Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (432)

Search Parameters:
Keywords = roughness orientation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4233 KB  
Article
Experimental Study on Anti-Crystallization Performance of Tunnel Drainage Pipes Based on Magnetic Powder Effect
by Donghui Xiao, Benhua Liu, Shiyang Liu, Cheng Wang, Kun Huang, Xingjie Yu and Wenzhen Wu
Coatings 2025, 15(9), 1005; https://doi.org/10.3390/coatings15091005 - 30 Aug 2025
Viewed by 239
Abstract
Tunnel drainage pipes are prone to blockage due to mineral crystallization and deposition from water, which seriously affects the long-term stable operation of the drainage system and compromises the safety of tunnel structures. To address this issue, it is imperative to develop efficient [...] Read more.
Tunnel drainage pipes are prone to blockage due to mineral crystallization and deposition from water, which seriously affects the long-term stable operation of the drainage system and compromises the safety of tunnel structures. To address this issue, it is imperative to develop efficient anti-crystallization technologies to extend the service life of drainage systems. In this study, a series of anti-crystallization performance experiments on tunnel drainage pipes were designed and conducted based on magnetic treatment technology. The inhibitory effects of magnetic fields on crystal formation and deposition were systematically investigated under various conditions, including different magnetic field intensities, magnetic field coverage angles, magnetic field orientations, and water flow velocities. The results indicate that under magnetic influence, the crystal morphology inside the pipes changed from regular cubic structures to irregular forms with rough surfaces and loose structures, showing a transformation trend from calcite to aragonite and vaterite. Compared with conventional PVC pipes, the anti-crystallization effect was most pronounced under the following conditions: magnetic field intensity of 40 Gs, coverage angle of 90°, vertical magnetic field orientation, and higher water flow velocity. The findings of this study provide a novel approach to mitigating crystallization-induced blockages in tunnel drainage systems and contribute to reducing tunnel-related pathologies such as lining cracks, water seepage, and structural deterioration caused by poor drainage. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

23 pages, 4602 KB  
Article
Trailing Edge Loss of Choked Organic Vapor Turbine Blades
by Leander Hake and Stefan aus der Wiesche
Int. J. Turbomach. Propuls. Power 2025, 10(3), 23; https://doi.org/10.3390/ijtpp10030023 - 8 Aug 2025
Viewed by 245
Abstract
The present study reports the outcome of an experimental study of organic vapor trailing edge flows. As a working fluid, the organic vapor Novec 649 was used under representative pressure and temperature conditions for organic Rankine cycle (ORC) turbine applications characterized by values [...] Read more.
The present study reports the outcome of an experimental study of organic vapor trailing edge flows. As a working fluid, the organic vapor Novec 649 was used under representative pressure and temperature conditions for organic Rankine cycle (ORC) turbine applications characterized by values of the fundamental derivative of gas dynamics below unity. An idealized vane configuration was placed in the test section of a closed-loop organic vapor wind tunnel. The effect of the Reynolds number was assessed independently from the Mach number by charging the closed wind tunnel. The airfoil surface roughness and the trailing edge shape were evaluated by experimenting with different test blades. The flow and the loss behavior were obtained using Pitot probes, static wall pressure taps, and background-oriented schlieren (BOS) optics. Isentropic exit Mach numbers up to 1.5 were investigated. Features predicted via a simple flow model proposed by Denton and Xu in 1989 were observed for organic vapor flows. Still, roughness affected the downstream loss behavior significantly due to shockwave boundary-layer interactions and flow separation. The new experimental results obtained for this organic vapor are compared with correlations from the literature and available loss data. Full article
Show Figures

