Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (728)

Search Parameters:
Keywords = sailing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7045 KB  
Article
An Iterative Physical Acoustics Method for Modeling Acoustic Scattering by Penetrable Objects
by Wenhuan Wang, Yi Xie, Bin Wang and Jun Fan
J. Mar. Sci. Eng. 2025, 13(9), 1611; https://doi.org/10.3390/jmse13091611 - 23 Aug 2025
Viewed by 54
Abstract
Efficient modeling of acoustic scattering from water-filled thin shells remains challenging due to prohibitive computational costs of rigorous methods and oversimplifications in ray-based approximations. This paper develops an iterative physical acoustics (IPA) method, presenting simple and explicit formulations for scattering by penetrable objects [...] Read more.
Efficient modeling of acoustic scattering from water-filled thin shells remains challenging due to prohibitive computational costs of rigorous methods and oversimplifications in ray-based approximations. This paper develops an iterative physical acoustics (IPA) method, presenting simple and explicit formulations for scattering by penetrable objects immersed in fluids. The method combines Kirchhoff integral frameworks with thin-plate effective boundary conditions, discretizes mid-surfaces into triangular facets, and iteratively converges pressure fields to characterize the mechanisms of multiple reflections and transmissions. Validated against analytical solutions, numerical simulations, and scaled experiments, IPA provides comprehensive field predictions encompassing internal cavity fields, external near-fields, and far-field scattering patterns within a unified framework. It achieves significant computational efficiency gains while maintaining engineering practicality, successfully reproducing distant-range highlights from these mechanisms in time-domain spectra. Limitations are observed at low frequencies and high-curvature regions where elastic-wave effects become significant. The IPA framework enables engineering-efficient scattering analysis for complex thin-shell structures. Full article
(This article belongs to the Special Issue Underwater Acoustic Field Modulation Technology)
Show Figures

Figure 1

16 pages, 4451 KB  
Article
Decoding Sails on a Ship Model
by Sanja Serhatlić, Marijana Murati, Danijela Jemo and Lucia Emanuele
Heritage 2025, 8(8), 341; https://doi.org/10.3390/heritage8080341 - 21 Aug 2025
Viewed by 73
Abstract
This article focuses on the model of a sailing ship from the collection of the Maritime Museum in Orebić, Croatia, whose sails conceal material, visual, and symbolic enigmas that have raised a number of new research questions. Particular attention was paid to the [...] Read more.
This article focuses on the model of a sailing ship from the collection of the Maritime Museum in Orebić, Croatia, whose sails conceal material, visual, and symbolic enigmas that have raised a number of new research questions. Particular attention was paid to the analysis of the sail substrate material, which was previously incorrectly catalogued as leather, while research has revealed that it is, in fact, impregnated canvas. Prolonged exposure to inadequate storage conditions led to material deterioration and visible changes that severely compromised the visual integrity of the model. A synthesis of laboratory analyses, conservation, and restoration studies, as well as historical and archival research in an interdisciplinary framework, made it possible to identify materials and manufacturing techniques in detail. The painted decorations on the sails and flags become clearly legible after cleaning, providing new information about the ship’s name and royal affiliation and opening up new avenues for investigating the symbolism behind the motifs of this model. Full article
Show Figures

