Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = rural energy access

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 653 KB  
Article
Energy and Nutrient Intake Gaps and Socioeconomic Determinants of Ultra-Processed and Less-Processed Foods Consumed in Ethiopia: Evidence from National Food Consumption Survey
by Kifle Habte Balcha, Stefanie Vandevijvere, Annette van Onselen, Muthulisi Siwela, Masresha Tessema, Nqobile Monate Mkolo, Tibebu Moges, Edith J. M. Feskens, Dejen Tesfaw and Inge D. Brouwer
Nutrients 2025, 17(17), 2818; https://doi.org/10.3390/nu17172818 - 29 Aug 2025
Viewed by 234
Abstract
Introduction: Consumption of ultra-processed food (UPF) is associated with poor diet quality and a risk for non-communicable diseases (NCDs). This study explores the energy contribution of NOVA foods and the nutrient gaps. Methods: The study sourced data from the previous Ethiopian National Food [...] Read more.
Introduction: Consumption of ultra-processed food (UPF) is associated with poor diet quality and a risk for non-communicable diseases (NCDs). This study explores the energy contribution of NOVA foods and the nutrient gaps. Methods: The study sourced data from the previous Ethiopian National Food Consumption Survey (NFCS). It covered 8254 households, 8254 women of reproductive age (15–45 years old), and 7272 children (6–45 months old). Results: The most consumed UPF in children were biscuits, cookies, soft drinks, and semi-solid palm oil; while cow and human milk, whole wheat bread, a range of legumes, tubers, and cereal-based foods were among NOVA1. In both children and women, the largest dietary energy intake was from NOVA1 (74.6% and 79.0%), processed culinary ingredients (18.3% and 14.0%), processed foods (1.9% and 3.5%), and UPF (5.1% and 3.5%), respectively. Higher intake of energy from UPF was found in urban residences, wealthier households, and women with higher education. However, NOVA1 was more dominantly consumed in rural than in urban areas. Micronutrient and macronutrient gaps were observed compared to the recommended nutrient intake (RNI). The intake of fruits and vegetables was also considerably low compared to the WHO recommendation (≥400 g/day for adults, and ≥250 g/day for children). Conclusions: Adequate intake of micronutrients, fruits, and vegetables is essential to meet the RNI and could have reduced existing body micronutrient deficiencies, such as vitamin A, zinc, iodine, calcium, vitamin D, and selenium prevalence. Whether UPF intake in urban areas is associated with insufficient availability and access to NOVA1 foods or just due to the higher provision of UPF and gained popularity needs additional investigation. Further study is recommended to simulate the impact of increased fruits and vegetables and/or reduced intake of selected UPF, salts, and oils on NCD markers or mortality in the country. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

