involved two variable stators with identical airfoil designs but different hub configurations, using the same inlet guide vane and rotor. Detailed aerodynamic analysis was conducted using steady and unsteady instrumentation. The cantilevered stator achieved a 2% increase in efficiency and a 1% increase in total pressure ratio, due to higher aerodynamic loading and reduced pressure losses. The primary performance gain comes from the reduction of the hub blockage area. The cantilevered stator also performed well at near stall conditions, unlike the shrouded stator. Time-resolved measurements indicated that loss mechanisms are closely linked to the rotor wake phase. Overall, variable cantilevered stators outperformed shrouded stators in this compressor stage. Full article
Show Figures

Graphical abstract

33 pages, 1580 KB  
Article
Selection and Classification of Small Wind Turbines for Local Energy Systems: Balancing Efficiency, Climate Conditions, and User Comfort
by Waldemar Moska, Leszek Piechowski and Andrzej Łebkowski
Energies 2025, 18(17), 4575; https://doi.org/10.3390/en18174575 - 28 Aug 2025
Viewed by 745
Abstract
Micro and small wind turbines (MAWTs) are increasingly integrated into residential and prosumer hybrid energy systems. However, their real-world performance often falls short of catalog specifications due to mismatched wind resources, siting limitations, and insufficient attention to human comfort. This paper presents a [...] Read more.
Micro and small wind turbines (MAWTs) are increasingly integrated into residential and prosumer hybrid energy systems. However, their real-world performance often falls short of catalog specifications due to mismatched wind resources, siting limitations, and insufficient attention to human comfort. This paper presents a comprehensive decision-support framework for selecting the type and scale of MAWTs under actual local conditions. The energy assessment module combines aerodynamic performance scaling, wind speed-frequency modeling based on Weibull distributions, turbulence intensity adjustments, and component-level efficiency factors for both horizontal and vertical axis turbines. The framework addresses three key design objectives: efficiency—aligning turbine geometry and control strategies with local wind regimes to maximize energy yield; comfort—evaluating candidate designs for noise emissions, shadow flicker, and visual impact near buildings; and climate adaptation—linking turbine siting, hub height, and rotor type to terrain roughness, turbulence, and built environment characteristics. Case studies from low and moderate wind locations in Central Europe demonstrate how multi-criteria filtering avoids oversizing, improves the autonomy of hybrid PV–wind systems, and identifies configurations that may exceed permissible limits for noise or flicker. The proposed methodology enables evidence-based deployment of MAWTs in decentralized energy systems that balance technical performance, resilience, and occupant well-being. Full article
Show Figures

Figure 1

21 pages, 11715 KB  
Article
Computational Research on the Formation Mechanism of Rotating Stall Induced by Rotor Stator Interaction in a Pump-Turbine Under Pump Mode
by Yong Liu, Jinghao Yang, Mingming Fang, Xupeng Li, Yuzeng Wu and Yonggang Lu
Water 2025, 17(17), 2538; https://doi.org/10.3390/w17172538 - 27 Aug 2025
Viewed by 628
Abstract
Rotating stall is an abnormal flow phenomenon in pumps and pump-turbines, which can cause severe vibration, noise, and even cause head hump. A pump-turbine model under pump mode is researched in this study to reveal the formation mechanism of rotating stall. The causes, [...] Read more.
Rotating stall is an abnormal flow phenomenon in pumps and pump-turbines, which can cause severe vibration, noise, and even cause head hump. A pump-turbine model under pump mode is researched in this study to reveal the formation mechanism of rotating stall. The causes, development laws, and influencing factors of rotating stall is revealed, which can help professionals achieve a deeper understanding of the rotating stall mechanism and suppress it through optimized design. The flow simulation method is mainly adopted in the study, and it is verified through experiment. The research results show that stall in the guide vanes is often caused, maintained and aggravated by rotor–stator interaction (RSI). A stall cell is often difficult to cause the adjacent flow channel to stall. However, under the action of RSI, stall can be induced in the adjacent flow channel, and then rotating stall is gradually formed. Rotating stall can be suppressed by various methods of reducing RSI. To a certain extent, the research makes up for the problem that conventional theory does not fully consider non-uniform and unsteady complex incoming flow when analyzing rotating stall. A connection between rotating stall and RSI is established, which can provide an important basis for further research on how to eliminate rotating stall. Full article
Show Figures