Figure 1

12 pages, 1175 KB  
Article
Physical Assessment of CAD/CAM and 3D-Printed Resin-Based Ceramics Integrating Additive and Subtractive Methods
by Khalid K. Alanazi and Ali A. Elkaffas
Polymers 2025, 17(16), 2168; https://doi.org/10.3390/polym17162168 - 8 Aug 2025
Viewed by 430
Abstract
Additive manufacturing (3D printing) using Computer-Aided Design (CAD) has emerged as a cost-effective alternative to subtractive milling in restorative dentistry, offering reduced material waste and lower production costs. This study aimed to compare the physical properties, specifically water sorption, water solubility, and surface [...] Read more.
Additive manufacturing (3D printing) using Computer-Aided Design (CAD) has emerged as a cost-effective alternative to subtractive milling in restorative dentistry, offering reduced material waste and lower production costs. This study aimed to compare the physical properties, specifically water sorption, water solubility, and surface roughness, of milled and 3D-printed hybrid resin composite materials. Standardized disk-shaped samples were fabricated using a digital workflow. The additive group included 15 samples printed with a DLP printer using CROWNTEC resin at three different orientations (0°, 45°, and 90°), with five samples prepared at each printing orientation. The subtractive group consisted of specimens milled from the SHOFU DISK hybrid resin composite. Surface roughness samples were also prepared for both methods. Statistical analysis using one-way ANOVA, post hoc tests, and paired t-tests revealed significant differences among groups in all tested properties (p < 0.001). Subtractive manufacturing consistently outperformed additive techniques. Among the printed groups, orientation at 0° showed the most favorable outcomes. Moreover, polishing significantly improved surface roughness in both manufacturing methods (p < 0.001). These findings emphasize the influence of the fabrication method and printing orientation on the clinical performance of hybrid resin composites, highlighting the importance of polishing in optimizing the surface quality for 3D-printed restorations. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials for Dental Applications III)
Show Figures

Figure 1

15 pages, 3096 KB  
Article
An Experimental Study on the Impact of Roughness Orientation on the Friction Coefficient in EHL Contact
by Matthieu Cordier, Yasser Diab, Jérôme Cavoret, Fida Majdoub, Christophe Changenet and Fabrice Ville
Lubricants 2025, 13(8), 340; https://doi.org/10.3390/lubricants13080340 - 31 Jul 2025
Viewed by 609
Abstract
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a [...] Read more.
Optimising the friction coefficient helps reduce friction losses and improve the efficiency of mechanical systems. The purpose of this study is to experimentally investigate the impact of roughness orientation on the friction coefficient in elastohydrodynamic (EHD) contact. Tests were carried out on a twin-disc machine. Three pairs of discs of identical material (nitrided steel) and geometry were tested: a smooth pair (the root mean square surface roughness Sq = 0.07 µm), a pair with transverse roughness and another with longitudinal roughness. The two rough pairs have similar roughness amplitudes (Sq = 0.5 µm). A comparison of the friction generated by these different pairs was carried out to highlight the effect of the roughness orientation under different operating conditions (oil injection temperature from 60 to 80 °C, Hertzian pressure from 1.2 to 1.5 GPa and mean rolling speed from 5 to 30 m/s). Throughout all the tests conducted in this study, longitudinal roughness resulted in higher friction than transverse, with an increase of up to 30%. Moreover, longitudinal roughness is more sensitive to variations in operating conditions. Finally, in all tests, the asperities of longitudinal roughness were found to influence the friction behaviour, unlike transverse roughness. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

29 pages, 2309 KB  
Systematic Review
The Influence of Printing Orientation on the Properties of 3D-Printed Polymeric Provisional Dental Restorations: A Systematic Review and Meta-Analysis
by Firas K. Alqarawi
J. Funct. Biomater. 2025, 16(8), 278; https://doi.org/10.3390/jfb16080278 - 31 Jul 2025
Viewed by 973
Abstract
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to [...] Read more.
Three-dimensional printing is commonly used to fabricate provisional dental restorations. Studies have reported that changes in printing orientation affect the physical and mechanical properties of 3D-printed polymeric provisional restorations; however the findings have been inconsistent. Therefore, this systematic review and meta-analysis aims to analyze the articles evaluating the influence of printing orientation on the physical and mechanical properties of 3D-printed polymeric provisional dental restorations. Recommendations provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were followed to structure and compose the review. The PICO (Participant, Intervention, Comparison, Outcome) question ordered was: ‘Do 3D-printed provisional dental restorations (P) printed at various orientations (except 0°) (I) exhibit similar physical and mechanical properties (O) when compared to those printed at a 0° orientation (C)?’. An electronic search was conducted on 28 and 29 April 2025, by two independent researchers across four databases (MEDLINE/PubMed, Scopus, Cochrane Library, and Web of Science) to systematically collect relevant articles published up to March 2025. After removing duplicate articles and applying predefined inclusion and exclusion criteria, twenty-one articles were incorporated into this review. Self-designed Performa’s were used to tabulate all relevant information. For the quality analysis, the modified CONSORT scale was utilized. The quantitative analysis was performed on only fifteen out of twenty-one articles. It can be concluded that the printing orientation affects some of the tested properties, which include fracture strength (significantly higher for specimens printed at 0° when compared to 90°), wear resistance (significantly higher for specimens printed at 90° when compared to 0°), microhardness (significantly higher for specimens printed at 90°and 45° when compared to 0°), color stability (high at 0°), and surface roughness (significantly higher for specimens printed at 45° and 90° when compared to 0°). There were varied outcomes in terms of flexural strength and elastic modulus. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