Figure 1

18 pages, 2540 KB  
Article
Using Solar Sails to Rendezvous with Asteroid 2024 YR4
by Alessandro A. Quarta
Technologies 2025, 13(8), 373; https://doi.org/10.3390/technologies13080373 - 20 Aug 2025
Viewed by 132
Abstract
This paper aims to present a set of possible transfer trajectories for a rendezvous mission with asteroid 2024 YR4, using a spacecraft propelled by a photonic solar sail. Asteroid 2024 YR4 was discovered in late December 2024 and was briefly classified as Torino [...] Read more.
This paper aims to present a set of possible transfer trajectories for a rendezvous mission with asteroid 2024 YR4, using a spacecraft propelled by a photonic solar sail. Asteroid 2024 YR4 was discovered in late December 2024 and was briefly classified as Torino Scale 3 for three weeks in early 2025, before being downgraded to zero at the end of February. In this study, rapid Earth-to-asteroid transfers are analyzed by solving a typical optimal control problem, in which the thrust vector generated by the solar sail is modeled using the optical force approach. Numerical simulations are carried out assuming a low-to-medium performance solar sail, considering both a simplified orbit-to-orbit transfer and a more accurate scenario that incorporates the actual ephemerides of the celestial bodies. The numerical results indicate that a medium-performance solar sail can reach asteroid 2024 YR4, achieving the global minimum flight time and arriving before its perihelion passage in late December 2032. Full article
Show Figures

Figure 1

16 pages, 4147 KB  
Article
Design and Aerodynamic Analysis of Rigid Wing Sail of Unmanned Sailboat at Sea Based on CFD
by Changbin Xu, Cunwei Tian, Huimin Wang and Tianci Ding
Appl. Sci. 2025, 15(16), 9052; https://doi.org/10.3390/app15169052 - 16 Aug 2025
Viewed by 335
Abstract
As a novel type of ocean monitoring tool, unmanned sailboats exhibit significant application potential. In this study, a novel wing sail structure for offshore unmanned sailboats is proposed and its performance compared with that of the conventional NACA 0021 wing sail. The Reynolds-averaged [...] Read more.
As a novel type of ocean monitoring tool, unmanned sailboats exhibit significant application potential. In this study, a novel wing sail structure for offshore unmanned sailboats is proposed and its performance compared with that of the conventional NACA 0021 wing sail. The Reynolds-averaged Navier–Stokes (RANS) equations are employed for numerical analysis, and the aerodynamic performance is evaluated using ANSYS Fluent. The results indicate that the lift coefficient and lift-to-drag ratio of the HF-14-CE-01 wing sail are significantly superior to those of the NACA 0021 wing sail. Compared to the NACA 0021 wing sail, the HF-14-CE-01 wing sail has undergone structural optimization. The HF-14-CE-01 wing sail demonstrates improved wind direction efficiency, uniform force distribution, ease of adjustment, and extends the service life of the sail. Subsequent research examined the influence of aspect ratio on both the aerodynamic performance of the wing sail and the thrust generated by the unmanned sailboat, identifying an optimal aspect ratio of 4 for the HF-14-CE-01 wing sail. Analysis of the velocity and static pressure contour maps for the HF-14-CE-01 wing sail identified a critical angle of attack of 28°, providing a clear visual representation of its aerodynamic performance. Furthermore, compared with other rigid sail designs, the HF-14-CE-01 wing sail achieved a 30.9% increase in peak lift coefficient, indicating superior propulsion capability. Full article
Show Figures

