Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (318)

Search Parameters:
Keywords = scaling of flow curves

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 13097 KB  
Article
Assessing the Effectiveness of Spectral Nudging in Improving Tropical Cyclone Track Simulations over the Western North Pacific Using the WRF Model
by Weiwei Huang, Lian Xie, Fei Hong and Jiwen Zhu
Atmosphere 2025, 16(9), 1028; https://doi.org/10.3390/atmos16091028 (registering DOI) - 30 Aug 2025
Abstract
Improving tropical cyclone (TC) track forecasts is critical for enhancing disaster prevention and mitigation efforts. This study evaluates the effectiveness of the spectral nudging (SN) technique in simulating TC tracks with diverse path patterns over the Western North Pacific using the Weather Research [...] Read more.
Improving tropical cyclone (TC) track forecasts is critical for enhancing disaster prevention and mitigation efforts. This study evaluates the effectiveness of the spectral nudging (SN) technique in simulating TC tracks with diverse path patterns over the Western North Pacific using the Weather Research and Forecasting (WRF) model. The results show that the SN technique is remarkably effective in improving tropical cyclone track forecasts for all types of regular track patterns, except for irregular tracks. Specifically, spectral nudging reduced simulated mean track position errors by approximately 60%, 67%, and 77% on average for curving, northwestward-, and westward-moving tracks, respectively. Better simulations of large-scale flow dynamics contributed to these improvements, particularly in scenarios where the subtropical high underwent rapid changes in its circulation patterns. For irregular tracks, applying the SN technique showed mixed results, ranging from 75% error reduction to 20% error increase. This implies that the effectiveness of spectral nudging on the simulation of irregular tracks is case dependent. Since the effectiveness of spectral nudging depends on the scales (spectrum) of the underlying processes creating the irregularities of the tracks, when such irregularities were caused by local and regional-scale factors, spectral nudging became ineffective. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

13 pages, 2834 KB  
Article
Simulation-Based Investigation of the Effectiveness of Fire Suppression Techniques for Residential Furnishing
by Wenqi Song, Qing He, Qingyu Tan and Guorui Zhu
Fire 2025, 8(8), 327; https://doi.org/10.3390/fire8080327 - 15 Aug 2025
Viewed by 572
Abstract
This study proposes an equivalent furniture fire model based on standard combustible assembly and verifies its feasibility as a substitute for real furniture through full-scale experiments and numerical simulations. Experiments show that the peak heat release rate and total heat release of the [...] Read more.
This study proposes an equivalent furniture fire model based on standard combustible assembly and verifies its feasibility as a substitute for real furniture through full-scale experiments and numerical simulations. Experiments show that the peak heat release rate and total heat release of the standard combustible assembly are highly consistent with those of the single-seat sofa. The numerical model has been verified by experimental data. The dynamic characteristics of the heat release rate (HRR) curve are consistent with the temperature evolution process, confirming its reliability for the numerical model. The research on optimizing fire extinguishing parameters is carried out based on this numerical simulation. The results show that the response time of the horizontal sprinkler is 22 s shorter than that of the vertical sprinkler, and the fire extinguishing efficiency is improved. Reducing the sprinkler height to 3 m can accelerate activation and reduce CO2 release. A flow rate of 91.4 L/min can effectively control the fire, but when it exceeds 150 L/min, the fire extinguishing efficiency is significantly reduced. The low response time index sprinkler starts up 88 s faster than the standard type, significantly enhancing the initial fire suppression capability. This scheme provides a safe, economical, and repeatable standardized combustible assembly for fire training and offers theoretical support for the parameter design of intelligent fire extinguishing systems. Full article
(This article belongs to the Special Issue Advances in Industrial Fire and Urban Fire Research: 2nd Edition)
Show Figures