11 pages, 1770 KB  
Article
Influence of Selenium Pressure on Properties of AgInGaSe2 Thin Films and Their Application to Solar Cells
by Xianfeng Zhang, Engang Fu, Yong Lu and Yang Yang
Nanomaterials 2025, 15(15), 1146; https://doi.org/10.3390/nano15151146 - 24 Jul 2025
Viewed by 290
Abstract
A wide-bandgap AgInGaSe2 (AIGS) thin film was fabricated using molecular beam epitaxy (MBE) via a three-stage method. The influence of Selenium (Se) pressure on the properties of AIGS films and solar cells was studied in detail. It was found that Se pressure [...] Read more.
A wide-bandgap AgInGaSe2 (AIGS) thin film was fabricated using molecular beam epitaxy (MBE) via a three-stage method. The influence of Selenium (Se) pressure on the properties of AIGS films and solar cells was studied in detail. It was found that Se pressure played a very important role during the fabrication process, whereby Se pressure was varied from 0.8 × 10−3 Torr to 2.5 × 10−3 Torr in order to specify the effect of Se pressure. A two-stage mechanism during the production of AIGS solar cells was concluded according to the experimental results. With an increase in Se pressure, the grain size significantly increased due to the supply of the Ag–Se phase; the superficial roughness also increased. When Se pressure was increased to 2.1 × 10−3 Torr, the morphology of AIGS changed abruptly and clear grain boundaries were observed with a typical grain size of over 1.5 μm. AIGS films fabricated with a low Se pressure tended to show a higher bandgap due to the formation of anti-site defects such as In and Ga on Ag sites as a result of the insufficient Ag–Se phase. With an increase in Se pressure, the crystallinity of the AIGS film changed from the (220)-orientation to the (112)-orientation. When Se pressure was 2.1 × 10−3 Torr, the AIGS solar cell demonstrated its best performance of about 9.6% (Voc: 810.2 mV; Jsc: 16.7 mA/cm2; FF: 71.1%) with an area of 0.2 cm2. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 2088 KB  
Article
Research on the Composite Scattering Characteristics of a Rough-Surfaced Vehicle over Stratified Media
by Chenzhao Yan, Xincheng Ren, Jianyu Huang, Yuqing Wang and Xiaomin Zhu
Appl. Sci. 2025, 15(15), 8140; https://doi.org/10.3390/app15158140 - 22 Jul 2025
Viewed by 240
Abstract
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle [...] Read more.
To meet the requirements for radar echo acquisition and feature extraction from stratified media and rough-surfaced targets, a vehicle was geometrically modelled in CAD. Monte Carlo techniques were applied to generate the rough interfaces at air–snow and snow–soil boundaries and over the vehicle surface. Soil complex permittivity was characterized with a four-component mixture model, while snow permittivity was described using a mixed-media dielectric model. The composite electromagnetic scattering from a rough-surfaced vehicle on snow-covered soil was then analyzed with the finite-difference time-domain (FDTD) method. Parametric studies examined how incident angle and frequency, vehicle orientation, vehicle surface root mean square (RMS) height, snow liquid water content and depth, and soil moisture influence the composite scattering coefficient. Results indicate that the coefficient oscillates with scattering angle, producing specular reflection lobes; it increases monotonically with larger incident angles, higher frequencies, greater vehicle RMS roughness, and higher snow liquid water content. By contrast, its dependence on snow thickness, vehicle orientation, and soil moisture is complex and shows no clear trend. Full article
Show Figures

