Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = rutting distress prevention

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5191 KB  
Article
Second Distress Mechanism of Repaired Potholes and Performance Evaluation of Repair Techniques from Multiple Perspectives
by Wei Zhang, Shan Zuo, Ke Zhang, Zongzhi Liu, Yumeng Sun and Bubu Ding
Coatings 2025, 15(10), 1188; https://doi.org/10.3390/coatings15101188 - 10 Oct 2025
Abstract
Potholes are typical scattered distresses on asphalt pavements, severely impairing traffic safety and pedestrian safety due to delayed repair time and secondary distress. Aiming to extend the service life of repaired potholes, this study develops a pothole repair technique characterized by repair materials [...] Read more.
Potholes are typical scattered distresses on asphalt pavements, severely impairing traffic safety and pedestrian safety due to delayed repair time and secondary distress. Aiming to extend the service life of repaired potholes, this study develops a pothole repair technique characterized by repair materials with superior performance and adhesive materials with high bonding strength. Firstly, the mechanical analysis for repaired potholes was conducted via finite element simulation, and thereafter, corresponding technical measures were derived to prevent the recurrence of distress in repaired potholes. Secondly, according to the material composition of solvent-based cold-mix asphalt (SCMA) and emulsified-based cold-mix asphalt (ECMA), pavement performance testing methods were proposed to test and evaluate their forming strength, high-temperature stability, low-temperature crack resistance, and water stability. On this basis, interlayer shear tests, pull-out tests, and field pothole repair cases with varying repair materials and adhesive materials were conducted, and the interfacial bonding strengths with the old pavement were then compared to optimize the pothole re-pair technique. The results showed that (1) increasing the repair material modulus and interfacial friction coefficient reduces the pressure strain (σy) and pressure stress (εy), thereby decreasing the risk of secondary dis-tress; (2) ECMA exhibits superior pavement performance, with strength and rutting resistance 49.7%–64.6% higher than SCMA; (3) the combination of ECMA and WER-EA achieves the highest interfacial pull-out and shear strengths, with their values 76.7%–78.2% higher than SCMA+WER-EA); and (4) after 1 year of opening to traffic, potholes repaired with ECMA+WER-EA show minimal thickness loss of 0.2 cm and no aggregate peeling at the edges, thus being recommended as the optimal solution for repairing potholes. This study clarifies the secondary distress mechanism of repaired potholes and provides an optimal repair scheme (ECMA+WER-EA) for engineering applications. Full article
Show Figures

Figure 1

33 pages, 4961 KB  
Article
Infrastructure in the Age of Pandemics: Utilizing Polypropylene-Based Mask Waste for Durable and Sustainable Road Pavements
by Nader Nciri and Namho Kim
Polymers 2023, 15(24), 4624; https://doi.org/10.3390/polym15244624 - 5 Dec 2023
Cited by 5 | Viewed by 1909
Abstract
When navigating the environmental exigencies precipitated by global pandemics, the escalation of mask waste presents a multifaceted dilemma. In this avant-garde research, we unveil a novel approach: harnessing the sterilized shredded mask residues (SMRs), predominantly composed of 100 wt. % polypropylene, as pioneering [...] Read more.
When navigating the environmental exigencies precipitated by global pandemics, the escalation of mask waste presents a multifaceted dilemma. In this avant-garde research, we unveil a novel approach: harnessing the sterilized shredded mask residues (SMRs), predominantly composed of 100 wt. % polypropylene, as pioneering modifiers for asphalt. Distinct proportions of SMR (e.g., 3, 6, and 9 wt. %) were judiciously integrated with fresh–virgin base AP-5 asphalt and subjected to an extensive suite of state-of-the-art examinations, encompassing thin-layer chromatography-flame ionization detection (TLC-FID), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and specific rheological metrics. The TLC-FID diagnostic trajectories highlighted the nuanced rejuvenating influence of SMR on the binder, a facet reinforced by a pronounced elevation in the thermodynamic stability index (IC). The FT-IR spectra elucidated SMR’s preeminent role as a filler, negating notions of chemical reactivity. The TGA analyses unveiled an elevated thermal onset of degradation, signposting enhanced thermal resilience, whereas the DSC readings illuminated a superior thermal comportment at lower extremities. The SEM evaluations rendered a clearer panorama: there was heightened textural perturbation at escalated SMR incorporations, yet the 3 wt. % concoction showcased an optimal, coherent microtexture symbiosis with asphalt. The rheological scrutinies revealed a systematic trajectory: a diminishing penetration and ductility countered by ascending softening points and viscosity metrics. The coup de maître stemmed from the DSR analyses, unequivocally validating SMR’s unparalleled prowess in curtailing rutting distress. This seminal inquiry not only posits a blueprint for refined pavement longevity but also champions a sustainable countermeasure to pandemic-propelled waste, epitomizing the confluence of environmental prudence an d infrastructural fortitude. Full article
(This article belongs to the Special Issue Recycling and Resource Recovery of Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop