Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (351)

Search Parameters:
Keywords = rubber degradation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2904 KB  
Article
Biochar and Natural Antioxidants as Components of Eco-Friendly Elastomer Composites
by Justyna Miedzianowska-Masłowska, Kalina Joanna Kaczmarek and Marcin Masłowski
Polymers 2025, 17(17), 2351; https://doi.org/10.3390/polym17172351 - 29 Aug 2025
Viewed by 113
Abstract
Modern trends in advanced material design increasingly emphasize sustainability and the use of naturally derived resources. One promising approach involves replacing synthetic additives with natural compounds that exhibit stabilizing properties. The aim of this study was to evaluate the effects of selected natural [...] Read more.
Modern trends in advanced material design increasingly emphasize sustainability and the use of naturally derived resources. One promising approach involves replacing synthetic additives with natural compounds that exhibit stabilizing properties. The aim of this study was to evaluate the effects of selected natural auxiliary substances—thymol (2-isopropyl-5-methylphenol), quercetin (3,3,4,5,7-pentahydroxyflavone) and caffeic acid (3-(3,4-dihydroxyphenyl)prop-2-enoic acid)—on the properties of elastomeric composites based on natural rubber. Biochar was used as the filler in the composites, serving as an eco-friendly alternative to conventional carbon black. The evaluation included measurements of crosslink density, hardness, mechanical properties and microstructural analysis of the resulting materials. The samples were also subjected to accelerated aging under thermo-oxidative conditions and UV radiation to assess their resistance to degradation. For comparison, the commonly used synthetic antioxidant BHT (2,6-di-tert-butyl-4-methylphenol) was also analyzed. The results enabled the assessment of the potential of natural additives as environmentally friendly stabilizers in elastomeric systems, with respect to their effectiveness and impact on material durability. Full article
(This article belongs to the Special Issue Advances in Rubber Composites and Recovered Waste Rubber)
23 pages, 3731 KB  
Article
Efficient Navigable Area Computation for Underground Autonomous Vehicles via Ground Feature and Boundary Processing
by Miao Yu, Yibo Du, Xi Zhang, Ziyan Ma and Zhifeng Wang
Sensors 2025, 25(17), 5355; https://doi.org/10.3390/s25175355 - 29 Aug 2025
Viewed by 141
Abstract
Accurate boundary detection is critical for autonomous trackless rubber-wheeled vehicles in underground coal mines, as it prevents lateral collisions with tunnel walls. Unlike open-road environments, underground tunnels suffer from poor illumination, water mist, and dust, which degrade visual imaging. To address these challenges, [...] Read more.
Accurate boundary detection is critical for autonomous trackless rubber-wheeled vehicles in underground coal mines, as it prevents lateral collisions with tunnel walls. Unlike open-road environments, underground tunnels suffer from poor illumination, water mist, and dust, which degrade visual imaging. To address these challenges, this paper proposes a navigable area computation for underground autonomous vehicles via ground feature and boundary processing, consisting of three core steps. First, a real-time point cloud correction process via pre-correction and dynamic update aligns ground point clouds with the LiDAR coordinate system to ensure parallelism. Second, corrected point clouds are projected onto a 2D grid map using a grid-based method, effectively mitigating the impact of ground unevenness on boundary extraction; third, an adaptive boundary completion method is designed to resolve boundary discontinuities in junctions and shunting chambers. Additionally, the method emphasizes continuous extraction of boundaries over extended periods by integrating temporal context, ensuring the continuity of boundary detection during vehicle operation. Experiments on real underground vehicle data validate that the method achieves accurate detection and consistent tracking of dual-sided boundaries across straight tunnels, curves, intersections, and shunting chambers, meeting the requirements of underground autonomous driving. This work provides a rule-based, real-time solution feasible under limited computing power, offering critical safety redundancy when deep learning methods fail in harsh underground environments. Full article
(This article belongs to the Special Issue Intelligent Traffic Safety and Security)
Show Figures