Figure 1

15 pages, 4749 KB  
Article
Selective Laser Melting of a Ti-6Al-4V Lattice-Structure Gear: Design, Topology Optimization, and Experimental Validation
by Riad Ramadani, Snehashis Pal, Aleš Belšak and Jožef Predan
Appl. Sci. 2025, 15(14), 7949; https://doi.org/10.3390/app15147949 - 17 Jul 2025
Viewed by 489
Abstract
The manufacture of lightweight components is one of the most important requirements in the automotive and aerospace industries. Gears, on the other hand, are among the heaviest parts in terms of their total weight. Accordingly, a spur gear was considered, the body of [...] Read more.
The manufacture of lightweight components is one of the most important requirements in the automotive and aerospace industries. Gears, on the other hand, are among the heaviest parts in terms of their total weight. Accordingly, a spur gear was considered, the body of which was configured as a lattice structure to make it lightweight. In addition, the structure was optimized by topology optimization using ProTOP software. Subsequently, the gear was manufactured by a selective laser melting process by using a strong and lightweight material, namely Ti-6Al-4V. This study defeated the problems of manufacturing orientation, surface roughness, support structure, and bending due to the high thermal gradient in the selective laser melting process. To experimentally investigate the benefits of such a lightweight gear body structure, a new test rig with a closed loop was developed. This rig enabled measurements of strains in the gear ring, hub, and tooth root. The experimental results confirmed that a specifically designed and selectively laser-melted, lightweight cellular lattice structure in the gear body can significantly influence strain. This is especially significant with respect to strain levels and their time-dependent variations in the hub section of the gear body. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

11 pages, 2689 KB  
Article
Growth of Zn–N Co-Doped Ga2O3 Films by a New Scheme with Enhanced Optical Properties
by Daogui Liao, Yijun Zhang, Ruikang Wang, Tianyi Yan, Chao Li, He Tian, Hong Wang, Zuo-Guang Ye, Wei Ren and Gang Niu
Nanomaterials 2025, 15(13), 1020; https://doi.org/10.3390/nano15131020 - 1 Jul 2025
Viewed by 450
Abstract
Gallium oxide (Ga2O3), as a wide-bandgap semiconductor material, is highly expected to find extensive applications in optoelectronic devices, high-power electronics, gas sensors, etc. However, the photoelectric properties of Ga2O3 still need to be improved before its [...] Read more.
Gallium oxide (Ga2O3), as a wide-bandgap semiconductor material, is highly expected to find extensive applications in optoelectronic devices, high-power electronics, gas sensors, etc. However, the photoelectric properties of Ga2O3 still need to be improved before its devices become commercially viable. As is well known, doping is an effective method to modulate the various properties of semiconductor materials. In this study, Zn–N co-doped Ga2O3 films with various doping concentrations were grown in situ on sapphire substrates by atomic layer deposition (ALD) at 250 °C, followed by post-annealing at 900 °C. The post-annealed undoped Ga2O3 film showed a highly preferential orientation, whereas with the increase in Zn doping concentration, the preferential orientation of Ga2O3 films was deteriorated, turning it into an amorphous state. The surface roughness of the Ga2O3 thin films is largely affected by doping. As a result of post-annealing, the bandgaps of the Ga2O3 films can be modulated from 4.69 eV to 5.41 eV by controlling the Zn–N co-doping concentrations. When deposited under optimum conditions, high-quality Zn–N co-doped Ga2O3 films showed higher transmittance, a larger bandgap, and fewer defects compared with undoped ones. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Figure 1