Figure 1

19 pages, 3960 KB  
Article
Hydraulic Performance of an Angled Oppermann Fine Screen with Guidance Wall
by Cumhur Ozbey, Serhat Kucukali and Reinhard Hassinger
Water 2025, 17(16), 2398; https://doi.org/10.3390/w17162398 - 14 Aug 2025
Viewed by 333
Abstract
Fish protection and guidance are critical factors in the design and operation of water intakes at hydropower plants. In this study, the hydraulic performance of the angled Oppermann fine screen has been investigated in a hybrid model with and without a guidance wall. [...] Read more.
Fish protection and guidance are critical factors in the design and operation of water intakes at hydropower plants. In this study, the hydraulic performance of the angled Oppermann fine screen has been investigated in a hybrid model with and without a guidance wall. The experiments were conducted under two different angles of 30° and 45°, and a bar spacing of 10 mm at a large-scale flume with a width of 2 m. Just up- and downstream of the screen, three-dimensional velocities were measured with Acoustic Doppler Velocimetry (ADV). In the computational fluid dynamics (CFD) model, the Large Eddy Simulation (LES) coupled with the Darcy–Forchheimer law, in which screens were modeled as homogeneous porous media, was employed. The experimental results revealed that velocities less than 0.5 m/s just upstream of the Oppermann fine screen and tangential velocity gradients over the entire cross-section of the screen were found to be 0.04–0.338 m/s/m and 0.04–0.856 m/s/m for α = 30° and α = 45°, respectively, creating favorable hydraulic conditions for effective downstream fish guidance. The CFD model was validated against the experimental data within an acceptable error range, both for the velocity and the turbulent kinetic energy. Numerical simulations showed that implementing a curved guidance wall creates a symmetrical and homogeneous downstream flow field without the formation of recirculation zones behind the angled screen. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

12 pages, 2015 KB  
Article
Low-Order Modelling of Extinction of Hydrogen Non-Premixed Swirl Flames
by Hazem S. A. M. Awad, Savvas Gkantonas and Epaminondas Mastorakos
Aerospace 2025, 12(8), 676; https://doi.org/10.3390/aerospace12080676 - 29 Jul 2025
Viewed by 334
Abstract
Predicting the blow-off (BO) is critical for characterising the operability limits of gas turbine engines. In this study, the applicability of a low-order extinction prediction modelling, which is based on a stochastic variant of the Imperfectly Stirred Reactor (ISR) approach, to predict the [...] Read more.
Predicting the blow-off (BO) is critical for characterising the operability limits of gas turbine engines. In this study, the applicability of a low-order extinction prediction modelling, which is based on a stochastic variant of the Imperfectly Stirred Reactor (ISR) approach, to predict the lean blow-off (LBO) curve and the extinction conditions in a hydrogen Rich-Quench-Lean (RQL)-like swirl combustor is investigated. The model predicts the blow-off scalar dissipation rate (SDR), which is then extrapolated using Reynolds-Averaged Navier–Stokes (RANS) cold-flow simulations and simple scaling laws, to determine the critical blow-off conditions. It has been found that the sISR modelling framework can predict the BO flow split ratio at different global equivalence ratios, showing a reasonable agreement with the experimental data. This further validates sISR as an efficient low-order modelling flame extinction tool, which can significantly contribute to the development of robust hydrogen RQL combustors by enabling the rapid exploration of combustor operability during the preliminary design phases. Full article
(This article belongs to the Special Issue Scientific and Technological Advances in Hydrogen Combustion Aircraft)
Show Figures

