Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (285)

Search Parameters:
Keywords = scallop

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6747 KB  
Article
YOLOv11-MSE: A Multi-Scale Dilated Attention-Enhanced Lightweight Network for Efficient Real-Time Underwater Target Detection
by Zhenfeng Ye, Xing Peng, Dingkang Li and Feng Shi
J. Mar. Sci. Eng. 2025, 13(10), 1843; https://doi.org/10.3390/jmse13101843 - 23 Sep 2025
Viewed by 453
Abstract
Underwater target detection is a critical technology for marine resource management and ecological protection, but its performance is often limited by complex underwater environments, including optical attenuation, scattering, and dense distributions of small targets. Existing methods have significant limitations in feature extraction efficiency, [...] Read more.
Underwater target detection is a critical technology for marine resource management and ecological protection, but its performance is often limited by complex underwater environments, including optical attenuation, scattering, and dense distributions of small targets. Existing methods have significant limitations in feature extraction efficiency, robustness in class-imbalanced scenarios, and computational complexity. To address these challenges, this study proposes a lightweight adaptive detection model, YOLOv11-MSE, which optimizes underwater detection performance through three core innovations. First, a multi-scale dilated attention (MSDA) mechanism is embedded into the backbone network to dynamically capture multi-scale contextual features while suppressing background noise. Second, a Slim-Neck architecture based on GSConv and VoV-GSCSPC modules is designed to achieve efficient feature fusion via hybrid convolution strategies, significantly reducing model complexity. Finally, an efficient multi-scale attention (EMA) module is introduced in the detection head to reinforce key feature representations and suppress environmental noise through cross-dimensional interactions. Experiments on the underwater detection dataset (UDD) demonstrate that YOLOv11-MSE outperforms the baseline model YOLOv11, achieving a 9.67% improvement in detection precision and a 3.45% increase in mean average precision (mAP50) while reducing computational complexity by 6.57%. Ablation studies further validate the synergistic optimization effects of each module, particularly in class-imbalanced scenarios where detection precision for rare categories (e.g., scallops) is significantly enhanced, with precision and mAP50 improving by 60.62% and 10.16%, respectively. This model provides an efficient solution for edge computing scenarios, such as underwater robots and ecological monitoring, through its lightweight design and high underwater target detection capability. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2165 KB  
Article
Structural Analysis of Acidic Glycosphingolipids in the Adductor Muscle of the Japanese Giant Scallop (Patinopecten yessoensis)
by Shunsuke Sonoda, Saki Itonori, Mutsumi Sugita, Ayako Higashino, Koki Sugimoto, Ryota Hosomi and Kenji Fukunaga
Fishes 2025, 10(9), 460; https://doi.org/10.3390/fishes10090460 - 12 Sep 2025
Viewed by 401
Abstract
Structural analysis of glycosphingolipids provides novel insights into organismal classification and reveals conserved functional roles that transcend taxonomic boundaries. To elucidate the structural characteristics of acidic glycosphingolipids (AGLs) in the adductor muscle of the Japanese giant scallop (Patinopecten yessoensis), AGLs were [...] Read more.
Structural analysis of glycosphingolipids provides novel insights into organismal classification and reveals conserved functional roles that transcend taxonomic boundaries. To elucidate the structural characteristics of acidic glycosphingolipids (AGLs) in the adductor muscle of the Japanese giant scallop (Patinopecten yessoensis), AGLs were isolated and purified by column chromatography using anion exchange resin and silica gel. Structural characterization was performed using mass spectrometry, proton nuclear magnetic resonance spectroscopy, and immunological techniques. The sugar chain structure was identified as GlcA4Meβ1-4(GalNAc3Meα1-3)Fucα1-4GlcNAcβ1-2Manα1-3Manβ1-4Glcβ1-Cer, consistent with the mollu-series core reported for mollusks. In addition to uronic acid, the structure was distinguished by internal fucose and methylated sugars, features commonly found in bivalves. The presence of xylose in the sugar chains of AGLs was also suggested. In contrast, the ceramide moiety was composed primarily of fatty acids C16:0 and C18:0 and the long-chain base d16:1. This chemical structure provides valuable insights into the biological classification of P. yessoensis and the mollu-series glycolipids containing fucose and methylated sugars, which may serve as bioactive components shared across species in the phylum Mollusca and class Bivalvia. Full article
Show Figures