16 pages, 2459 KB  
Article
Technoeconomic Assessment of Biogas Production from Organic Waste via Anaerobic Digestion in Subtropical Central Queensland, Australia
by H. M. Mahmudul, M. G. Rasul, R. Narayanan, D. Akbar and M. M. Hasan
Energies 2025, 18(17), 4505; https://doi.org/10.3390/en18174505 - 25 Aug 2025
Viewed by 401
Abstract
This study evaluates biogas production through the anaerobic digestion of food waste (FW), cow dung (CD), and green waste (GW), with the primary objective of determining the efficacy of co-digesting these organic wastes commonly generated by households and small farms in Central Queensland, [...] Read more.
This study evaluates biogas production through the anaerobic digestion of food waste (FW), cow dung (CD), and green waste (GW), with the primary objective of determining the efficacy of co-digesting these organic wastes commonly generated by households and small farms in Central Queensland, Australia. The investigation focuses on both experimental and technoeconomic aspects to support the development of accessible and sustainable energy solutions. A batch anaerobic digestion process was employed using a 1 L jacketed glass digester, simulating small-scale conditions, while technoeconomic feasibility was projected onto a 500 L digester operated without temperature control, reflecting realistic constraints for decentralized rural or residential systems. Three feedstock mixtures (100% FW, 50:50 FW:CD, and 50:25:25 FW:CD:GW) were tested to determine their impact on biogas yield and methane concentration. Experiments were conducted over 14 days, during which biogas production and methane content were monitored. The results showed that FW alone produced the highest biogas volume, but with a low methane concentration of 25%. Co-digestion with CD and GW enhanced methane quality, achieving a methane yield of 48% while stabilizing the digestion process. A technoeconomic analysis was conducted based on the experimental results to estimate the viability of a 500 L biodigester for small-scale use. The evaluation considered costs, benefits, and financial metrics, including Net Present Value (NPV), Internal Rate of Return (IRR), and Dynamic Payback Period (DPP). The biodigester demonstrated strong economic potential, with an NPV of AUD 2834, an IRR of 13.5%, and a payback period of 3.2 years. This study highlights the significance of optimizing feedstock composition and integrating economic assessments with experimental findings to support the adoption of biogas systems as a sustainable energy solution for small-scale, off-grid, or rural applications. Full article
(This article belongs to the Special Issue Biomass and Bio-Energy—2nd Edition)
Show Figures

Figure 1

27 pages, 3350 KB  
Article
Anaerobic Co-Digestion of Food Waste in Ghana: Biological Methane Potential and Process Stabilisation Challenges in a Rural Setting
by Raquel Arnal-Sierra, Simone Colantoni, Albert Awopone, Isaac Boateng, Kingsley Agyapong, Frederick Kwaku Sarfo, Daniele Molognoni and Eduard Borràs
Sustainability 2025, 17(17), 7590; https://doi.org/10.3390/su17177590 - 22 Aug 2025
Viewed by 388
Abstract
In rural Ghana, limited access to affordable, clean cooking fuels drives the need for decentralised waste-to-energy solutions. Anaerobic co-digestion (AcoD) offers a viable route for transforming organic residues into renewable energy, with the added benefit of improved process stability resulting from substrate synergy. [...] Read more.
In rural Ghana, limited access to affordable, clean cooking fuels drives the need for decentralised waste-to-energy solutions. Anaerobic co-digestion (AcoD) offers a viable route for transforming organic residues into renewable energy, with the added benefit of improved process stability resulting from substrate synergy. This study aims to evaluate the technical feasibility and stabilisation challenges of AcoD, using locally available fruit waste and beet molasses at a secondary school in Bedabour (Ghana). Biological methane potential (BMP) assays of different co-digestion mixtures were conducted at two inoculum-to-substrate (I/S) ratios (2 and 4), identifying the highest yield (441.54 ± 45.98 NmL CH4/g VS) for a mixture of 75% fruit waste and 25% molasses at an I/S ratio of 4. Later, this mixture was tested in a 6 L semi-continuous AcoD reactor. Due to the high biodegradability of the substrates, volatile fatty acid (VFA) accumulation led to acidification and process instability. Three low-cost mitigation strategies were evaluated: (i) carbonate addition using eggshell-derived sources, (ii) biochar supplementation to enhance buffering capacity, and (iii) the integration of a bioelectrochemical system (BES) into the AcoD recirculation loop. The BES was intended to support VFA removal and enhance methane recovery. Although they temporarily improved the biogas production, none of the strategies ensured long-term pH stability of the AcoD process. The results underscore the synergistic potential of AcoD to enhance methane yields but also reveal critical stability limitations under high-organic-loading conditions in low-buffering rural contexts. Future implementation studies should integrate substrates with higher alkalinity or adjusted organic loading rates to ensure sustained performance. These findings provide field-adapted insights for scaling-up AcoD as a viable renewable energy solution in resource-constrained settings. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