Figure 1

22 pages, 4836 KB  
Article
Time-Variant Instantaneous Unit Hydrograph Based on Machine Learning Pretraining and Rainfall Spatiotemporal Patterns
by Wenyuan Dong, Guoli Wang, Guohua Liang and Bin He
Water 2025, 17(15), 2216; https://doi.org/10.3390/w17152216 - 24 Jul 2025
Viewed by 424
Abstract
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex [...] Read more.
The hydrological response of a watershed is strongly influenced by the spatiotemporal dynamics of rainfall. Rainfall events of similar magnitude can produce markedly different flood processes due to variations in the spatiotemporal patterns of rainfall, posing significant challenges for flood forecasting under complex rainfall scenarios. Traditional methods typically rely on high-resolution or synthetic rainfall data to characterize the scale, direction and velocity of rainstorms, in order to analyze their impact on the flood process. These studies have shown that storms traveling along the main river channel tend to exert the greatest impact on flood processes. Therefore, tracking the movement of the rainfall center along the flow direction, especially when only rain gauge data are available, can reduce model complexity while maintaining forecast accuracy and improving model applicability. This study proposes a machine learning-based time-variable instantaneous unit hydrograph that integrates rainfall spatiotemporal dynamics using quantitative spatial indicators. To overcome limitations of traditional variable unit hydrograph methods, a pre-training and fine-tuning strategy is employed to link the unit hydrograph S-curve with rainfall spatial distribution. First, synthetic pre-training data were used to enable the machine learning model to learn the shape of the S-curve and its general pattern of variation with rainfall spatial distribution. Then, real flood data were employed to learn the actual runoff routing characteristics of the study area. The improved model allows the unit hydrograph to adapt dynamically to rainfall evolution during the flood event, effectively capturing hydrological responses under varying spatiotemporal patterns. The case study shows that the improved model exhibits superior performance across all runoff routing metrics under spatiotemporal rainfall variability. The improved model increased the simulation qualified rate for historical flood events, with significant rainfall center movement during the event from 63% to 90%. This study deepens the understanding of how rainfall dynamics influence watershed response and enhances hourly-scale flood forecasting, providing support for disaster early warning with strong theoretical and practical significance. Full article
Show Figures

Figure 1

21 pages, 2049 KB  
Article
Tracking Lava Flow Cooling from Space: Implications for Erupted Volume Estimation and Cooling Mechanisms
by Simone Aveni, Gaetana Ganci, Andrew J. L. Harris and Diego Coppola
Remote Sens. 2025, 17(15), 2543; https://doi.org/10.3390/rs17152543 - 22 Jul 2025
Viewed by 1376
Abstract
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we [...] Read more.
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we present an alternative approach based on the post-eruptive Thermal InfraRed (TIR) signal, using the recently proposed VRPTIR method to quantify radiative energy loss during lava flow cooling. We identify thermally anomalous pixels in VIIRS I5 scenes (11.45 µm, 375 m resolution) using the TIRVolcH algorithm, this allowing the detection of subtle thermal anomalies throughout the cooling phase, and retrieve lava flow area by fitting theoretical cooling curves to observed VRPTIR time series. Collating a dataset of 191 mafic eruptions that occurred between 2010 and 2025 at (i) Etna and Stromboli (Italy); (ii) Piton de la Fournaise (France); (iii) Bárðarbunga, Fagradalsfjall, and Sundhnúkagígar (Iceland); (iv) Kīlauea and Mauna Loa (United States); (v) Wolf, Fernandina, and Sierra Negra (Ecuador); (vi) Nyamuragira and Nyiragongo (DRC); (vii) Fogo (Cape Verde); and (viii) La Palma (Spain), we derive a new power-law equation describing mafic lava flow thickening as a function of time across five orders of magnitude (from 0.02 Mm3 to 5.5 km3). Finally, from knowledge of areas and episode durations, we estimate erupted volumes. The method is validated against 68 eruptions with known volumes, yielding high agreement (R2 = 0.947; ρ = 0.96; MAPE = 28.60%), a negligible bias (MPE = −0.85%), and uncertainties within ±50%. Application to the February-March 2025 Etna eruption further corroborates the robustness of our workflow, from which we estimate a bulk erupted volume of 4.23 ± 2.12 × 106 m3, in close agreement with preliminary estimates from independent data. Beyond volume estimation, we show that VRPTIR cooling curves follow a consistent decay pattern that aligns with established theoretical thermal models, indicating a stable conductive regime during the cooling stage. This scale-invariant pattern suggests that crustal insulation and heat transfer across a solidifying boundary govern the thermal evolution of cooling basaltic flows. Full article
Show Figures