Graphical abstract

18 pages, 4537 KB  
Article
Study of FOXL2 Regulation on Ovarian Function in Chlamys farreri Through Comparative ChIP-Seq and Transcriptome Analysis Using RNA Interference
by Xiaoling Liu, Han Yun, Yan Xing, Shuo Wang, Xueying Zhou and Jianbai Zhang
Biology 2025, 14(9), 1259; https://doi.org/10.3390/biology14091259 - 12 Sep 2025
Viewed by 429
Abstract
FOXL2 (forkhead box protein L2) is a transcription factor, its function and regulatory mechanism have been mainly studied in mammals; related research on marine invertebrates is still insufficient. It was found that oogenesis was affected, and even a small number of cells resembling [...] Read more.
FOXL2 (forkhead box protein L2) is a transcription factor, its function and regulatory mechanism have been mainly studied in mammals; related research on marine invertebrates is still insufficient. It was found that oogenesis was affected, and even a small number of cells resembling spermatogonial morphology appeared in C. farreri ovaries after the FOXL2 was knocked down through RNA interference (RNAi) technology in our laboratory previously. Based on previous research, this paper conducted transcriptome sequencing and differential expression analysis on the ovarian tissues between the experimental group (post-RNAi) and the control group (pre-RNAi) of C. farreri, and used recombinant C. farreri FOXL2 protein for antibody production in Chromatin Immunoprecipitation Sequencing (ChIP seq) experiments to comprehensively analyze the pathways and key genes regulated by FOXL2 during oogenesis. The results showed that in the RNAi experimental group, 389 genes were upregulated, and 1615 genes were downregulated. Among the differentially expressed genes (DEGs), the differential genes related to gender or gonadal development are relatively concentrated in physiological processes such as steroid hormone synthesis, spermatogenesis, gonadal development, and ovarian function maintenance, as well as the FoxO and estrogen signaling pathways. Combining transcriptome and ChIP-seq data, it was found that there were some genes related to sex gonadal development among genes which were directly regulated by FOXL2, such as Wnt4, SIRT1, HSD17B8, GABABR1, KRAS, NOTCH1, HSD11B1, cPLA2, ADCY9, IP3R1, PLCB4, and Wnt1. This study lays the foundation for a deeper understanding of the FOXL2′s specific regulatory mechanism during oogenesis in scallops as a transcription factor. Full article
Show Figures

Figure 1

12 pages, 1116 KB  
Article
Physiological Effects of Suspended Solids on Venerupis philippinarum and Argopecten irradians
by Ha-Jeong Son, Ju-Won Kim, Min-Young Sohn, Chae-yeong Ji, Su Bhin Jeong, In Gu Kim, Jung-Ha Kang, Hee Jeong Kong, Chan-Il Park and Gyoungsik Kang
Fishes 2025, 10(9), 432; https://doi.org/10.3390/fishes10090432 - 2 Sep 2025
Viewed by 439
Abstract
Suspended solids are small particles transported in the water column, which can damage marine ecosystems and impair the health of aquatic organisms. This study evaluated the physiological responses of clams (Venerupis philippinarum) and Atlantic Bay scallops (Argopecten irradians) to [...] Read more.
Suspended solids are small particles transported in the water column, which can damage marine ecosystems and impair the health of aquatic organisms. This study evaluated the physiological responses of clams (Venerupis philippinarum) and Atlantic Bay scallops (Argopecten irradians) to suspended solid exposure. Four concentrations (100–1000 mg/L) were tested, with a control group maintained at 0 mg/L. At each time point (1, 2, 4, 6, 8, and 12 days), hemolymph samples were collected from five individuals per group to measure GOT, GPT, ALP, and cortisol. Exposure to suspended solids significantly increased these biochemical indicators compared with the control. Quantitative survival analysis showed that Venerupis philippinarum survival declined to 83.3% (25/30) at 500 mg/L and 76.7% (23/30) at 1000 mg/L after 5 days, while the control maintained 100% survival. In Argopecten irradians, survival remained close to 100% in most treatments, with a slight reduction to 83.3% (25/30) at 1000 mg/L. No mortality occurred in the control group without suspended solids, whereas mortality was evident under combined temperature stress and suspended solid exposure. These findings demonstrate that suspended solids induce stress responses in both species, with early mortality in Venerupis philippinarum likely caused by particle adhesion to the gills, leading to reduced respiratory efficiency. Full article
(This article belongs to the Special Issue Biology and Culture of Marine Invertebrates)
Show Figures