Figure 1

28 pages, 3360 KB  
Article
Dynamic Surrogate Model-Driven Multi-Objective Shape Optimization for Photovoltaic-Powered Underwater Vehicle
by Chenyu Wang, Likun Peng, Jiabao Chen, Wei Pan, Jia Chen and Huarui Wang
J. Mar. Sci. Eng. 2025, 13(8), 1535; https://doi.org/10.3390/jmse13081535 - 10 Aug 2025
Viewed by 352
Abstract
In this study, a multi-objective shape optimization framework was established for photovoltaic-powered underwater vehicles (PUVs) to systematically investigate multidisciplinary coupled design methodologies. Specifically, a global sensitivity analysis was conducted to identify four critical design parameters with 24 h energy consumption and cabin volume [...] Read more.
In this study, a multi-objective shape optimization framework was established for photovoltaic-powered underwater vehicles (PUVs) to systematically investigate multidisciplinary coupled design methodologies. Specifically, a global sensitivity analysis was conducted to identify four critical design parameters with 24 h energy consumption and cabin volume serving as dual optimization objectives. An integrated automated optimization workflow was constructed by incorporating parametric modeling, computational fluid dynamics (CFD) simulations, and dynamic surrogate models. Additionally, a new phased hybrid adaptive lower confidence bound (PHA-LCB) infill criterion was designed under the consideration of error-driven mechanisms, improvement feedback loops, and iterative attenuation factors to develop high-precision dynamic surrogate models. Coupled with the NSGA-II multi-objective genetic algorithm, this framework generated Pareto-optimal front solutions possessing significant engineering value. Furthermore, an optimal design configuration was ultimately determined through multi-criteria decision analysis. Compared to the initial form, it generates an additional 1148.12 Wh of electrical energy within 24 h, with an 22.36% increase in sailing range and a 2.77% improvement in cabin volume capacity. The proposed closed-loop “modeling–simulation–optimization” framework realized multi-objective optimization of PUV shape parameters, providing methodological paradigms and technical foundations for the engineering design of next-generation autonomous underwater vehicles. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 4240 KB  
Article
Heliocentric Orbital Repositioning of a Sun-Facing Diffractive Sail with Controlled Binary Metamaterial Arrayed Grating
by Alessandro A. Quarta
Appl. Sci. 2025, 15(15), 8755; https://doi.org/10.3390/app15158755 - 7 Aug 2025
Viewed by 314
Abstract
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation [...] Read more.
This paper investigates the performance of a spacecraft equipped with a diffractive sail in a heliocentric mission scenario that requires phasing along a prescribed elliptical orbit. The diffractive sail represents an evolution of the more traditional reflective solar sail, which converts solar radiation pressure into thrust using a large reflective surface typically coated with a thin metallic film. In contrast, the diffractive sail proposed by Swartzlander leverages the properties of an advanced metamaterial-based film to generate a net transverse thrust even when the sail is Sun-facing, i.e., in a configuration that can be passively maintained by a suitably designed spacecraft. Specifically, this study considers a sail membrane covered with a set of electro-optically controlled diffractive panels. These panels employ a (controlled) binary metamaterial arrayed grating to steer the direction of photons exiting the diffractive film. This control technique has recently been applied to achieve a circle-to-circle interplanetary transfer using a Sun-facing diffractive sail. In this work, an optimal control law is employed to execute a rapid phasing maneuver along an elliptical heliocentric orbit with specified characteristics, such as those of Earth and Mercury. The analysis also includes a limiting case involving a circular heliocentric orbit. For this latter scenario, a simplified and elegant control law is proposed based on a linearized form of the equations of motion to describe the heliocentric dynamics of the diffractive sail-based spacecraft during the phasing maneuver. Full article
Show Figures

Figure 1

25 pages, 3220 KB  
Article
Distributed Energy Management for Ship-Integrated Energy System Under Marine Environmental Risk Field
by Yuxin Zhang, Yang Xiao and Tieshan Li
Energies 2025, 18(15), 4163; https://doi.org/10.3390/en18154163 - 6 Aug 2025
Viewed by 247
Abstract
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. [...] Read more.
To reduce carbon emissions in the shipping industry, the energy management problem of the ship-integrated energy system (S-IES) is analyzed in this paper. Firstly, a marine environmental risk field model is constructed to quantify the degree of hazard when designing the sailing route. Meanwhile, an energy management model that considers both economic and environmental benefits is developed to enhance the penetration rate of renewable resources. Subsequently, a distributed energy management algorithm based on finite-time consensus theory is proposed to ensure a rapid and accurate response to load demand. Moreover, a mathematical analysis is provided to demonstrate the algorithm’s effectiveness. Finally, the sea area between Singapore Port (Singapore) and Penang Port (Malaysia) is chosen as the simulation environment. The experimental results demonstrate the effectiveness of energy management for the S-IES. Full article
Show Figures