28 pages, 2453 KB  
Article
Optimizing Hybrid Renewable Systems for Critical Loads in Andean Medical Centers Using Metaheuristics
by Eliseo Zarate-Perez, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Electronics 2025, 14(16), 3273; https://doi.org/10.3390/electronics14163273 - 18 Aug 2025
Viewed by 308
Abstract
The electrification of rural medical centers in high Andean areas represents a critical challenge for equitable development due to limited access to reliable energy. Hybrid Renewable Energy Systems (HRESs), which combine solar photovoltaic generation, Battery Energy Storage Systems (BESSs), and backup diesel generators, [...] Read more.
The electrification of rural medical centers in high Andean areas represents a critical challenge for equitable development due to limited access to reliable energy. Hybrid Renewable Energy Systems (HRESs), which combine solar photovoltaic generation, Battery Energy Storage Systems (BESSs), and backup diesel generators, are emerging as viable solutions to ensure the supply of critical loads. However, their effective implementation requires optimal sizing methodologies that consider multiple technical and economic constraints and objectives. In this study, an optimization model based on metaheuristic algorithms is developed, specifically, Genetic Algorithm (GA), Particle Swarm Optimization (PSO), and Ant Colony Optimization (ACO), to identify optimal configurations of an HRES applied to a remote medical center in the Peruvian Andes. The results show that GA achieved the lowest Life Cycle Cost (LCC), with a high share of renewable energy (64.04%) and zero Energy Not Supplied (ENS) defined as the amount of load demand not met by the system, significantly outperforming PSO and ACO. GA was also found to offer greater stability and operational robustness. These findings confirm the effectiveness of metaheuristic methods for designing efficient and resilient energy solutions adapted to isolated rural contexts. Full article
Show Figures

Figure 1

23 pages, 892 KB  
Review
Social Impacts of Shale Oil Extraction: A Multidisciplinary Review of Community and Institutional Change
by Hannah Z. Hendricks, Elizabeth Long-Meek, Haylie M. June, Ashley R. Kernan and Michael R. Cope
Soc. Sci. 2025, 14(8), 493; https://doi.org/10.3390/socsci14080493 - 13 Aug 2025
Viewed by 431
Abstract
The global expansion of shale oil and gas extraction has generated widespread attention for its environmental, economic, and political implications. However, its social consequences remain less systematically assessed. This review synthesizes interdisciplinary research on how shale energy development affects communities, particularly in rural [...] Read more.
The global expansion of shale oil and gas extraction has generated widespread attention for its environmental, economic, and political implications. However, its social consequences remain less systematically assessed. This review synthesizes interdisciplinary research on how shale energy development affects communities, particularly in rural and resource-dependent regions. While extraction activities may generate economic opportunities and strengthen national energy security, they are also associated with population influx, pressure on infrastructure, housing shortages, public health risks, and increased political polarization. These impacts can alter social relationships, institutional trust, and access to essential services. By organizing and analyzing key themes in the social science literature, this review offers a structured overview of how shale energy development shapes local experiences and social systems. The goal of the present paper is to support researchers, policymakers, and community stakeholders in understanding the civic, communal, and public dimensions of energy transitions and in developing more equitable and sustainable policy responses. Full article
Show Figures