Figure 1

17 pages, 2559 KB  
Article
Design-Oriented Degradation Mapping and Hyperelastic Model-Switch Guidelines for Nitrile-Butadiene Rubber Seals
by Na-Yeon Choi, Dong-Seok Kim and Sung-Uk Zhang
Polymers 2025, 17(17), 2316; https://doi.org/10.3390/polym17172316 - 27 Aug 2025
Viewed by 242
Abstract
Nitrile-butadiene rubber (NBR) seals used in automotive and energy equipment undergo pronounced mechanical degradation at elevated temperatures, yet a quantitative rule for switching between hyperelastic models remains unclear. Here, accelerated thermal aging tests were linked to service conditions by estimating the activation energy [...] Read more.
Nitrile-butadiene rubber (NBR) seals used in automotive and energy equipment undergo pronounced mechanical degradation at elevated temperatures, yet a quantitative rule for switching between hyperelastic models remains unclear. Here, accelerated thermal aging tests were linked to service conditions by estimating the activation energy via Flynn–Wall–Ozawa analysis and applying an Arrhenius-based equivalence. Tensile testing, dynamic mechanical analysis, and thermogravimetric analysis were combined to track embrittlement and crosslinking, and finite element simulations were benchmarked against experiments using an L2-norm metric. The outcome is a degradation map with a model-switching guideline. The Neo-Hookean model is preferred in the less-embrittled regime, whereas the five-parameter Mooney–Rivlin model is recommended as embrittlement progresses. This framework improves stress-prediction fidelity while keeping model complexity commensurate with the aging state, enabling faster and more reliable design of NBR seals for high-temperature automotive and renewable-energy applications. Full article
(This article belongs to the Special Issue Mechanical and Durability Properties of Polymer Materials)
Show Figures

Figure 1

19 pages, 7660 KB  
Article
The Impact of Photochemical Loss on the Source Apportionment of Ambient Volatile Organic Compounds (VOCs) and Their Ozone Formation Potential in the Fenwei Plain, Northern China
by Yanan Tao, Qi Xiong, Yawei Dong, Jiayin Zhang, Lei Cao, Min Zhu, Qiaoqiao Wang and Jianwei Gu
Atmosphere 2025, 16(8), 970; https://doi.org/10.3390/atmos16080970 - 15 Aug 2025
Viewed by 627
Abstract
The Fenwei Plain (FWP), one of China’s most polluted regions, has experienced severe ozone (O3) pollution in recent years. Volatile organic compounds (VOCs), key O3 precursors, undergo significant photochemical degradation, yet their loss and the implications for source apportionment and [...] Read more.
The Fenwei Plain (FWP), one of China’s most polluted regions, has experienced severe ozone (O3) pollution in recent years. Volatile organic compounds (VOCs), key O3 precursors, undergo significant photochemical degradation, yet their loss and the implications for source apportionment and ozone formation potential (OFP) in this region remain unclear. This study conducted summertime VOC measurements in two industrial cities in the FWP, Hancheng (HC) and Xingping (XP), to quantify photochemical losses of VOCs and assessed their impact on source attribution and OFP with photochemical age-based parameterization methods. Significant VOC photochemical losses were observed, averaging 3.6 ppbv (7.1% of initial concentrations) in HC and 1.9 ppbv (5.6%) in XP, with alkenes experiencing the highest depletion (22–30%). Source apportionment based on both initial (corrected) and observed concentrations revealed that industrial sources (e.g., coking, coal washing, and rubber manufacturing) dominated ambient VOCs. Ignoring photochemical losses underestimated contributions from natural gas combustion and biogenic sources, while it overestimated the secondary source. OFP calculated with lost VOCs (OFPloss) reached 34 ppbv in HC and 15 ppbv in XP, representing 20% and 25% of OFP based on observed concentrations, respectively, with reactive alkenes accounting for over 90% of OFPloss. The results highlight the importance of accounting for VOC photochemical losses for accurate source identification and developing effective O3 control strategies in the FWP. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