Figure 1

12 pages, 21873 KB  
Article
Multi-Sensor System for Analysis of Maneuver Performance in Olympic Sailing
by Eirik E. Semb, Erlend Stendal, Karen Dahlhaug and Martin Steinert
Appl. Sci. 2025, 15(15), 8629; https://doi.org/10.3390/app15158629 - 4 Aug 2025
Viewed by 428
Abstract
This paper presents a novel multi-sensor system for enhanced maneuver analysis in Olympic dinghy sailing. In the ILCA class, there is an increasing demand for precise in-field measurement and analysis of physical properties beyond well-established velocity and course metrics. The low-cost setup presented [...] Read more.
This paper presents a novel multi-sensor system for enhanced maneuver analysis in Olympic dinghy sailing. In the ILCA class, there is an increasing demand for precise in-field measurement and analysis of physical properties beyond well-established velocity and course metrics. The low-cost setup presented in this study consists of a combination of commercially available sensor systems, such as the AdMos sensor for IMU and GNSS measurement, in combination with custom measurement systems for rudder and mast rotations using fully waterproofed potentiometers. Data streams are synchronized using GNSS time stamping for streamlined analysis. The resulting analysis presents a selection of 12 upwind tacks, with corresponding path overlays, detailed timeseries data, and performance metrics. The system has demonstrated the value of extended data analysis of in situ data with an elite ILCA 7 sailor. The addition of rudder and mast rotations has enabled enhanced analysis of on-water maneuvers for single-handed Olympic dinghies like the ILCA 7, on a level of detail previously reserved for simulated environments. Full article
(This article belongs to the Special Issue Applied Sports Performance Analysis)
Show Figures

Figure 1

22 pages, 4658 KB  
Article
Experimental Research on Ship Wave-Induced Motions of Tidal Turbine Catamaran
by Tinghui Liu, Xiwu Gong, Zijian Yu and Yonghe Xie
Fluids 2025, 10(8), 205; https://doi.org/10.3390/fluids10080205 - 4 Aug 2025
Viewed by 257
Abstract
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model [...] Read more.
In this research, the effect of ship navigation on the mooring system of a deep-sea floating tidal energy platform is experimentally investigated. Hydrodynamic experiments were conducted on a figure-of-eight mooring system with a KCS ship (KRISO Container Ship) as the sailing ship model and a catamaran as the carrier model of the tidal current energy generator under the combined effect of waves and ocean currents. The experimental results show that the increase in ship speed increases the amplitude of the carrier motion re-response. When the ship speed increases from 1.2 m/s to 1.478 m/s, the roll amplitude increases by 220%. At the same time, a decrease in the distance and draft of the navigating vessel also increases the amplitude of the motion response. Then, the actual sea conditions are simulated by the combined effect of ship waves and regular waves. As the wave period decreases and the height increases, the platform motion response is gradually reduced by the ship-generated waves. These findings provide important insights for optimizing the mooring system design in wave-dominated marine environments. Full article
(This article belongs to the Section Geophysical and Environmental Fluid Mechanics)
Show Figures

Figure 1

26 pages, 6806 KB  
Article
Fine Recognition of MEO SAR Ship Targets Based on a Multi-Level Focusing-Classification Strategy
by Zhaohong Li, Wei Yang, Can Su, Hongcheng Zeng, Yamin Wang, Jiayi Guo and Huaping Xu
Remote Sens. 2025, 17(15), 2599; https://doi.org/10.3390/rs17152599 - 26 Jul 2025
Viewed by 407
Abstract
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional [...] Read more.
The Medium Earth Orbit (MEO) spaceborne Synthetic Aperture Radar (SAR) has great coverage ability, which can improve maritime ship target surveillance performance significantly. However, due to the huge computational load required for imaging processing and the severe defocusing caused by ship motions, traditional ship recognition conducted in focused image domains cannot process MEO SAR data efficiently. To address this issue, a multi-level focusing-classification strategy for MEO SAR ship recognition is proposed, which is applied to the range-compressed ship data domain. Firstly, global fast coarse-focusing is conducted to compensate for sailing motion errors. Then, a coarse-classification network is designed to realize major target category classification, based on which local region image slices are extracted. Next, fine-focusing is performed to correct high-order motion errors, followed by applying fine-classification applied to the image slices to realize final ship classification. Equivalent MEO SAR ship images generated by real LEO SAR data are utilized to construct training and testing datasets. Simulated MEO SAR ship data are also used to evaluate the generalization of the whole method. The experimental results demonstrate that the proposed method can achieve high classification precision. Since only local region slices are used during the second-level processing step, the complex computations induced by fine-focusing for the full image can be avoided, thereby significantly improving overall efficiency. Full article
(This article belongs to the Special Issue Advances in Remote Sensing Image Target Detection and Recognition)
Show Figures