Figure 1

25 pages, 8138 KB  
Article
Design Methodology for Fishtailed Pipe Diffusers and Its Application to a High-Pressure Ratio Centrifugal Compressor
by Junnan Liu, Dingxi Wang and Xiuquan Huang
Aerospace 2025, 12(8), 746; https://doi.org/10.3390/aerospace12080746 - 21 Aug 2025
Viewed by 490
Abstract
A high-performance diffuser is crucial for a high-pressure ratio centrifugal compressor to achieve high efficiency. Pipe diffusers have been proven effective in enhancing the performance of such compressors. However, detailed design methodologies for pipe diffusers are scarcely covered in the existing literature. Thus, [...] Read more.
A high-performance diffuser is crucial for a high-pressure ratio centrifugal compressor to achieve high efficiency. Pipe diffusers have been proven effective in enhancing the performance of such compressors. However, detailed design methodologies for pipe diffusers are scarcely covered in the existing literature. Thus, this paper provides a comprehensive design methodology specifically for fishtailed pipe diffusers. This methodology begins by defining the throat and outlet areas using gas-dynamic functions and then establishes the centerline by choosing the angle distributions. Finally, various cross-sectional profiles are defined along the centerline, completing the diffuser’s design. To demonstrate the proposed methodology, a fishtailed pipe diffuser is designed to contrast with the original diffuser of the National Aeronautics and Space Administration’s High-Efficiency Centrifugal Compressor (NASA HECC). Numerical analysis shows that the fishtailed pipe diffuser increases the compressor’s total pressure ratio and isentropic efficiency over its whole operating range. At the design operating point, the isentropic efficiency and the total pressure ratio are increased by 2.4 percentage points and 2.7%, respectively. This demonstrates the effectiveness of the proposed design methodology for fishtailed pipe diffusers. Full article
(This article belongs to the Special Issue Progress in Turbomachinery Technology for Propulsion (2nd Edition))
Show Figures

Figure 1

20 pages, 4045 KB  
Review
“Winners” and “Losers” of the Bivalve Evolution
by Jasenka Sremac and Marija Bošnjak
Diversity 2025, 17(7), 500; https://doi.org/10.3390/d17070500 - 21 Jul 2025
Viewed by 1550
Abstract
Bivalves are nowadays represented by several thousand species of variable sizes and shapes. Additionally, thousands more species occurred during their 500-million-year long evolution. Present on Earth since the Cambrian, the class Bivalvia experienced periods of gradual evolution, interspersed with periods of rapid changes. [...] Read more.
Bivalves are nowadays represented by several thousand species of variable sizes and shapes. Additionally, thousands more species occurred during their 500-million-year long evolution. Present on Earth since the Cambrian, the class Bivalvia experienced periods of gradual evolution, interspersed with periods of rapid changes. Some groups of bivalves, namely clams, oysters, scallops, and marine mussels, managed to survive a series of extinctions, and their descendants still thrive in modern oceans and seas. Other groups, such as the rudists, completely disappeared from marine environments, after undergoing successful evolutionary radiation. In this study, we consider the possible reasons for the longevity of some bivalve orders and discuss the possible causes of demise of several once-successful clades. As expected, a small body size, large number of specimens, infaunal mode of life, motility, and long-living planktonic larvae proved to be evolutionary advantages during stress periods. The ability to harbor chemosymbionts could be an additional benefit during biotic crises. Full article
(This article belongs to the Special Issue Diversity, Biogeography, Fossil Record and Evolution of Bivalvia)
Show Figures