18 pages, 4770 KB  
Article
Development of Eco-Friendly Silane-Treated Rice Flour/PBS Biocomposites with ENR-50 as a Compatibilizer: A Study on Phase Morphology, Properties and Biodegradation
by Thritima Sritapunya, Apaipan Rattanapan, Surakit Tuampoemsab and Pornsri Sapsrithong
Polymers 2025, 17(16), 2213; https://doi.org/10.3390/polym17162213 - 13 Aug 2025
Viewed by 448
Abstract
This study investigated the development of biocomposites for use as packaging and film in everyday applications. The utilization of rice flour (RF) as a cheap natural filler in the production of polybutylene succinate (PBS) biocomposites has been shown to reduce environmental issues caused [...] Read more.
This study investigated the development of biocomposites for use as packaging and film in everyday applications. The utilization of rice flour (RF) as a cheap natural filler in the production of polybutylene succinate (PBS) biocomposites has been shown to reduce environmental issues caused by non-biodegradable plastic waste. The effect of rice flour content on the morphology and properties of PBS and RF biocomposites was comprehensively evaluated. Different amounts of rice flour were considered (0, 10, 20, 30, 40, and 50 phr), and a silane coupling agent and epoxidized natural rubber (ENR-50: 1 phr) were used as interfacial agents to improve compatibility between the matrix (PBS) and filler (RF). The PBS/RF biocomposites were prepared using a two-roll mill and shaped into test specimens and films using a compression molding machine. Batches of the composites containing different amounts of RF were prepared in accordance with the standards, and their morphology and properties, including mechanical properties, density, water absorption, and soil burial degradation, were evaluated. The results revealed that the incorporation of silane-treated RF filler and ENR-50 compatibilizer led to notable improvements in mechanical properties, particularly in tensile modulus, flexural strength, flexural modulus, and hardness. A significant improvement in mechanical performance was observed as the RF content increased, with the highest value recorded at the 50 phr loading. The enhancements observed in the composite properties are due to the inherent rigidity of the RF filler and its improved compatibility with the PBS matrix, which together contribute to a stronger and more efficient material. Additionally, the percentage of water absorption in the PBS/RF biocomposites increased with higher RF content. The results from the soil burial test demonstrated that increasing the RF content positively influenced the biodegradability of the PBS/RF biocomposite materials. Full article
(This article belongs to the Special Issue Biodegradable Polymers in Sustainable and Biomedical Applications)
Show Figures

Graphical abstract

14 pages, 3356 KB  
Article
Effects of Incorporating Small Amounts of Fe3O4 Nanoparticles into Epoxidized Natural Rubber: Chemical Interactions, Morphology and Thermal Characteristics
by Omar S. Dahham and Khalid Al-Zamili
J. Compos. Sci. 2025, 9(8), 434; https://doi.org/10.3390/jcs9080434 - 12 Aug 2025
Viewed by 422
Abstract
Nanocomposites were synthesized from epoxidized natural rubber (ENR-50) and magnetite (Fe3O4) at 1, 5, and 9 wt.%, respectively. Various analyses were conducted to gain comprehensive insight into the properties of the nanocomposites. It was found that the ring epoxide [...] Read more.
Nanocomposites were synthesized from epoxidized natural rubber (ENR-50) and magnetite (Fe3O4) at 1, 5, and 9 wt.%, respectively. Various analyses were conducted to gain comprehensive insight into the properties of the nanocomposites. It was found that the ring epoxide units can be opened and bonded with the Fe moieties of the magnetite to form an Fe-O-C structure, as shown in FTIR spectra at 690 and 700 cm−1. Peaks in UV-vis spectra at the wavelength of 297 nm shifted to 299, 303, and 309 nm for the nanocomposite samples with 1, 5, and 9 wt.% Fe3O4, respectively. XRD showed a decrease in the amorphous peak intensity, while new diffraction peaks emerged at 33° and 43°, indicative of the crystalline structure of the Fe3O4 in the nanocomposites. Based on TEM micrographs, it was found that the average size of Fe3O4 particles in the rubber matrix with 1 wt.% Fe3O4 was around 20 and 33 nm. SEM micrographs proved that nanoparticles with 1 wt.% Fe3O4 were regularly dispersed in the rubber matrix, and that magnetite nanoparticles were spherical in shape, as well as having strong interactions and bonding with the rubber matrix. A TGA thermogram showed three thermal steps of degradation across a wide temperature range, from 81 °C to 592 °C, and resistance to thermal degradation of the nanocomposite samples as compared to the rubber sample could be clearly observed. Furthermore, DCS showed higher Tg for nanocomposites at 24.4, 25.1, and 26.3 °C, respectively, compared to purified ENR-50 at −18.6 °C. Full article
Show Figures