Figure 1

30 pages, 2521 KB  
Article
From Batch to Pilot: Scaling Up Arsenic Removal with an Fe-Mn-Based Nanocomposite
by Jasmina Nikić, Jovana Jokić Govedarica, Malcolm Watson, Đorđe Pejin, Aleksandra Tubić and Jasmina Agbaba
Nanomaterials 2025, 15(14), 1104; https://doi.org/10.3390/nano15141104 - 16 Jul 2025
Viewed by 410
Abstract
Arsenic contamination in groundwater is a significant public health concern, with As(III) posing a greater and more challenging risk than As(V) due to its higher toxicity, mobility, and weaker adsorption affinity. Fe-Mn-based adsorbents offer a promising solution, simultaneously oxidizing As(III) to As(V), enhancing [...] Read more.
Arsenic contamination in groundwater is a significant public health concern, with As(III) posing a greater and more challenging risk than As(V) due to its higher toxicity, mobility, and weaker adsorption affinity. Fe-Mn-based adsorbents offer a promising solution, simultaneously oxidizing As(III) to As(V), enhancing its adsorption. This study evaluates an Fe-Mn nanocomposite across typical batch (20 mg of adsorbent), fixed-bed column (28 g), and pilot-scale (2.5 kg) studies, bridging the gap between laboratory and real-world applications. Batch experiments yielded maximum adsorption capacities of 6.25 mg/g and 4.71 mg/g in a synthetic matrix and real groundwater, respectively, demonstrating the impact of the water matrix on adsorption. Operational constraints and competing anions led to a lower capacity in the pilot (0.551 mg/g). Good agreement was observed between the breakthrough curves in the pilot (breakthrough at 475 bed volumes) and the fixed-bed column studies (365–587 bed volumes) under similar empty bed contact times (EBCTs). The Thomas, Adams–Bohart, and Yoon–Nelson models demonstrated that lower flow rates and extended EBCTs significantly enhance arsenic removal efficiency, prolonging the operational lifespan. Our findings demonstrate the necessity of continuous-flow experiments using real contaminated water sources and the importance of optimizing flow conditions, EBCTs, and pre-treatment in order to successfully scale up Fe-Mn-based adsorbents for sustainable arsenic removal. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

17 pages, 4206 KB  
Article
Influence of Particle Size on the Dynamic Non-Equilibrium Effect (DNE) of Pore Fluid in Sandy Media
by Yuhao Ai, Zhifeng Wan, Han Xu, Yan Li, Yijia Sun, Jingya Xi, Hongfan Hou and Yihang Yang
Water 2025, 17(14), 2115; https://doi.org/10.3390/w17142115 - 16 Jul 2025
Viewed by 368
Abstract
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by [...] Read more.
The dynamic non-equilibrium effect (DNE) describes the non-unique character of saturation–capillary pressure relationships observed under static, steady-state, or monotonic hydrodynamic conditions. Macroscopically, the DNE manifests as variations in soil hydraulic characteristic curves arising from varying hydrodynamic testing conditions and is fundamentally governed by soil matrix particle size distribution. Changes in the DNE across porous media with discrete particle size fractions are investigated via stepwise drying experiments. Through quantification of saturation–capillary pressure hysteresis and DNE metrics, three critical signatures are identified: (1) the temporal lag between peak capillary pressure and minimum water saturation; (2) the pressure gap between transient and equilibrium states; and (3) residual water saturation. In the four experimental sets, with the finest material (Test 1), the peak capillary pressure consistently precedes the minimum water saturation by up to 60 s. Conversely, with the coarsest material (Test 4), peak capillary pressure does not consistently precede minimum saturation, with a maximum lag of only 30 s. The pressure gap between transient and equilibrium states reached 14.04 cm H2O in the finest sand, compared to only 2.65 cm H2O in the coarsest sand. Simultaneously, residual water saturation was significantly higher in the finest sand (0.364) than in the coarsest sand (0.086). The results further reveal that the intensity of the DNE scales inversely with particle size and linearly with wetting phase saturation (Sw), exhibiting systematic decay as Sw decreases. Coarse media exhibit negligible hysteresis due to suppressed capillary retention; this is in stark contrast with fine sands, in which the DNE is observed to persist in advanced drying stages. These results establish pore geometry and capillary dominance as fundamental factors controlling non-equilibrium fluid dynamics, providing a mechanistic framework for the refinement of multi-phase flow models in heterogeneous porous systems. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