Figure 1

21 pages, 5889 KB  
Article
Mobile-YOLO: A Lightweight Object Detection Algorithm for Four Categories of Aquatic Organisms
by Hanyu Jiang, Jing Zhao, Fuyu Ma, Yan Yang and Ruiwen Yi
Fishes 2025, 10(7), 348; https://doi.org/10.3390/fishes10070348 - 14 Jul 2025
Viewed by 982
Abstract
Accurate and rapid aquatic organism recognition is a core technology for fisheries automation and aquatic organism statistical research. However, due to absorption and scattering effects, images of aquatic organisms often suffer from poor contrast and color distortion. Additionally, the clustering behavior of aquatic [...] Read more.
Accurate and rapid aquatic organism recognition is a core technology for fisheries automation and aquatic organism statistical research. However, due to absorption and scattering effects, images of aquatic organisms often suffer from poor contrast and color distortion. Additionally, the clustering behavior of aquatic organisms often leads to occlusion, further complicating the identification task. This study proposes a lightweight object detection model, Mobile-YOLO, for the recognition of four representative aquatic organisms, namely holothurian, echinus, scallop, and starfish. Our model first utilizes the Mobile-Nano backbone network we proposed, which enhances feature perception while maintaining a lightweight design. Then, we propose a lightweight detection head, LDtect, which achieves a balance between lightweight structure and high accuracy. Additionally, we introduce Dysample (dynamic sampling) and HWD (Haar wavelet downsampling) modules, aiming to optimize the feature fusion structure and achieve lightweight goals by improving the processes of upsampling and downsampling. These modules also help compensate for the accuracy loss caused by the lightweight design of LDtect. Compared to the baseline model, our model reduces Params (parameters) by 32.2%, FLOPs (floating point operations) by 28.4%, and weights (model storage size) by 30.8%, while improving FPS (frames per second) by 95.2%. The improvement in mAP (mean average precision) can also lead to better accuracy in practical applications, such as marine species monitoring, conservation efforts, and biodiversity assessment. Furthermore, the model’s accuracy is enhanced, with the mAP increased by 1.6%, demonstrating the advanced nature of our approach. Compared with YOLO (You Only Look Once) series (YOLOv5-12), SSD (Single Shot MultiBox Detector), EfficientDet (Efficient Detection), RetinaNet, and RT-DETR (Real-Time Detection Transformer), our model achieves leading comprehensive performance in terms of both accuracy and lightweight design. The results indicate that our research provides technological support for precise and rapid aquatic organism recognition. Full article
(This article belongs to the Special Issue Technology for Fish and Fishery Monitoring)
Show Figures

Figure 1

18 pages, 653 KB  
Article
Physiological Trade-Offs Under Thermal Variability in the Giant Lion’s Paw Scallop (Nodipecten subnodosus): Metabolic Compensation and Oxidative Stress
by Natalia G. Joachin-Mejia, Ilie S. Racotta, Diana P. Carreño-León, Sergio A. Ulaje and Salvador E. Lluch-Cota
Stresses 2025, 5(3), 42; https://doi.org/10.3390/stresses5030042 - 1 Jul 2025
Viewed by 437
Abstract
Understanding how thermal variability affects marine ectotherms is essential for predicting species resilience under climate change. We investigated the physiological responses of juvenile Nodipecten subnodosus (lion’s paw scallop), offspring of two genetically distinct populations (Bahía de Los Ángeles and Laguna Ojo de Liebre), [...] Read more.
Understanding how thermal variability affects marine ectotherms is essential for predicting species resilience under climate change. We investigated the physiological responses of juvenile Nodipecten subnodosus (lion’s paw scallop), offspring of two genetically distinct populations (Bahía de Los Ángeles and Laguna Ojo de Liebre), reared under common garden conditions and exposed to three temperature regimes: constant, regular oscillation, and stochastic variability. After 15 days of exposure, scallops underwent an acute hyperthermia challenge. We measured metabolic rates, scope for growth (SFG), tissue biochemical composition, and oxidative stress markers (SOD, CAT, GPx, TBARS). No significant differences were detected between populations for most traits, suggesting that phenotypic plasticity predominates over evolutionary divergence in thermal responses. However, the temperature regime significantly influenced metabolic, biochemical and oxidative stress markers, indicating that scallops in variable conditions compensated through improved energy balance and food assimilation but also showed higher oxidative stress compared to the constant regime. Following acute hyperthermic exposure, energy demand escalated, compensatory mechanisms were impaired, and scallops attained a state of physiological maintenance and survival under stress, irrespective of their population or prior thermal regime exposure. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