Graphical abstract

13 pages, 2972 KB  
Article
Investigation of Electrical Conduction Mechanisms in Silicone Rubber—Bismuth Ferrite Composites
by Cristian Casut, Daniel Ursu, Marinela Miclau, Iosif Malaescu and Catalin Nicolae Marin
Crystals 2025, 15(8), 721; https://doi.org/10.3390/cryst15080721 - 10 Aug 2025
Viewed by 402
Abstract
Three composite materials, made by inserting the same amount of BiFeO3/Bi25FeO40 powders (each powder having a different concentration of the secondary phase, Bi25FeO40: 10%, 20%, and 30%) into a silicone rubber (SR) matrix, were [...] Read more.
Three composite materials, made by inserting the same amount of BiFeO3/Bi25FeO40 powders (each powder having a different concentration of the secondary phase, Bi25FeO40: 10%, 20%, and 30%) into a silicone rubber (SR) matrix, were investigated to understand their electrical properties. Electrical conductivity measurements of the composite samples were carried out over a frequency range from 0.5 kHz to 2 MHz. The resulting conductivity spectra revealed two distinct regions: a low-frequency plateau corresponding to DC conductivity and a high-frequency region where AC conductivity increases with frequency. Some key electrical parameters, such as DC conductivity and band gap energy, were calculated using these measurements. An increase in Bi25FeO40 concentration resulted in a rise in DC conductivity from 5.61 × 10−5 S/m to 7.67 × 10−5 S/m across the composite samples. To gain further insight into the mechanisms of charge transport, both Jonscher’s universal response and the correlated barrier hopping (CBH) model were applied. The polaron model was also used to calculate the energy barrier for electrical conduction, but for higher temperatures (where the samples exhibit conductor behavior). The last part of the study was an aging analysis that showed a degradation of the investigated sample, as reflected by a decline in their conductive properties over time. Having no endothermic or exothermic events in the DTA curves, it is clear that the observed variation in conductive properties is not related to phase transitions, but it can be attributed to microstructural mechanisms, such as defects, microcracks, or structural disorders. These results can help in designing composite materials with desirable conductive properties by optimizing their filler concentration and processing conditions. Full article
Show Figures

Figure 1

22 pages, 5509 KB  
Article
Kinetic Analysis of Thermal Degradation of Styrene–Butadiene Rubber Compounds Under Different Aging Conditions
by Imen Hamouda, Masoud Tayefi, Mostafa Eesaee, Meysam Hassanipour and Phuong Nguyen-Tri
J. Compos. Sci. 2025, 9(8), 420; https://doi.org/10.3390/jcs9080420 - 6 Aug 2025
Viewed by 790
Abstract
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation [...] Read more.
This study examined the impact of storage and operational aging on the thermal stability, structural degradation, and electrical properties of styrene–butadiene rubber (SBR) compound by analyzing three distinct materials: a laboratory-stored sample, an operationally aged one, and an original unaged reference. Thermal degradation was analyzed through thermogravimetric analysis (TGA), which examined weight loss as a function of temperature and time at different heating rates. Results showed that the onset temperature and peak position in the 457 °C to 483 °C range remained stable. The activation energy (Ea) was determined using the Kissinger–Akahira–Sunose (KAS), Flynn–Wall–Ozawa (FWO), and Friedman methods, with the original unaged sample’s (OUS) Ea averaging 203.7 kJ/mol, decreasing to 163.47 kJ/mol in the laboratory-stored sample (LSS), and increasing to 224.18 kJ/mol in the operationally aged sample (OAS). The Toop equation was applied to estimate the thermal degradation lifetime at a 50% conversion rate. Since the material had been exposed to electricity, the evolution of electrical conductivity was studied and found to have remained stable after storage at around 0.070 S/cm. However, after operational aging, it showed a considerable increase in conductivity, to 0.321 S/cm. Scanning Electron Microscopy (SEM) was employed to analyze microstructural degradation and chemical changes, providing insights into the impact of aging on thermal stability and electrical properties. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