20 pages, 1539 KB  
Article
The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage
by Tri Pham, Rouhi Farajzadeh and Quoc P. Nguyen
Energies 2025, 18(14), 3693; https://doi.org/10.3390/en18143693 - 12 Jul 2025
Viewed by 300
Abstract
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, [...] Read more.
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, these factors are critical for predicting and controlling flow behavior in the reservoirs. Despite its importance, the relationship between pore structure and dispersion remains poorly quantified, particularly under elevated flow conditions. To address this gap, this study employs pore network modeling (PNM) to investigate the influence of sandstone and carbonate structures on fluid flow properties at the micro-scale. Eleven rock samples, comprising seven sandstone and four carbonate, were analyzed. Pore network extraction from CT images was used to obtain detailed pore structure parameters and their statistical measures. Pore-scale simulations were conducted across 60 scenarios with varying average interstitial velocities and water as the injected fluid. Effluent hydrogen concentrations were measured to generate elution curves as a function of injected pore volumes (PV). This approach enables the assessment of the relationship between the dispersion coefficient and pore structure parameters across all rock samples at consistent average interstitial velocities. Additionally, dispersivity and n-exponent values were calculated and correlated with pore structure parameters. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

22 pages, 16747 KB  
Article
Development of a Technique for Toughness Estimation in Dual-Phase Steels Using Representative Volume Elements
by Amin Latifi Vanjani, Hari M. Simha and Alexander Bardelcik
Metals 2025, 15(7), 788; https://doi.org/10.3390/met15070788 - 11 Jul 2025
Viewed by 279
Abstract
A novel approach to estimating the absorbed energy (toughness) in a uniaxial tensile test with only knowledge of the microstructure is presented. The flow behavior of each Dual-Phase (DP) steel grade is predicted using idealized Representative Volume Elements (RVEs) up to uniform elongation. [...] Read more.
A novel approach to estimating the absorbed energy (toughness) in a uniaxial tensile test with only knowledge of the microstructure is presented. The flow behavior of each Dual-Phase (DP) steel grade is predicted using idealized Representative Volume Elements (RVEs) up to uniform elongation. To estimate the flow behavior beyond uniform elongation, the stress-modified fracture strain in a non-local damage model was implemented in Abaqus. Damage parameters were calibrated using Finite Element (FE) simulations of purely ferritic tensile specimens. The damage parameters remained unchanged, except for the coefficient of triaxiality. This coefficient was adjusted based on the average triaxiality of ferrite elements at the instability point of the uniaxially loaded RVEs for each DP steel grade. The proposed approach comprises two steps: micron-sized RVEs to predict the flow behavior up to the point of uniform elongation and the average triaxiality and full-scale tensile-test simulations to predict the rest of the curves. The results show that the damage parameters calibrated for high-strain ferrite effectively estimate the absorbed energy during failure in tension tests. This approach is also geometry-independent; varying the geometry of the tensile specimen, including miniature or notched specimens, still yields predicted absorbed energies that are in good agreement with the experimental results. Full article
Show Figures