25 pages, 5893 KB  
Article
Design and Validation of a Fixture Device for Machining Surfaces with Barrel End-Mill on a 3-Axis CNC Milling Machine
by Sandor Ravai-Nagy, Alina Bianca Pop and Aurel Mihail Titu
Appl. Sci. 2025, 15(13), 7379; https://doi.org/10.3390/app15137379 - 30 Jun 2025
Cited by 1 | Viewed by 535
Abstract
This paper presents the design and validation of a novel specialized fixture device for machining inclined planes with barrel cutters on 3-axis CNC machine tools. Barrel milling, also known as Parabolic Performance Cutting (PPC), is extensively used on 5-axis machines to enhance the [...] Read more.
This paper presents the design and validation of a novel specialized fixture device for machining inclined planes with barrel cutters on 3-axis CNC machine tools. Barrel milling, also known as Parabolic Performance Cutting (PPC), is extensively used on 5-axis machines to enhance the efficiency of machining complex surfaces. While significant research has focused on optimizing barrel milling for aspects such as surface roughness and cutting forces, implementing this technique on 3-axis machines poses a challenge due to limitations in tool orientation. To overcome this, an innovative adaptable device was designed, enabling precise workpiece orientation relative to the barrel cutter. To overcome this limitation, an adaptable device was designed that enables precise workpiece orientation relative to the barrel cutter. The device utilizes interchangeable locating elements for different cutter programming angles (such as 18°, 20°, and 42.5°), thereby ensuring correct workpiece positioning. Rigid workpiece clamping is provided by the device’s mechanism to maintain precise workpiece positioning during machining, and probing surfaces are integrated into the device to facilitate the definition of the coordinate system necessary for CNC machine programming. Device control was performed using a Hexagon RA-7312 3D measuring arm. Inspection results indicated minimal dimensional deviations (e.g., surface flatness between 0.002 mm and 0.012 mm) and high angular accuracy (e.g., angular non-closure of 0.006°). The designed device enables the effective and precise use of barrel cutters on 3-axis CNC machines, offering a previously unavailable practical and economical solution for cutting tool tests and cutting regime studies. Full article
Show Figures

Figure 1

15 pages, 1066 KB  
Article
Analysis and Numerical Simulation of the Behavior of Composite Materials with Natural Fibers Under Quasi-Static Frictional Contact
by Mirela Roxana Apsan, Ana Maria Mitu, Nicolae Pop, Tudor Sireteanu, Vicentiu Marius Maxim and Adrian Musat
J. Compos. Sci. 2025, 9(7), 338; https://doi.org/10.3390/jcs9070338 - 29 Jun 2025
Viewed by 457
Abstract
This paper analyzed the behavior of polymer composite materials reinforced with randomly oriented short natural fibers (hemp, flax, etc.) subjected to external stresses under quasistatic contact conditions with dry Coulomb friction. We presumed the composite body, a 2D flat rectangular plate, being in [...] Read more.
This paper analyzed the behavior of polymer composite materials reinforced with randomly oriented short natural fibers (hemp, flax, etc.) subjected to external stresses under quasistatic contact conditions with dry Coulomb friction. We presumed the composite body, a 2D flat rectangular plate, being in frictional contact with a rigid foundation for the quasistatic case. The manuscript proposes the finite element method approximation in space and the finite difference approximation in time. The problem of quasistatic frictional contact is described with a special finite element, which can analyze the state of the nodes in the contact area, and their modification, between open, sliding, and fixed contact states, in the analyzed time interval. This finite element also models the Coulomb friction law and controls the penetrability according to a power law. Moreover, the quasi-static case analyzed allows for the description of the load history using an incremental and iterative algorithm. The discrete problem will be a static and nonlinear one for each time increment, and in the case of sliding contact, the stiffness matrix becomes non-symmetric. The regularization of the non-differentiable term comes from the modulus of the normal contact stress, with a convex function and with the gradient in the sub-unit modulus. The non-penetration condition was achieved with the penalty method, and the linearization was conducted with the Newton–Raphson method. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