Graphical abstract

20 pages, 1475 KB  
Article
Design Optimization and Assessment Platform for Wind-Assisted Ship Propulsion
by Timoleon Plessas and Apostolos Papanikolaou
J. Mar. Sci. Eng. 2025, 13(8), 1389; https://doi.org/10.3390/jmse13081389 - 22 Jul 2025
Viewed by 366
Abstract
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization [...] Read more.
The maritime industry faces growing pressure to reduce greenhouse gas (GHG) emissions, reflected in the progressive adoption of stricter international energy regulations. Wind-Assisted Propulsion Systems (WAPS) offer a promising solution by significantly contributing to decarbonization. This paper presents a versatile simulation and optimization platform that supports the conceptual design of WAPS-equipped vessels and evaluates the viability of such investments. The platform uses a steady-state force equilibrium model to simulate vessel performance along predefined routes under realistic weather conditions, incorporating regulatory frameworks and economic assessments. A multi-objective optimization framework identifies optimal designs across user-defined criteria. To demonstrate its capabilities, the platform is applied to a bulk carrier operating between China and the USA, optimizing for capital expenditure, net present value (NPV), and CO2 emissions. Results show the platform can effectively balance conflicting objectives, achieving substantial emissions reductions without compromising economic performance. The final optimized design achieved a 12% reduction in CO2 emissions, a 7% decrease in capital expenditure, and a 6.6 million USD increase in net present value compared to the reference design with sails, demonstrating the platform’s capability to deliver balanced improvements across all objectives. The methodology is adaptable to various ship types, WAPS technologies, and operational profiles, offering a valuable decision-support tool for stakeholders navigating the transition to zero-carbon shipping. Full article
(This article belongs to the Special Issue Design Optimisation in Marine Engineering)
Show Figures

Figure 1

27 pages, 4715 KB  
Review
Sailing Across Contraception, Pregnancy, and Breastfeeding: The Complex Journey of Women with Cardiomyopathies
by Maria Cristina Carella, Vincenzo Ezio Santobuono, Francesca Maria Grosso, Marco Maria Dicorato, Paolo Basile, Ilaria Dentamaro, Maria Ludovica Naccarati, Daniela Santoro, Francesco Monitillo, Rosanna Valecce, Roberta Ruggieri, Aldo Agea, Martino Pepe, Gianluca Pontone, Antonella Vimercati, Ettore Cicinelli, Nicola Laforgia, Nicoletta Resta, Andrea Igoren Guaricci, Marco Matteo Ciccone and Cinzia Forleoadd Show full author list remove Hide full author list
J. Clin. Med. 2025, 14(14), 4977; https://doi.org/10.3390/jcm14144977 - 14 Jul 2025
Viewed by 444
Abstract
Gender-specific cardiology has gained increasing recognition in recent years, emphasizing the need for tailored management strategies for women with cardiovascular disease. Among these, cardiomyopathies—dilated, arrhythmogenic, hypertrophic, and restrictive—pose unique challenges throughout a woman’s reproductive life, affecting contraception choices, pregnancy outcomes, and breastfeeding feasibility. [...] Read more.
Gender-specific cardiology has gained increasing recognition in recent years, emphasizing the need for tailored management strategies for women with cardiovascular disease. Among these, cardiomyopathies—dilated, arrhythmogenic, hypertrophic, and restrictive—pose unique challenges throughout a woman’s reproductive life, affecting contraception choices, pregnancy outcomes, and breastfeeding feasibility. Despite significant advances in cardiovascular care, there is still limited guidance on balancing maternal safety and neonatal well-being in this complex setting. This review provides a comprehensive overview of the current evidence on reproductive counseling, pregnancy management, and postpartum considerations in women with cardiomyopathies. We discuss the cardiovascular risks associated with each cardiomyopathy subtype during pregnancy, highlighting risk stratification tools and emerging therapeutic strategies. Additionally, we address the safety and implications of breastfeeding, an often overlooked but increasingly relevant aspect of postpartum care. A multidisciplinary approach involving cardiologists, gynecologists, obstetricians, and anesthesiologists is crucial to optimizing maternal and fetal outcomes. Improved risk assessment, tailored patient counseling, and careful management strategies are essential to ensuring safer reproductive choices for women with cardiomyopathy. From now on, greater attention is expected to be given to bridging existing knowledge gaps, promoting a more personalized and evidence-based approach to managing these patients throughout different stages of reproductive life. Full article
(This article belongs to the Special Issue What’s New in Cardiomyopathies: Diagnosis, Treatment and Management)
Show Figures