Figure 1

27 pages, 110289 KB  
Article
Automated Digitization Approach for Road Intersections Mapping: Leveraging Azimuth and Curve Detection from Geo-Spatial Data
by Ahmad M. Senousi, Wael Ahmed, Xintao Liu and Walid Darwish
ISPRS Int. J. Geo-Inf. 2025, 14(7), 264; https://doi.org/10.3390/ijgi14070264 - 5 Jul 2025
Viewed by 592
Abstract
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to [...] Read more.
Effective maintenance and management of road infrastructure are essential for community well-being, economic stability, and cost efficiency. Well-maintained roads reduce accident risks, improve safety, shorten travel times, lower vehicle repair costs, and facilitate the flow of goods, all of which positively contribute to GDP and economic development. Accurate intersection mapping forms the foundation of effective road asset management, yet traditional manual digitization methods remain time-consuming and prone to gaps and overlaps. This study presents an automated computational geometry solution for precise road intersection mapping that eliminates common digitization errors. Unlike conventional approaches that only detect intersection positions, our method systematically reconstructs complete intersection geometries while maintaining topological consistency. The technique combines plane surveying principles (including line-bearing analysis and curve detection) with spatial analytics to automatically identify intersections, characterize their connectivity patterns, and assign unique identifiers based on configurable parameters. When evaluated across multiple urban contexts using diverse data sources (manual digitization and OpenStreetMap), the method demonstrated consistent performance with mean Intersection over Union greater than 0.85 and F-scores more than 0.91. The high correctness and completeness metrics (both more than 0.9) confirm its ability to minimize both false positive and omission errors, even in complex roadway configurations. The approach consistently produced gap-free, overlap-free outputs, showing strength in handling interchange geometries. The solution enables transportation agencies to make data-driven maintenance decisions by providing reliable, standardized intersection inventories. Its adaptability to varying input data quality makes it particularly valuable for large-scale infrastructure monitoring and smart city applications. Full article
Show Figures

Figure 1

19 pages, 1436 KB  
Article
Development and Validation of Bioanalytical LC–MS/MS Method for Pharmacokinetic Assessment of Amoxicillin and Clavulanate in Human Plasma
by Sangyoung Lee, Da Hyun Kim, Sabin Shin, Jee Sun Min, Duk Yeon Kim, Seong Jun Jo, Ui Min Jerng and Soo Kyung Bae
Pharmaceuticals 2025, 18(7), 998; https://doi.org/10.3390/ph18070998 - 2 Jul 2025
Viewed by 864
Abstract
Background/Objectives: We developed and validated a robust and simple LC–MS/MS method for the simultaneous quantification of amoxicillin and clavulanate in human plasma relative to previously reported methods. Methods: Amoxicillin; clavulanate; and an internal standard, 4-hydroxytolbutamide, in human K2-EDTA plasma, [...] Read more.
Background/Objectives: We developed and validated a robust and simple LC–MS/MS method for the simultaneous quantification of amoxicillin and clavulanate in human plasma relative to previously reported methods. Methods: Amoxicillin; clavulanate; and an internal standard, 4-hydroxytolbutamide, in human K2-EDTA plasma, were deproteinized with acetonitrile and then subjected to back-extraction using distilled water–dichloromethane. Separation was performed on a Poroshell 120 EC-C18 column with a mobile-phase gradient comprising 0.1% aqueous formic acid and acetonitrile at a flow rate of 0.5 mL/min within 6.5 min. The negative electrospray ionization modes were utilized to monitor the transitions of m/z 363.9→223.1 (amoxicillin), m/z 198.0→135.8 (clavulanate), and m/z 285.0→185.8 (4-hydroxytolbutamide). Results/Conclusions: Calibration curves exhibited linear ranges of 10–15,000 ng/mL for amoxicillin (r ≥ 0.9945) and 20–10,000 ng/mL for clavulanate (r ≥ 0.9959). Intra- and inter-day’s coefficients of variation, indicating the precision of the assay, were ≤7.08% for amoxicillin and ≤10.7% for clavulanate, and relative errors in accuracy ranged from −1.26% to 10.9% for amoxicillin and from −4.41% to 8.73% for clavulanate. All other validation results met regulatory criteria. Partial validation in lithium–heparin, sodium–heparin, and K3-EDTA plasma confirmed applicability in multicenter or large-scale studies. This assay demonstrated itself to be environmentally friendly, as assessed by the Analytical GREEnness (AGREE) tool, and was successfully applied to a clinical pharmacokinetic study of an Augmentin® IR tablet (250/125 mg). The inter-individual variabilities in clavulanate exposures (AUCt and Cmax) were significantly greater than in amoxicillin, and they may inform the clinical design of future drug–drug interaction. Full article
Show Figures