Figure A1

21 pages, 863 KB  
Article
Examination of the Factors of Multidimensional Energy Poverty in a Hungarian Rural Settlement
by Mónika Rákos, Laura Mihály-Karnai, Dániel Fróna and Csaba Csetneki
Energies 2025, 18(16), 4287; https://doi.org/10.3390/en18164287 - 12 Aug 2025
Viewed by 320
Abstract
Energy poverty is a multidimensional phenomenon that impairs access to basic energy services and threatens social well-being, particularly in disadvantaged rural communities. This study investigates the extent and drivers of household energy poverty in a Hungarian village through a survey-based analysis (N = [...] Read more.
Energy poverty is a multidimensional phenomenon that impairs access to basic energy services and threatens social well-being, particularly in disadvantaged rural communities. This study investigates the extent and drivers of household energy poverty in a Hungarian village through a survey-based analysis (N = 257) conducted in early 2025. The sample is not nationally representative, however, it reflects approximately 20% of the total village population (1331 inhabitants). This study aims to identify vulnerable household profiles, explore correlations between socio-economic and housing factors and perceived thermal comfort, and compare the effectiveness of multiple measurement indicators the 10% rule, low income high cost, 2M, and M/2. We employ descriptive statistics, Pearson correlation, Fuzzy C-Means clustering, and linear regression, revealing that over half of the sample is energy poor according to the 10% rule, while the LIHC method identifies 29%. Our regression results confirm that cluster membership significantly influences perceived comfort levels (R2 = 0.063, p = 0.002). We conclude that single-indicator approaches are insufficient to capture the nuanced realities of rural energy poverty, therefore, we recommend the development of a rural energy poverty index. Such a tool could help identify affected households and support the formulation of context-sensitive, evidence-based energy and social policy interventions. Full article
Show Figures

Figure 1

17 pages, 507 KB  
Article
The Impact of Rural Energy Poverty on Primary Health Services Efficiency: The Case of China
by Xiangdong Sun, Xinyi Zheng, Shulei Li, Jinhao Zhang and Hongxu Shi
Systems 2025, 13(8), 675; https://doi.org/10.3390/systems13080675 - 8 Aug 2025
Viewed by 293
Abstract
Primary healthcare is vital to achieving universal health coverage, as emphasized by Sustainable Development Goal 3 (SDG 3). However, energy poverty remains a critical yet overlooked barrier to the efficiency of primary healthcare services in rural China—precisely the focus of this study. It [...] Read more.
Primary healthcare is vital to achieving universal health coverage, as emphasized by Sustainable Development Goal 3 (SDG 3). However, energy poverty remains a critical yet overlooked barrier to the efficiency of primary healthcare services in rural China—precisely the focus of this study. It employs panel regression models and threshold analysis methods using data from 31 Chinese provinces for the period 2014–2021, sourced from the EPSDATA data platform. Robustness checks are performed using bootstrap procedures, accompanied by detailed mechanism analyses. The empirical results demonstrate that rural energy poverty significantly reduces primary healthcare efficiency, particularly in provinces initially characterized by lower healthcare performance. The mechanism analysis identifies four critical transmission channels—off-farm employment, internet intensity, food safety, and health education—through which rural energy poverty undermines healthcare outcomes. Furthermore, threshold regressions uncover nonlinear relationships, indicating that the negative impacts of rural energy poverty intensify when household medical expenditures exceed 10.9%, the old-age dependency ratio surpasses 22.61%, and the rural energy poverty index is higher than 0.641. In theoretical terms, this study identifies rural energy poverty as a critical determinant of primary healthcare efficiency, thereby addressing an important gap in the existing literature. At the policy level, the findings emphasize the necessity for integrated measures targeting both rural energy poverty and primary healthcare inefficiencies to achieve SDG 3 and sustainably promote equitable, high-quality healthcare access in rural China. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