Figure 1

18 pages, 4593 KB  
Article
A Novel Subband Method for Instantaneous Speed Estimation of Induction Motors Under Varying Working Conditions
by Tamara Kadhim Al-Shayea, Tomas Garcia-Calva, Karen Uribe-Murcia, Oscar Duque-Perez and Daniel Morinigo-Sotelo
Energies 2025, 18(17), 4538; https://doi.org/10.3390/en18174538 - 27 Aug 2025
Viewed by 503
Abstract
Robust speed estimation in induction motors (IM) is essential for control systems (especially in sensorless drive applications) and condition monitoring. Traditional model-based techniques for inverter-fed IM provide a high accuracy but rely heavily on precise motor parameter identification, requiring multiple sensors to monitor [...] Read more.
Robust speed estimation in induction motors (IM) is essential for control systems (especially in sensorless drive applications) and condition monitoring. Traditional model-based techniques for inverter-fed IM provide a high accuracy but rely heavily on precise motor parameter identification, requiring multiple sensors to monitor the necessary variables. In contrast, model-independent methods that use rotor slot harmonics (RSH) in the stator current spectrum offer a better adaptability to various motor types and conditions. However, many of these techniques are dependent on full-band processing, which reduces noise immunity and increases computational cost. This paper introduces a novel subband signal processing approach for rotor speed estimation focused on RSH tracking under both steady and non-steady states. By limiting spectral analysis to relevant content, the method significantly reduces computational demand. The technique employs an advanced time-frequency analysis for high-resolution frequency identification, even in noisy settings. Simulations and experiments show that the proposed approach outperforms conventional RSH-based estimators, offering a robust and cost-effective solution for integrated speed monitoring in practical applications. Full article
Show Figures

Figure 1

18 pages, 7200 KB  
Article
Dynamic Characteristic Analysis and Experimental Verification of Rotor Systems in Large Synchronous Motors
by Yushuai Liu, Jiahao Hou, Rui Li and Qingshun Bai
Machines 2025, 13(8), 747; https://doi.org/10.3390/machines13080747 - 21 Aug 2025
Viewed by 439
Abstract
Large synchronous motors are typically used to drive various load equipment, such as reciprocating compressors. Due to the continuous oscillation of the load, the pulsating torque acting on the main shaft of the synchronous motor will continuously vary with the load changes. This [...] Read more.
Large synchronous motors are typically used to drive various load equipment, such as reciprocating compressors. Due to the continuous oscillation of the load, the pulsating torque acting on the main shaft of the synchronous motor will continuously vary with the load changes. This leads to forced oscillations during the dynamic stable operation of the unit, subsequently causing severe problems such as overheating, noise, and failures. Moreover, the rotor length of large synchronous motors is generally greater than the rotor diameter, giving the rotor certain flexible characteristics. During a motor’s operation, it is necessary to cross the first-order critical speed, making resonance highly likely to occur. Therefore, the analysis of dynamic characteristics of large synchronous motors is particularly important. This study investigates the dynamic characteristics of a 7800 kW-18P large synchronous motor rotor system through comprehensive theoretical and experimental analyses. The research encompasses three key aspects: (1) modal analysis comparing fan-equipped and fan-free configurations, (2) harmonic response evaluation, and (3) critical speed determination under concentrated mass conditions. Experimental validation was performed via impact hammer testing, with measured natural frequencies showing a strong correlation with simulated results for the magnetic pole core assembly. The findings not only confirm the operational speed validity but also establish a reliable foundation for the subsequent structural optimization of high-power synchronous machines. Full article
(This article belongs to the Special Issue Electrical Machines: Design, Modeling and Control)
Show Figures

Figure 1

19 pages, 5642 KB  
Article
Effect of Back Wear-Ring Clearance on the Internal Flow Noise in a Centrifugal Pump
by Pengxuan Zhou, Minggao Tan, Xianfang Wu, Houlin Liu and Denghao Wu
Processes 2025, 13(8), 2641; https://doi.org/10.3390/pr13082641 - 20 Aug 2025
Viewed by 510
Abstract
To investigate the effects of clearance variations induced by back wear ring wear on internal flow and noise within centrifugal pumps at the design flow rate (Qo = 25 m3/h), a combined Computational Fluid Dynamics (CFD) and Acoustic Finite [...] Read more.
To investigate the effects of clearance variations induced by back wear ring wear on internal flow and noise within centrifugal pumps at the design flow rate (Qo = 25 m3/h), a combined Computational Fluid Dynamics (CFD) and Acoustic Finite Element Method (FEM) approach was employed. The SST-SAS turbulence model and Lighthill’s acoustic analogy, were applied to simulate the internal flow and acoustic fields, respectively, across four different clearance values. The impact laws of various back wear-ring clearances on flow-induced noise were analyzed. The results indicate that the head and efficiency of the centrifugal pump gradually decrease with the increase in the back wear-ring clearance. When the clearance reaches 1.05 mm, the head drops by 4.35% and the efficiency decreases by 14.86%. The radial force on the impeller decreases, while the axial force increases and its direction reverses by 180 degrees. The acoustic source strength at the rotor–stator interface, near the volute tongue, and at the outlet of the back wear ring increases with larger clearance; furthermore, high-sound-source regions expand around the balance holes and near the impeller suction side. The dominant SPL frequency for all clearance cases was the blade passing frequency (BPF). As clearance increases, the overall SPL curve shifts upwards; however, the variation gradient decreases noticeably when the clearance exceeds 0.75 mm. The overall internal SPL increases, with the total SPL under 1.05 mm being 1.8% higher than that under 0.15 mm. In total, the optimal back ring clearance is 0.45 mm, which achieves a 38% noise reduction while maintaining a 97.9% head capacity. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