Graphical abstract

27 pages, 2947 KB  
Article
Multicomponent Adsorption of Paracetamol and Metronidazole by Batch and Fixed-Bed Column Processes: Application of Monte Carlo Bayesian Modeling
by Letícia Reggiane de Carvalho Costa, Júlia Toffoli de Oliveira, Fayola Silva Silveira and Liliana Amaral Féris
Appl. Sci. 2025, 15(13), 7316; https://doi.org/10.3390/app15137316 - 29 Jun 2025
Viewed by 502
Abstract
This study addresses the growing concern of water contamination by pharmaceutical residues, focusing on the simultaneous removal of paracetamol (PAR) and metronidazole (MTZ). Batch and fixed-bed column adsorption processes were evaluated using activated carbon. In the batch experiments, the effects of pH (3, [...] Read more.
This study addresses the growing concern of water contamination by pharmaceutical residues, focusing on the simultaneous removal of paracetamol (PAR) and metronidazole (MTZ). Batch and fixed-bed column adsorption processes were evaluated using activated carbon. In the batch experiments, the effects of pH (3, 7, and 11), adsorbent mass (0.5, 1.25, and 2 g), and contact time (10, 30, and 60 min) were evaluated, while the fixed-bed column was optimized considering initial pollutants concentration (30, 40, and 50 mg/L), adsorbent mass (0.5, 0.75, and 1 g), and flow rate (5, 10, and 15 mL/min) to improve the maximum adsorption capacity of the bed for both pollutants (qmaxPAR and qmaxMTZ). Parameter estimation and model selection were performed using a Bayesian Monte Carlo approach. Optimal conditions in the batch system (pH = 7, W = 2 g, and time = 60 min) led to high removal efficiencies for both compounds (≥98%), while in the column system, the initial pollutant concentration was the most significant parameter to improve the maximum adsorption capacity of the bed, resulting in values equal to 49.5 and 43.6 mg/g for PAR and MTZ, respectively. The multicomponent Gompertz model showed the best performance for representing the breakthrough curves and is suitable for scale-up (R2 ≥ 0.75). These findings highlight the complexity of multicomponent adsorption and provide insights, contributing to the development of more efficient and sustainable water treatment technologies for pharmaceutical residues. Full article
(This article belongs to the Special Issue Application of Green Chemistry in Environmental Engineering)
Show Figures