16 pages, 715 KB  
Review
Public Perceptions and Social Acceptance of Renewable Energy Projects in Epirus, Greece: The Role of Education, Demographics and Visual Exposure
by Evangelos Tsiaras, Stergios Tampekis and Costas Gavrilakis
World 2025, 6(3), 111; https://doi.org/10.3390/world6030111 - 6 Aug 2025
Cited by 1 | Viewed by 475
Abstract
The social acceptance of Renewable Energy Sources (RESs) is a decisive factor in the successful implementation of clean energy projects. This study explores the attitudes, demographic profiles, and common misconceptions of citizens in the Region of Epirus, Greece, toward photovoltaic and wind energy [...] Read more.
The social acceptance of Renewable Energy Sources (RESs) is a decisive factor in the successful implementation of clean energy projects. This study explores the attitudes, demographic profiles, and common misconceptions of citizens in the Region of Epirus, Greece, toward photovoltaic and wind energy installations. Special attention is given to the role of education, age, and access to information—as well as spatial factors such as visual exposure—in shaping public perceptions and influencing acceptance of RES deployment. A structured questionnaire was administered to 320 participants across urban and rural areas, with subdivision between regions with and without visual exposure to RES infrastructure. Findings indicate that urban residents exhibit greater acceptance of RES, while rural inhabitants—especially those in proximity to installations—express skepticism, often grounded in esthetic concerns or perceived procedural injustice. Misinformation and lack of knowledge dominate in areas without visual contact. Statistical analysis confirms that younger and more educated participants are more supportive and environmentally aware. The study highlights the importance of targeted educational interventions, transparent consultation, and spatially sensitive communication strategies in fostering constructive engagement with renewable energy projects. The case of Epirus underscores the need for inclusive, place-based policies to bridge the social acceptance gap and support the national energy transition. Full article
Show Figures

Graphical abstract

26 pages, 1033 KB  
Article
Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments
by Daniel Sernández-Iglesias, Llanos Tobarra, Rafael Pastor-Vargas, Antonio Robles-Gómez, Pedro Vidal-Balboa and João Sarraipa
Future Internet 2025, 17(8), 351; https://doi.org/10.3390/fi17080351 - 1 Aug 2025
Viewed by 394
Abstract
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and [...] Read more.
Rural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions. Full article
Show Figures

Figure 1

13 pages, 373 KB  
Article
Impact Assessment of Rural Electrification Through Photovoltaic Kits on Household Expenditures and Income: The Case of Morocco
by Abdellah Oulakhmis, Rachid Hasnaoui and Youness Boudrik
Economies 2025, 13(8), 224; https://doi.org/10.3390/economies13080224 - 31 Jul 2025
Viewed by 480
Abstract
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using [...] Read more.
This study evaluates the socio-economic impact of rural electrification through photovoltaic (PV) systems in Morocco. As part of the country’s broader energy transition strategy, decentralized renewable energy solutions like PV kits have been deployed to improve energy access in isolated rural areas. Using quasi-experimental econometric techniques, specifically propensity score matching (PSM) and estimation of the Average Treatment Effect on the Treated (ATT), the study measures changes in household income, expenditures, and economic activities resulting from PV electrification. The results indicate significant positive effects on household income, electricity spending, and productivity in agriculture and livestock. These findings highlight the critical role of decentralized renewable energy in advancing rural development and poverty reduction. Policy recommendations include expanding PV access with complementary support measures such as microfinance and technical training. Full article
Show Figures

Figure 1

30 pages, 3898 KB  
Article
Application of Information and Communication Technologies for Public Services Management in Smart Villages
by Ingrida Kazlauskienė and Vilma Atkočiūnienė
Businesses 2025, 5(3), 31; https://doi.org/10.3390/businesses5030031 - 31 Jul 2025
Viewed by 531
Abstract
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how [...] Read more.
Information and communication technologies (ICTs) are becoming increasingly important for sustainable rural development through the smart village concept. This study aims to model ICT’s potential for public services management in European rural areas. It identifies ICT applications across rural service domains, analyzes how these technologies address specific rural challenges, and evaluates their benefits, implementation barriers, and future prospects for sustainable rural development. A qualitative content analysis method was applied using purposive sampling to analyze 79 peer-reviewed articles from EBSCO and Elsevier databases (2000–2024). A deductive approach employed predefined categories to systematically classify ICT applications across rural public service domains, with data coded according to technology scope, problems addressed, and implementation challenges. The analysis identified 15 ICT application domains (agriculture, healthcare, education, governance, energy, transport, etc.) and 42 key technology categories (Internet of Things, artificial intelligence, blockchain, cloud computing, digital platforms, mobile applications, etc.). These technologies address four fundamental rural challenges: limited service accessibility, inefficient resource management, demographic pressures, and social exclusion. This study provides the first comprehensive systematic categorization of ICT applications in smart villages, establishing a theoretical framework connecting technology deployment with sustainable development dimensions. Findings demonstrate that successful ICT implementation requires integrated urban–rural cooperation, community-centered approaches, and balanced attention to economic, social, and environmental sustainability. The research identifies persistent challenges, including inadequate infrastructure, limited digital competencies, and high implementation costs, providing actionable insights for policymakers and practitioners developing ICT-enabled rural development strategies. Full article
Show Figures