Figure 1

20 pages, 3185 KB  
Article
Radiative Transfer Model-Integrated Approach for Hyperspectral Simulation of Mixed Soil-Vegetation Scenarios and Soil Organic Carbon Estimation
by Asmaa Abdelbaki, Robert Milewski, Mohammadmehdi Saberioon, Katja Berger, José A. M. Demattê and Sabine Chabrillat
Remote Sens. 2025, 17(14), 2355; https://doi.org/10.3390/rs17142355 - 9 Jul 2025
Viewed by 475
Abstract
Soils serve as critical carbon reservoirs, playing an essential role in climate change mitigation and agricultural sustainability. Accurate soil property determination relies on soil spectral reflectance data from Earth observation (EO), but current vegetation models often oversimplify soil conditions. This study introduces a [...] Read more.
Soils serve as critical carbon reservoirs, playing an essential role in climate change mitigation and agricultural sustainability. Accurate soil property determination relies on soil spectral reflectance data from Earth observation (EO), but current vegetation models often oversimplify soil conditions. This study introduces a novel approach that combines radiative transfer models (RTMs) with open-access soil spectral libraries to address this challenge. Focusing on conditions of low soil moisture content (SMC), photosynthetic vegetation (PV), and non-photosynthetic vegetation (NPV), the coupled Marmit–Leaf–Canopy (MLC) model is used to simulate early crop growth stages. The MLC model, which integrates MARMIT and PRO4SAIL2, enables the generation of mixed soil–vegetation scenarios. A simulated EO disturbed soil spectral library (DSSL) was created, significantly expanding the EU LUCAS cropland soil spectral library. A 1D convolutional neural network (1D-CNN) was trained on this database to predict Soil Organic Carbon (SOC) content. The results demonstrated relatively high SOC prediction accuracy compared to previous approaches that rely only on RTMs and/or machine learning approaches. Incorporating soil moisture content significantly improved performance over bare soil alone, yielding an R2 of 0.86 and RMSE of 4.05 g/kg, compared to R2 = 0.71 and RMSE = 6.01 g/kg for bare soil. Adding PV slightly reduced accuracy (R2 = 0.71, RMSE = 6.31 g/kg), while the inclusion of NPV alongside moisture led to modest improvement (R2 = 0.74, RMSE = 5.84 g/kg). The most comprehensive model, incorporating bare soil, SMC, PV, and NPV, achieved a balanced performance (R2 = 0.76, RMSE = 5.49 g/kg), highlighting the importance of accounting for all surface components in SOC estimation. While further validation with additional scenarios and SOC prediction methods is needed, these findings demonstrate, for the first time, using radiative-transfer simulations of mixed vegetation-soil-water environments, that an EO-DSSL approach enhances machine learning-based SOC modeling from EO data, improving SOC mapping accuracy. This innovative framework could significantly improve global-scale SOC predictions, supporting the design of next-generation EO products for more accurate carbon monitoring. Full article
Show Figures