16 pages, 4320 KB  
Article
Effect of Thermo-Oxidative, Ultraviolet and Ozone Aging on Mechanical Property Degradation of Carbon Black-Filled Rubber Materials
by Bo Zhou, Wensong Liu, Youjian Huang, Jun Luo and Boyuan Yin
Buildings 2025, 15(15), 2705; https://doi.org/10.3390/buildings15152705 - 31 Jul 2025
Viewed by 373
Abstract
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, [...] Read more.
Carbon black (CB)-filled rubber materials are extensively used in civil engineering seismic isolation. However, CB-filled rubber materials often experience mechanical property degradation because of exposure to environmental factors. To better understand the influences of thermo-oxidative, ultraviolet and ozone aging on mechanical property degradation, uniaxial tension and dynamic mechanical analysis (DMA) tests were carried out. In the uniaxial tension tests, the stress strength and elongation decreased with an increase in aging time. In the DMA tests, the effective temperature ranges decreased by 3.4–14%. And the neo-Hookean model was applied to simulate the hyperelasticity of CB-filled rubber materials. The relationship between the elastic modulus (a constant of the neo-Hookean model) and aging time was established, which provided a qualitative relationship between crosslink density and aging time. In addition, the dispersion of the CB aggregate was investigated using an atomic force microscope (AFM). The results indicated that the mechanical property degradation might be closely related to the aggregate diameter. This paper establishes a bridge between the microstructure and mechanical properties of CB-filled rubber materials, which can improve the understanding of the mechanical property degradation mechanisms of rubber materials and the fabrication of rubber components. Full article
(This article belongs to the Special Issue Studies on the Durability of Building Composite Materials)
Show Figures

Figure 1

23 pages, 5204 KB  
Article
Evaluation of Polypropylene Reusability Using a Simple Mechanical Model Derived from Injection-Molded Products
by Tetsuo Takayama, Rikuto Takahashi, Nao Konno and Noriyuki Sato
Polymers 2025, 17(15), 2107; https://doi.org/10.3390/polym17152107 - 31 Jul 2025
Viewed by 472
Abstract
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, [...] Read more.
In response to growing global concerns about plastic waste, the development of efficient recycling technologies for thermoplastics has become increasingly important. Polypropylene (PP), a widely used commodity resin, is of particular interest because of the urgent need to establish sustainable material circulation. However, conventional mechanical property evaluations of injection-molded products typically require dedicated specimens, which involve additional material and energy costs. As described herein, we propose a simplified mechanical model to derive Poisson’s ratio and critical expansion stress directly from standard uniaxial tensile tests of molded thermoplastics. The method based on the true stress–true strain relationship in the small deformation region was validated using various thermoplastics (PP, POM, PC, and ABS), with results showing good agreement with those of the existing literature. The model was applied further to assess changes in mechanical properties of Homo-PP and Block-PP subjected to repeated extrusion. Both materials exhibited reductions in elastic modulus and critical expansion stress with increasing extrusion cycles, whereas Block-PP showed a slower degradation rate because of thermo-crosslinking in its ethylene–propylene rubber (EPR) phase. DSC and chemiluminescence analyses suggested changes in stereoregularity and radical formation as key factors. This method offers a practical approach for evaluating recycled PP and contributes to high-quality recycling and material design. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

15 pages, 3303 KB  
Article
Effect of Ozone on Nonwoven Polylactide/Natural Rubber Fibers
by Yulia V. Tertyshnaya, Svetlana G. Karpova and Maria V. Podzorova
Polymers 2025, 17(15), 2102; https://doi.org/10.3390/polym17152102 - 31 Jul 2025
Viewed by 323
Abstract
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber [...] Read more.
Ozone is a powerful destructive agent in the oxidative process of polymer composites. The destructive ability of ozone depends primarily on its concentration, duration of exposure, the type of polymer, and its matrix structure. In this work, nonwoven PLA/NR fibers with natural rubber contents of 5, 10, and 15 wt.% were obtained, which were then subjected to ozone oxidation for 800 min. The effect of ozone treatment was estimated using various methods of physicochemical analysis. The visual effect was manifested in the form of a change in the color of PLA/NR fibers. The method of differential scanning calorimetry revealed a change in the thermophysical characteristics. The glass transition and cold crystallization temperatures of polylactide shifted toward lower temperatures, and the degree of crystallinity increased. It was found that in PLA/NR fiber samples, the degradation process predominates over the crosslinking process, as an increase in the melt flow rate by 1.5–1.6 times and a decrease in the correlation time determined by the electron paramagnetic resonance method were observed. The IR Fourier method recorded a change in the chemical structure during ozone oxidation. The intensity of the ether bond bands changed, and new bands appeared at 1640 and 1537 cm−1, which corresponded to the formation of –C=C– bonds. Full article
(This article belongs to the Special Issue Natural Degradation of Polymers)
Show Figures