Figure 1

10 pages, 1309 KB  
Proceeding Paper
A Sustainable Approach to Cooking: Design and Evaluation of a Sun-Tracking Concentrated Solar Stove
by Hasan Ali Khan, Malik Hassan Nawaz, Main Omair Gul and Mazhar Javed
Mater. Proc. 2025, 23(1), 4; https://doi.org/10.3390/materproc2025023004 - 29 Jul 2025
Viewed by 313
Abstract
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, [...] Read more.
Access to clean cooking remains a major challenge in rural and off-grid areas where traditional fuels are costly, harmful, or scarce. Solar cooking offers a sustainable solution, but many existing systems suffer from fixed positioning and low efficiency. This study presents a low-cost, dual-axis solar tracking parabolic dish cooker designed for such regions, featuring adjustable pot holder height and portability for ease of use. The system uses an Arduino UNO, LDR sensors, and a DC gear motor to automate sun tracking, ensuring optimal alignment throughout the day. A 0.61 m parabolic dish with ≥97% reflective silver-coated mirrors concentrates sunlight to temperatures exceeding 300 °C. Performance tests in April, June, and November showed boiling times as low as 3.37 min in high-irradiance conditions (7.66 kWh/m2/day) and 6.63 min under lower-irradiance conditions (3.86 kWh/m2/day). Compared to fixed or single-axis systems, this design achieved higher thermal efficiency and reliability, even under partially cloudy skies. Built with locally available materials, the system offers an affordable, clean, and effective cooking solution that supports energy access, health, and sustainability in underserved communities. Full article
Show Figures

Figure 1

18 pages, 5991 KB  
Article
Sustainability Assessment of Rural Biogas Production and Use Through a Multi-Criteria Approach: A Case Study in Colombia
by Franco Hernan Gomez, Nelson Javier Vasquez, Kelly Cristina Torres, Carlos Mauricio Meza and Mentore Vaccari
Sustainability 2025, 17(15), 6806; https://doi.org/10.3390/su17156806 - 26 Jul 2025
Viewed by 1107
Abstract
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels [...] Read more.
There is still a need to develop scenarios and models aimed at substituting fuelwood and reducing the use of fossil fuels such as liquefied petroleum gas (LPG), on which low-income rural households in the Global South often depend. The use of these fuels for cooking and heating in domestic and productive activities poses significant health and environmental risks. This study validated, in three different phases, the sustainability of a model for the production and use of biogas from the treatment of swine-rearing wastewater (WWs) on a community farm: (i) A Multi-Criteria Analysis (MCA), incorporating environmental, social/health, technical, and economic criteria, identified the main weighted criterion to C8 (use of small-scale technologies and low-cost access), with a score of 0.44 points, as well as the Tubular biodigester (Tb) as the most suitable option for the study area, scoring 8.1 points. (ii) Monitoring of the Tb over 90 days showed an average biogas production of 2.6 m3 d−1, with average correlation 0.21 m3 Biogas kg Biomass−1. Using the experimental biogas production rate (k = 0.0512 d−1), the process was simulated with the BgMod model, achieving an average deviation of only 10.4% during the final production phase. (iii) The quantification of benefits demonstrated significant reductions in firewood use: in Scenario S1 (kitchen energy needs), biogas replaced 83.1% of firewood, while in Scenario S2 (citronella essential oil production), the substitution rate was 24.1%. In both cases, the avoided emissions amounted to 0.52 tons of CO2eq per month. Finally, this study proposes a synthesised, community-based rural biogas framework designed for replication in regions with similar socio-environmental, technical, and economic conditions. Full article
Show Figures