19 pages, 5609 KB  
Article
Effects of Chronic Low-Salinity Stress on Growth, Survival, Antioxidant Capacity, and Gene Expression in Mizuhopecten yessoensis
by Haoran Xiao, Xin Jin, Zitong Wang, Qi Ye, Weiyan Li, Lingshu Han and Jun Ding
Biology 2025, 14(7), 759; https://doi.org/10.3390/biology14070759 - 25 Jun 2025
Viewed by 568
Abstract
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth [...] Read more.
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth performance, antioxidant capacity, and gene expression profile of M. yessoensis using a 60-day salinity gradient experiment. S33 represents the control treatment with normal seawater salinity (33‰), while S30, S28, and S26 represent experimental groups with progressively lower salinities of 30‰, 28‰, and 26‰, respectively. A decline in salinity was accompanied by an increase in oxygen consumption. The S26 group exhibited a higher ammonia excretion rate (2.73 μg/g·h) than other groups, indicating intensified nitrogen metabolism. Growth was inhibited under low-salinity conditions. The S33 group exhibited greater weight gain (16.7%) and shell growth (8.4%) compared to the S26 group (11.6% and 6%), which also showed a substantially higher mortality rate (46%) compared to the control (13%). At 28‰, antioxidant enzyme activities (T-AOC, SOD, CAT, POD) were elevated, indicating a moderate level of stress. However, at the lowest salinity (26‰), these indicators decreased, reflecting the exhaustion of the antioxidant systems and indicating that the mollusks’ adaptive capacity had been exceeded, leading to a state of stress fatigue. NAD-MDH activity was elevated in the S26 group, reflecting enhanced aerobic metabolism under stress. Transcriptome analysis revealed 564 differentially expressed genes (DEGs) between the S33 and S26 groups. Functional enrichment analysis indicated that these DEGs were mainly associated with immune and stress response pathways, including NF-κB, TNF, apoptosis, and Toll/Imd signaling. These genes are involved in key metabolic processes, such as alanine, aspartate, and glutamate metabolism. Genes such as GADD45, ATF4, TRAF3, and XBP1 were upregulated, contributing to stress repair and antioxidant responses. Conversely, the expressions of CASP3, IKBKA, BIRC2/3, and LBP were downregulated, potentially mitigating apoptosis and inflammatory responses. These findings suggest that M. yessoensis adapts to chronic low-salinity stress through the activation of antioxidant systems, modulation of immune responses, and suppression of excessive apoptosis. This study provides new insights into the molecular mechanisms underlying salinity adaptation in bivalves and offers valuable references for scallop aquaculture and selective breeding programs. Full article
(This article belongs to the Special Issue Metabolic and Stress Responses in Aquatic Animals)
Show Figures