23 pages, 10266 KB  
Article
Application of Passive Serration Technologies for Aero-Engine Noise Control in Turbulent Inflow Environments
by Andrei-George Totu, Daniel-Eugeniu Crunțeanu, Marius Deaconu, Grigore Cican, Laurențiu Cristea and Constantin Levențiu
Technologies 2025, 13(8), 363; https://doi.org/10.3390/technologies13080363 - 15 Aug 2025
Viewed by 468
Abstract
This study explores the aeroacoustic influence of leading-edge serrations applied to stator blades subjected to turbulent inflow, which is representative of rotor–stator interaction in turbomachinery. A set of serrated geometries—75 mm span, with up to 9 teeth corresponding to 10% chord amplitude—was fabricated [...] Read more.
This study explores the aeroacoustic influence of leading-edge serrations applied to stator blades subjected to turbulent inflow, which is representative of rotor–stator interaction in turbomachinery. A set of serrated geometries—75 mm span, with up to 9 teeth corresponding to 10% chord amplitude—was fabricated via 3D printing and tested experimentally in a dedicated aeroacoustic facility at COMOTI. The turbulent inflow was generated using a passive grid, and far-field acoustic data were acquired using a semicircular microphone array placed in multiple inclined planes covering 15°–90° elevation and 0–180° azimuthal angles. The analysis combined power spectral density and autocorrelation techniques to extract turbulence-related quantities, such as integral length scale and velocity fluctuations. Beamforming methods were applied to reconstruct spatial distributions of sound pressure level (SPL), complemented by polar directivity curves to assess angular effects. Compared to the reference case, configurations with serrations demonstrated broadband noise reductions between 2 and 6 dB in the mid- and high-frequency range (1–4 kHz), with spatial consistency observed across measurement planes. The results extend the existing literature by linking turbulence properties to spatially resolved acoustic maps, offering new insights into the directional effects of serrated stator blades. Full article
(This article belongs to the Special Issue Aviation Science and Technology Applications)
Show Figures

Figure 1

33 pages, 941 KB  
Review
Noise Prediction and Mitigation for UAS and eVTOL Aircraft: A Survey
by Waleed Raza and Richard S. Stansbury
Drones 2025, 9(8), 577; https://doi.org/10.3390/drones9080577 - 14 Aug 2025
Viewed by 1944
Abstract
The integration of small unmanned aircraft systems (sUASs) and electric vertical takeoff and landing (eVTOL) aircraft into urban airspace presents a new challenge in managing environmental noise, which is a critical factor for the public acceptance of urban air mobility (UAM). This survey [...] Read more.
The integration of small unmanned aircraft systems (sUASs) and electric vertical takeoff and landing (eVTOL) aircraft into urban airspace presents a new challenge in managing environmental noise, which is a critical factor for the public acceptance of urban air mobility (UAM). This survey investigates the noise characteristics of UAS and eVTOL platforms, particularly multi-rotor and distributed propulsion configurations, and examines whether the operational benefits of these vehicles outweigh their acoustic footprint in dense urban environments. While eVTOLs are often perceived as quieter than conventional helicopters due to the absence of combustion engines and mechanically simpler drivetrains, their dominant noise sources are aerodynamic in nature. These include blade vortex interactions, rotor loading noise, and broadband noise, which persist regardless of whether propulsion is electric or combustion-based. Recent studies suggest that community perception of drone noise is influenced more by tonal content, frequency, and modulation patterns than by absolute sound pressure levels. This paper presents a comprehensive review of state-of-the-art noise prediction tools, empirical measurement techniques, and mitigation strategies for sUAS operating in UAM scenarios. The discussion provided in this paper assists in vehicle design, certification standards, airspace planning, and regulatory frameworks focused on minimizing noise impact in urban settings. Full article
Show Figures

Figure 1

18 pages, 4651 KB  
Article
Diagnosing and Reducing Noise and Vibration in Automotive DC Motors with Time Synchronous Averaging
by Karol Škopek, Juraj Úradníček, Miloš Musil, Ľuboš Gašparovič and Ferdinand Havelka
Appl. Sci. 2025, 15(16), 8904; https://doi.org/10.3390/app15168904 - 12 Aug 2025
Viewed by 391
Abstract
This study explores the application of Time Synchronous Averaging (TSA) for diagnosing Noise, Vibration, and Harshness (NVH) characteristics in an automotive sunroof assembly powered by a Direct Current (DC) motor. TSA is an advanced signal-processing technique that isolates periodic signals from noise, enhancing [...] Read more.
This study explores the application of Time Synchronous Averaging (TSA) for diagnosing Noise, Vibration, and Harshness (NVH) characteristics in an automotive sunroof assembly powered by a Direct Current (DC) motor. TSA is an advanced signal-processing technique that isolates periodic signals from noise, enhancing fault detection. The research identifies rotor misalignment as the dominant cause of excessive NVH. To address this, an experimental modification to the motor’s end washer was implemented, resulting in a significant reduction in vibration amplitudes at upper harmonics. These findings demonstrate TSA’s effectiveness in optimizing NVH characteristics for smaller rotating systems and demonstrate an effective approach for optimizing NVH performance in small-scale rotating systems, particularly in automotive applications. Full article
Show Figures

Figure 1

Back to TopTop