Figure 1

22 pages, 3505 KB  
Review
Solar Energy Solutions for Healthcare in Rural Areas of Developing Countries: Technologies, Challenges, and Opportunities
by Surafel Kifle Teklemariam, Rachele Schiasselloni, Luca Cattani and Fabio Bozzoli
Energies 2025, 18(15), 3908; https://doi.org/10.3390/en18153908 - 22 Jul 2025
Viewed by 905
Abstract
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to [...] Read more.
Recently, solar energy technologies are a cornerstone of the global effort to transition towards cleaner and more sustainable energy systems. However, in many rural areas of developing countries, unreliable electricity severely impacts healthcare delivery, resulting in reduced medical efficiency and increased risks to patient safety. This review explores the transformative potential of solar energy as a sustainable solution for powering healthcare facilities, reducing dependence on fossil fuels, and improving health outcomes. Consequently, energy harvesting is a vital renewable energy source that captures abundant solar and thermal energy, which can sustain medical centers by ensuring the continuous operation of life-saving equipment, lighting, vaccine refrigeration, sanitation, and waste management. Beyond healthcare, it reduces greenhouse gas emissions, lowers operational costs, and enhances community resilience. To address this issue, the paper reviews critical solar energy technologies, energy storage systems, challenges of energy access, and successful solar energy implementations in rural healthcare systems, providing strategic recommendations to overcome adoption challenges. To fulfill the aims of this study, a focused literature review was conducted, covering publications from 2005 to 2025 in the Scopus, ScienceDirect, MDPI, and Google Scholar databases. With targeted investments, policy support, and community engagement, solar energy can significantly improve healthcare access in underserved regions and contribute to sustainable development. Full article
Show Figures

Figure 1

29 pages, 1372 KB  
Article
Whether Digital Villages Can Alleviate Towns–Rural Clean Energy Consumption Inequality in China?
by Xin Wen, Jiaxin Wen and Zhibo Yu
Sustainability 2025, 17(14), 6599; https://doi.org/10.3390/su17146599 - 19 Jul 2025
Viewed by 643
Abstract
The equitable allocation of clean energy access across towns–rural divides is a critical benchmark of modernization in developing economies. This is because it is intricately linked to the realization of strategic goals such as shared prosperity, ecological civilization advancement, and national energy security [...] Read more.
The equitable allocation of clean energy access across towns–rural divides is a critical benchmark of modernization in developing economies. This is because it is intricately linked to the realization of strategic goals such as shared prosperity, ecological civilization advancement, and national energy security reinforcement. This research examines the impact of China’s digital village (DV) construction in reducing the urban–rural disparity in household clean energy access, evaluates the effect on towns–rural clean energy consumption inequality (CEI), explores the mediating mechanisms, and considers regional heterogeneity. It is an innovative approach to test the influence of digital village construction on clean energy consumption inequality between urban and rural areas, beyond which conventional research is limited to infrastructure investment and policy considerations. We can reach the following three results: (1) With the continuous improvement of digital village construction, CEI between towns and rural areas shows an “inverted U-shaped” change. (2) From the perspective of the intermediary mechanism, agricultural technological progress (ATP) and industrial structure upgrading (IND) can facilitate digital village construction and reduce the disparity in clean energy consumption between towns and rural regions. (3) From the perspective of heterogeneity analysis, digital village construction in areas with low urbanization levels, high terrain undulation, and non-clean energy demonstration provinces can significantly alleviate CEI. It is on this basis that the present paper proposes a policy recommendation for the Chinese government to effectively reduce the gap between towns and rural clean energy consumption in the process of digital village construction. Full article
Show Figures

Figure 1

Back to TopTop