26 pages, 7249 KB  
Article
Characterization of Hexagonal Close-Packed Zn-Cu-Ti Alloy Pyramid Drawpieces in Single-Point Incremental Sheet Forming Process
by Łukasz Kuczek, Krzysztof Żaba, Tomasz Trzepieciński, Maciej Balcerzak and Vít Novák
Materials 2025, 18(13), 3078; https://doi.org/10.3390/ma18133078 - 28 Jun 2025
Viewed by 452
Abstract
Incremental sheet forming technology is finding increasing application in the production of components in many industries. This article presents the analysis of the formability of 0.68-mm-thick Zn-Cu-Ti alloy sheets during the single-point incremental forming (SPIF) of pyramid-shaped drawpieces. Basic mechanical properties of sheets [...] Read more.
Incremental sheet forming technology is finding increasing application in the production of components in many industries. This article presents the analysis of the formability of 0.68-mm-thick Zn-Cu-Ti alloy sheets during the single-point incremental forming (SPIF) of pyramid-shaped drawpieces. Basic mechanical properties of sheets were determined in a uniaxial tensile test. Formability tests were carried out using the Erichsen and Fukui methods. SPIF tests were carried out under the conditions of variable process parameters: tool diameter (12 and 20 mm), feed rate (500–3000 mm/min), tool rotational speed (250–3000 rpm), and step size (0.1–1.2 mm). The effect of SPIF process parameters on the value of basic mechanical parameters, maximum deviation of the measured wall profile from the ideal profile, limit-forming angle, and surface roughness of pyramid-shaped drawpieces was determined. It was found that increasing the step size resulted in a decrease in the value of the limit-forming angle. Both the step size and the tool rotational speed contribute to the increase of the maximum wall deviation. However, the use of higher feed rates and a larger tool diameter caused its reduction. Higher values of arithmetic mean surface roughness Ra were found for the outer surface of drawpieces. The use of a smaller step size with a larger tool diameter caused a reduction in the Ra value of the drawpiece wall. Based on the obtained results, it can be concluded that the Zn-Cu-Ti alloy demonstrates good suitability for SPIF when proper process parameters and sheet orientation are selected. An appropriate combination of tool diameter, feed rate, step size, and sample orientation can ensure the desired balance between dimensional accuracy, mechanical strength, and surface quality of the formed components. Full article
Show Figures

Graphical abstract

56 pages, 2573 KB  
Review
A Review of Optimization of Additively Manufactured 316/316L Stainless Steel Process Parameters, Post-Processing Strategies, and Defect Mitigation
by Usman Aziz, Marion McAfee, Ioannis Manolakis, Nick Timmons and David Tormey
Materials 2025, 18(12), 2870; https://doi.org/10.3390/ma18122870 - 17 Jun 2025
Cited by 3 | Viewed by 923
Abstract
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), [...] Read more.
The rapid progress in additive manufacturing (AM) has unlocked significant possibilities for producing 316/316L stainless steel components, particularly in industries requiring high precision, enhanced mechanical properties, and intricate geometries. However, the widespread adoption of AM—specifically Directed energy deposition (DED), selective laser melting (SLM), and electron beam melting (EBM) remains challenged by inherent process-related defects such as residual stresses, porosity, anisotropy, and surface roughness. This review critically examines these AM techniques, focusing on optimizing key manufacturing parameters, mitigating defects, and implementing effective post-processing treatments. This review highlights how process parameters including laser power, energy density, scanning strategy, layer thickness, build orientation, and preheating conditions directly affect microstructural evolution, mechanical properties, and defect formation in AM-fabricated 316/316L stainless steel. Comparative analysis reveals that SLM excels in achieving refined microstructures and high precision, although it is prone to residual stress accumulation and porosity. DED, on the other hand, offers flexibility for large-scale manufacturing but struggles with surface finish and mechanical property consistency. EBM effectively reduces thermal-induced residual stresses due to its sustained high preheating temperatures (typically maintained between 700 °C and 850 °C throughout the build process) and vacuum environment, but it faces limitations related to resolution, cost-effectiveness, and material applicability. Additionally, this review aligns AM techniques with specific defect reduction strategies, emphasizing the importance of post-processing methods such as heat treatment and hot isostatic pressing (HIP). These approaches enhance structural integrity by refining microstructure, reducing residual stresses, and minimizing porosity. By providing a comprehensive framework that connects AM techniques optimization strategies, this review serves as a valuable resource for academic and industry professionals. It underscores the necessity of process standardization and real-time monitoring to improve the reliability and consistency of AM-produced 316/316L stainless steel components. A targeted approach to these challenges will be crucial in advancing AM technologies to meet the stringent performance requirements of various high-value industrial applications. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