Graphical abstract

16 pages, 8118 KB  
Article
The Influence of Long-Term Service on the Mechanical Properties and Energy Dissipation Capacity of Flexible Anti-Collision Rings
by Junhong Zhou, Jia Lu, Wei Jiang, Ang Li, Hancong Shao, Zixiao Huang, Fei Wang and Qiuwei Yang
Coatings 2025, 15(8), 880; https://doi.org/10.3390/coatings15080880 - 27 Jul 2025
Viewed by 365
Abstract
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image [...] Read more.
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image correlation (DIC) technology. The results show that: The mechanical response of the anti-collision ring shows significant asymmetric tension–compression, with the tensile peak force being 6.8 times that of compression. A modified Johnson–Cook model was developed to accurately characterize the tension–compression force–displacement behavior across varying strain rates (0.001–0.1 s−1). The DIC full-field strain analysis reveals that the clamping fixture significantly influences the tensile deformation mode of the anti-collision ring by constraining its inner wall movement, thereby altering strain distribution patterns. Despite exhibiting a corrosion gradient from severe underwater degradation to minimal surface weathering, all tested rings demonstrated consistent mechanical performance, verifying the robust protective capability of the rubber coating in marine service conditions. Full article
Show Figures

Figure 1

21 pages, 8433 KB  
Article
Development of an Advanced Wear Simulation Model for a Racing Slick Tire Under Dynamic Acceleration Loading
by Alfonse Ly, Christopher Yoon, Joseph Caruana, Omar Ibrahim, Oliver Goy, Moustafa El-Gindy and Zeinab El-Sayegh
Machines 2025, 13(8), 635; https://doi.org/10.3390/machines13080635 - 22 Jul 2025
Viewed by 808
Abstract
This study investigates the development of a tire wear model using finite element techniques. Experimental testing was conducted using the Hoosier R25B slick tire mounted onto a Mustang Dynamometer (MD-AWD-500) in the Automotive Center of Excellence, Oshawa, Ontario, Canada. A general acceleration/deceleration procedure [...] Read more.
This study investigates the development of a tire wear model using finite element techniques. Experimental testing was conducted using the Hoosier R25B slick tire mounted onto a Mustang Dynamometer (MD-AWD-500) in the Automotive Center of Excellence, Oshawa, Ontario, Canada. A general acceleration/deceleration procedure was performed until the battery was completely exhausted. A high-fidelity finite element tire model using Virtual Performance Solution by ESI Group, a part of Keysight Technologies, was developed, incorporating highly detailed material testing and constitutive modeling to simulate the tire’s complex mechanical behavior. In conjunction with a finite element model, Archard’s wear theory is implemented algorithmically to determine the wear and volume loss rate of the tire during its acceleration and deceleration procedures. A novel application using a modified wear theory incorporates the temperature dependence of tread hardness to measure tire wear. Experimental tests show that the tire loses 3.10 g of mass within 45 min of testing. The results from the developed finite element model for tire wear suggest a high correlation to experimental values. This study demonstrates the simulated model’s capability to predict wear patterns, ability to quantify tire degradation under dynamic loading conditions and provides valuable insights for optimizing performance and wear estimation. Full article
(This article belongs to the Special Issue Advanced Technologies in Vehicle Interior Noise Control)
Show Figures