Figure 1

13 pages, 6994 KB  
Article
Experimental Investigation of the Effects of Backwater on the Velocity Distribution Characteristics in a 90-Degree Curved Channel
by Qihang Zhou, Zhijing Li, Zhongwu Jin, Yisen Wang, Peng Chen, Yujiao Liu and Xuhai Yang
Water 2025, 17(13), 1858; https://doi.org/10.3390/w17131858 - 22 Jun 2025
Viewed by 459
Abstract
The impacts of backwater due to large dam construction on flow may lead to navigation or flood control problems in curved rivers. This study conducted flume experiments to investigate the effects of backwater on the velocity distribution characteristics of a 90-degree bend. The [...] Read more.
The impacts of backwater due to large dam construction on flow may lead to navigation or flood control problems in curved rivers. This study conducted flume experiments to investigate the effects of backwater on the velocity distribution characteristics of a 90-degree bend. The experimental results show that the backwater degree (η, defined as the ratio of flow depth under backwater to that under non-backwater conditions) has significant impacts on the three-dimensional velocity distribution in the bend. The depth-averaged velocities decrease with increasing backwater degree, and the deflection degrees of depth-averaged velocities are found to be highly related to the backwater degree and cross-sectional position. In this experimental setup, the mean cross-sectional velocity decreases by 67.2% as η increases from 1.00 to 3.64 for Q = 35 L/s; 63.7% as η increases from 1.00 to 3.26 for Q = 52 L/s; and 60.1% as η increases from 1.00 to 2.80 for Q = 52 L/s. The maximum values of transversal and vertical velocities near the riverbed gradually shift to the inner bank as the backwater degree increases at the 45° cross section. The center of the high transversal velocity area shifts about 0.1 m toward the inner bank as the backwater degree increases from 1.00 to 3.26 for Q = 52 L/s, which can reduce the erosion of the riverbed near the outer bank. In the current study, we also demonstrate that the growth and decay processes of secondary flow cells under backwater conditions are similar to those under non-backwater conditions. However, the scales and positions of the secondary flow cells change continuously with different backwater degrees. From the entrance to the exit of the bend, the secondary flow intensity first increases, and then decreases, with its maximum values occurring at the 45° cross section. The findings detailed in this manuscript provide insights for navigation channel design in reservoir backwater zones. Full article
(This article belongs to the Special Issue Effects of Vegetation on Open Channel Flow and Sediment Transport)
Show Figures

Figure 1

31 pages, 6448 KB  
Review
Review of Research on Supercritical Carbon Dioxide Axial Flow Compressors
by Yong Tian, Dexi Chen, Yuming Zhu, Peng Jiang, Bo Wang, Xiang Xu and Xiaodi Tang
Energies 2025, 18(12), 3081; https://doi.org/10.3390/en18123081 - 11 Jun 2025
Viewed by 665
Abstract
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow [...] Read more.
Since the beginning of the 21st century, the supercritical carbon dioxide (sCO2) Brayton cycle has emerged as a hot topic of research in the energy field. Among its key components, the sCO2 compressor has received significant attention. In particular, axial-flow sCO2 compressors are increasingly being investigated as power systems advance toward high power scaling. This paper reviews global research progress in this field. As for performance characteristics, currently, sCO2 axial-flow compressors are mostly designed with large mass flow rates (>100 kg/s), near-critical inlet conditions, multistage configurations with relatively low stage pressure ratios (1.1–1.2), and high isentropic efficiencies (87–93%). As for internal flow characteristics, although similarity laws remain applicable to sCO2 turbomachinery, the flow dynamics are strongly influenced by abrupt variations in thermophysical properties (e.g., viscosities, sound speeds, and isentropic exponents). High Reynolds numbers reduce frictional losses and enhance flow stability against separation but increase sensitivity to wall roughness. The locally reduced sound speed may induce shock waves and choke, while drastic variation in the isentropic exponent makes the multistage matching difficult and disperses normalized performance curves. Additionally, the quantitative impact of a near-critical phase change remains insufficiently understood. As for the experimental investigation, so far, it has been publicly shown that only the University of Notre Dame has conducted an axial-flow compressor experimental test, for the first stage of a 10 MW sCO2 multistage axial-flow compressor. Although the measured efficiency is higher than that of all known sCO2 centrifugal compressors, the inlet conditions evidently deviate from the critical point, limiting the applicability of the results to sCO2 power cycles. As for design and optimization, conventional design methodologies for axial-flow compressors require adaptations to incorporate real-gas property correction models, re-evaluations of maximum diffusion (e.g., the DF parameter) for sCO2 applications, and the intensification of structural constraints due to the high pressure and density of sCO2. In conclusion, further research should focus on two aspects. The first is to carry out more fundamental cascade experiments and numerical simulations to reveal the complex mechanisms for the near-critical, transonic, and two-phase flow within the sCO2 axial-flow compressor. The second is to develop loss models and design a space suitable for sCO2 multistage axial-flow compressors, thus improving the design tools for high-efficiency and wide-margin sCO2 axial-flow compressors. Full article
Show Figures

Figure 1

Back to TopTop