16 pages, 1307 KB  
Article
Construction of a Surface Roughness and Burr Size Prediction Model Through the Ensemble Learning Regression Method
by Ali Khosrozadeh, Seyed Ali Niknam and Fatemeh Hajizadeh
Machines 2025, 13(6), 494; https://doi.org/10.3390/machines13060494 - 5 Jun 2025
Viewed by 532
Abstract
It is well understood that burr size and shape, as well as surface quality attributes like surface roughness in milling parts, vary according to several factors. These include cutting tool orientation, cutting profile, cutting parameters, tool shape and size, coating, and the interaction [...] Read more.
It is well understood that burr size and shape, as well as surface quality attributes like surface roughness in milling parts, vary according to several factors. These include cutting tool orientation, cutting profile, cutting parameters, tool shape and size, coating, and the interaction between the workpiece and the cutting tool. Therefore, burr size cannot be formulated simply as a function of direct parameters. This study proposes an ensemble learning regression model to accurately predict burr size and surface roughness during the slot milling of aluminum alloy (AA) 6061. The model was trained using cutting parameters as inputs and evaluated with performance metrics such as mean absolute error (MAE), mean squared error (MSE), and the coefficient of determination (R2). The model demonstrated strong generalization capability when tested on unseen data. Specifically, it achieved an R2 of 0.97 for surface roughness (Ra) and R2 values of 0.93 (B5, B8), 0.92 (B2), 0.86 (B1), and 0.65 (B4) for various burr types. These results validate the model’s effectiveness despite the nonlinear and complex nature of burr formation. Additionally, feature importance analysis via the F-test indicated that feed per tooth and depth of cut were the most influential parameters across several burr types and surface roughness outcomes. This work represents a novel and accurate approach for predicting key surface quality indicators, with significant implications for process optimization and cost reduction in precision machining. Full article
(This article belongs to the Special Issue Surface Engineering Techniques in Advanced Manufacturing)
Show Figures

Figure 1

30 pages, 6450 KB  
Article
Response Surface Methodology-Based Optimization of AZ91 Composites Reinforced with Short Carbon Fibers for Enhanced Mechanical and Wear Properties
by Sabbah Ataya, Nashmi H. Alrasheedi, Mohamed M. El-Sayed Seleman, Rana G. Eid, Ashraf Bakkar, Ahmed Ataya and Ramy A. Fouad
Processes 2025, 13(6), 1697; https://doi.org/10.3390/pr13061697 - 28 May 2025
Viewed by 705
Abstract
This study aims to enhance the mechanical and wear properties of AZ91 magnesium alloy by reinforcing it with 23 vol.% short carbon fibers (SCFs) aligned in normal (AZ91C-N) and parallel (AZ91C-P) orientations via squeeze-casting. The microstructure and elemental distribution maps were analyzed using [...] Read more.
This study aims to enhance the mechanical and wear properties of AZ91 magnesium alloy by reinforcing it with 23 vol.% short carbon fibers (SCFs) aligned in normal (AZ91C-N) and parallel (AZ91C-P) orientations via squeeze-casting. The microstructure and elemental distribution maps were analyzed using an advanced SEM-EDS system. A response surface methodology (RSM) based on a Face-Centered Composite Design (FCCD) was employed to optimize the properties under varying temperature (20–300 °C) and wear load (1–5 N) conditions. The ultimate compressive strength (UCS), yield strength (YS), reduction in height at fracture (Fr), reduction in height at maximum stress (Sr), volume loss, and wear rate were analyzed and optimized. ANOVA confirmed the significant influence of the experimental parameters. A statistical model was developed, with validation showing deviations less than 0.05. The optimized conditions resulted in a UCS of 253 MPa, a YS of 193 MPa, an Fr of 26.1%, an Sr of 21.7%, a volume loss of 0.066 cm3, and a wear rate of 840 cm3/m. The worn surface and surface roughness were also investigated and discussed. The orientation of SCFs significantly influenced wear resistance and surface roughness. This study demonstrates the effectiveness of RSM in optimizing AZ91-SCF composites for high-performance applications. Full article
(This article belongs to the Special Issue Fiber-Reinforced Composites: Latest Advances and Interesting Research)
Show Figures

Figure 1

Back to TopTop