Graphical abstract

39 pages, 2307 KB  
Article
Modeling of Energy Management System for Fully Autonomous Vessels with Hybrid Renewable Energy Systems Using Nonlinear Model Predictive Control via Grey Wolf Optimization Algorithm
by Harriet Laryea and Andrea Schiffauerova
J. Mar. Sci. Eng. 2025, 13(7), 1293; https://doi.org/10.3390/jmse13071293 - 30 Jun 2025
Viewed by 426
Abstract
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear [...] Read more.
This study presents a multi-objective predictive energy management system (EMS) for optimizing hybrid renewable energy systems (HRES) in autonomous marine vessels. The objective is to minimize fuel consumption and emissions while maximizing renewable energy usage and pure-electric sailing durations. The EMS combines nonlinear model predictive control (NMPC) with metaheuristic optimizers—Grey Wolf Optimization (GWO) and Genetic Algorithm (GA)—and is benchmarked against a conventional rule-based (RB) method. The HRES architecture comprises photovoltaic arrays, vertical-axis wind turbines (VAWTs), diesel engines, generators, and a battery storage system. A ship dynamics model was used to represent propulsion power under realistic sea conditions. Simulations were conducted using real-world operational and environmental datasets, with state prediction enhanced by an Extended Kalman Filter (EKF). Performance is evaluated using marine-relevant indicators—fuel consumption; emissions; battery state of charge (SOC); and emission cost—and validated using standard regression metrics. The NMPC-GWO algorithm consistently outperformed both NMPC-GA and RB approaches, achieving high prediction accuracy and greater energy efficiency. These results confirm the reliability and optimization capability of predictive EMS frameworks in reducing emissions and operational costs in autonomous maritime operations. Full article
(This article belongs to the Special Issue Advancements in Hybrid Power Systems for Marine Applications)
Show Figures

Figure 1

28 pages, 7736 KB  
Article
Structural Analysis and Redrawing of a Sailing Catamaran with a Numerical and Experimental Approach
by Giovanni Maria Grasso, Marco Bonfanti, Fabio Lo Savio, Damiano Alizzio and Ferdinando Chiacchio
J. Mar. Sci. Eng. 2025, 13(7), 1270; https://doi.org/10.3390/jmse13071270 - 29 Jun 2025
Viewed by 396
Abstract
This study investigates the structural behavior of a sailing catamaran subjected to wind, wave, and self-weight loads, with the ultimate goal of improving the structural design through redrawing techniques. A digital model was developed using Creo software 6 and analyzed through Finite Element [...] Read more.
This study investigates the structural behavior of a sailing catamaran subjected to wind, wave, and self-weight loads, with the ultimate goal of improving the structural design through redrawing techniques. A digital model was developed using Creo software 6 and analyzed through Finite Element Analysis (FEA), complemented by experimental deformation tests conducted under dry conditions and controlled loading. These tests provided a reliable dataset for calibrating and validating the numerical model. The analysis focused on the structural responses of key components—such as bulkheads, hulls, and beam-to-hull connections—under both isolated as well as combined load scenarios. Most structural elements demonstrated low deformation, confirming the robustness of the design; however, stress concentrations were observed at the connecting plates, highlighting areas for improvement. The vessel’s overall stiffness, though advantageous for structural integrity, was identified as a constraint in weight redrawing efforts. Consequently, targeted structural modifications were proposed and implemented, resulting in reduced material usage, construction time, and overall costs. The study concludes by proposing the integration of advanced composite materials to further enhance performance and efficiency, thereby laying the groundwork for future integration with digital and structural health monitoring systems. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

Back to TopTop