Figure 1

36 pages, 3151 KB  
Article
Floristic Diversity and Stand Structure of Tree Species in Historical Rubber Plantations (Hevea brasiliensis Wild ex A. Juss) in Sankuru, DR Congo: Implications for Biodiversity Conservation
by Joël Mobunda Tiko, Serge Shakanye Ndjadi, Jean Pierre Azenge, Yannick Useni Sikuzani, Lebon Aganze Badesire, Prince Baraka Lucungu, Maurice Kesonga Nsele, Julien Bwazani Balandi, Jémima Lydie Obandza-Ayessa, Josué Muganda Matabaro, Jean Pierre Mate Mweru, Olivia Lovanirina Rakotondrasoa and Jean Pierre Meniko To Hulu
Conservation 2025, 5(3), 37; https://doi.org/10.3390/conservation5030037 - 21 Jul 2025
Viewed by 701
Abstract
The rubber plantations in Sankuru province, located in the Democratic Republic of Congo (DRC), have historically been pivotal to the regional economy. However, the absence of suitable silvicultural practices has promoted self-regeneration, resulting in the proliferation of diverse species. This study aims to [...] Read more.
The rubber plantations in Sankuru province, located in the Democratic Republic of Congo (DRC), have historically been pivotal to the regional economy. However, the absence of suitable silvicultural practices has promoted self-regeneration, resulting in the proliferation of diverse species. This study aims to characterize species richness and plant structure of these plantations. To this end, 80 subplots measuring 0.25 hectares were meticulously established, with a proportionate division between state-owned and farmer plantations. The results obtained from this study indicate that these plantations are home to approximately 105 species, classified into 33 distinct botanical families, with dominant families such as Fabaceae, Meliaceae, Euphorbiaceae, Olacaceae, Clusiaceae, and Moraceae. Despite the similarity between the two types of plantations (Cs = 58%), significant disparities were observed in terms of individuals, 635 ± 84.06 and 828 ± 144.62 (p < 10−3); species, 41 ± 7.49 and 28 ± 4.59 (p < 10−3); families, 19 ± 3.06 and 16 ± 1.62 (p < 10−2); and basal area, 29.88 ± 5.8 and 41.37 ± 7.57 (p < 10−2) for state and peasant plantations, respectively. State plantations exhibited greater diversity (H′ = 1.87) and enhanced equity (J’ = 0.43) than peasant plantations. The diametric structure exhibited an inverted J-shaped distribution, indicating constant and regular regeneration of these plantations. The upper canopy dominates the vertical structure in both types of plantations, with a significantly higher proportion in peasant plantations (83.60%) than in state plantations (73.8%), ANOVA (F (2.24 = 21.78), df = 24; p = 4.03 × 10−6). The findings indicate that the sustainable management of these plantations could incorporate agroecological principles to promote the coexistence of rubber production and biodiversity conservation while contributing to the restoration of degraded ecosystems and the well-being of local communities. Full article
Show Figures

Figure 1

17 pages, 2071 KB  
Article
Melatonin Enhances Drought Tolerance by Regulating the Genes Underlying Photosynthesis and Antioxidant Defense in Rubber Tree (Hevea brasiliensis) Seedlings
by Dejun Li, Zhihui Xia, Xuncheng Wang, Hong Yang and Yao Li
Plants 2025, 14(14), 2243; https://doi.org/10.3390/plants14142243 - 21 Jul 2025
Viewed by 518
Abstract
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and [...] Read more.
Melatonin (MT) can enhance plant stress tolerance by activating the internal defense system, but its application in rubber trees has been barely reported up to now. In this study, we found that the relative electrical conductivity (REC), H2O2, and malondialdehyde (MDA) contents were significantly higher in the leaves of rubber tree seedlings under drought stress compared to the control (water treatment), whereas chlorophyll contents were obviously lower in the leaves under drought stress compared to the control. MT partly relieves the aforementioned drought-induced adverse effects by dramatically reducing chlorophyll degradation, H2O2 accumulation, MDA content, and REC. Comparative transcriptomes among the PEG (P), MT (M), and PEG + MT (PM) treatments against the control showed that 213, 896, and 944 genes were differently expressed in rubber tree seedlings treated with M, P, and PM in contrast to the control. Among the 64 differently expressed genes (DEGs) being common among the three comparisons, the expression profiles of 25 were opposite in MH compared with PH. Intriguingly, all the KEGG pathways of the DEGs mentioned above belonged to metabolism including energy metabolism, carbohydrate metabolism, amino acid metabolism, and the metabolism of cofactors and vitamins. Exogenous application of MT mainly regulated the genes associated with photosynthesis and the anti-oxidative defense system, thereby enhancing the antioxidant protection of rubber tree seedlings under drought stress. These results suggest that exogenous melatonin application can effectively enhance drought tolerance by heightening ROS scavenging to decrease H2O2 accumulation in rubber tree seedlings. Our results elucidate the molecular mechanisms of MT’s roles in drought stress, which help to employ exogenous MT to boost drought tolerance in the rubber tree. Full article
(This article belongs to the Special Issue Metabolic Analysis of Plant Development and Defense Responses)
Show Figures

Figure 1

Back to TopTop