Figure 1

17 pages, 503 KB  
Review
Global Comparison and Future Trends of Major Food Proteins: Can Shellfish Contribute to Sustainable Food Security?
by Elena Tamburini, David Moore and Giuseppe Castaldelli
Foods 2025, 14(13), 2205; https://doi.org/10.3390/foods14132205 - 23 Jun 2025
Viewed by 1241
Abstract
Food security and environmental quality related to food production are global issues that need urgent solutions. Proteins are crucial for diets, and demand is growing for innovative and more environmentally sustainable sources of protein, like vegetables, microorganisms, and insects, and lab-grown food that [...] Read more.
Food security and environmental quality related to food production are global issues that need urgent solutions. Proteins are crucial for diets, and demand is growing for innovative and more environmentally sustainable sources of protein, like vegetables, microorganisms, and insects, and lab-grown food that can meet nutritional and environmental goals. This study analyzes a time series to assess the sustainability of different protein sources by evaluating their effects on emissions of greenhouse gases and the use of agricultural land while accounting for the carbon sink potential across the supply chain. The study also explores future trends in global protein sources, emphasizing shellfish as a key to achieving food security from both nutritional and environmental perspectives. By reviewing terrestrial livestock, farmed seafood, vegetal proteins, and alternative sources like insects and cultured cells, the study assesses sustainability, food security potential, and challenges from nutritional, environmental, and consumer viewpoints. We conclude that shellfish aquaculture, particularly oysters, mussels, clams, and scallops, has significant potential in enhancing food security, fostering sustainable protein consumption, reducing land use, and contributing to climate change mitigation by sequestering significant amounts of atmospheric carbon. Full article
Show Figures

Figure 1

11 pages, 2455 KB  
Article
A Sensor-Enabled Smart Tray for Understanding Consumer Eating Behavior in a Restaurant
by Benjamin Baugier, Charles Boreux, Simon De Jaeger, Nathan Codutti, François-Xavier Barbet, Antoine Barbaut, Uzeir Joomun, Sébastien Joseph Guna Rajan, Dorothée Goffin and Eric Haubruge
Gastronomy 2025, 3(2), 9; https://doi.org/10.3390/gastronomy3020009 - 4 Jun 2025
Viewed by 977
Abstract
This preliminary study explores the use of a smart tray prototype equipped with a weight sensor to analyze consumer eating behavior in real-life conditions. Conducted in 2022, at the restaurant “La Confluence” in Namur, with 60 participants, the experiment involved tracking the progression [...] Read more.
This preliminary study explores the use of a smart tray prototype equipped with a weight sensor to analyze consumer eating behavior in real-life conditions. Conducted in 2022, at the restaurant “La Confluence” in Namur, with 60 participants, the experiment involved tracking the progression of a standardized meal, “Scallops in sauce with vegetables”. The collected data allowed for the calculation of variables such as bite count, applied force, meal duration, and quantity consumed. Through mathematical processing, insights into individual and group eating patterns were developed, with 39 usable datasets analyzed. Our first results show that the smart tray is capable of estimating the weight consumed and the number of bites with over 97% accuracy. Statistical analysis enabled the identification of four distinct groups of individuals based on five behavioral variables related to eating behavior. The smart tray could be used in hospitality establishments including cafeterias, restaurants, or brasseries, where it could serve as a valuable tool for monitoring meal nutrition. Further improvements will aim to enhance utensil and action recognition through artificial intelligence, which will also support a more detailed characterization of eating behavior. Full article
Show Figures

Figure 1

20 pages, 2357 KB  
Article
Essential Trace Elements in the Shells of Commercial Mollusk Species from the Black Sea and Their Biotechnological Potential
by Larisa L. Kapranova, Juliya D. Dikareva, Sergey V. Kapranov, Daria S. Balycheva and Vitaliy I. Ryabushko
Animals 2025, 15(11), 1637; https://doi.org/10.3390/ani15111637 - 2 Jun 2025
Cited by 1 | Viewed by 1008 | Correction
Abstract
Among the commercial mollusks from the Black Sea, the ark clam Anadara kagoshimensis, the oyster Crassostrea gigas, the mussel Mytilus galloprovincialis, the scallop Flexopecten glaber ponticus, and the gastropod Rapana venosa hold the top positions in terms of cultivation [...] Read more.
Among the commercial mollusks from the Black Sea, the ark clam Anadara kagoshimensis, the oyster Crassostrea gigas, the mussel Mytilus galloprovincialis, the scallop Flexopecten glaber ponticus, and the gastropod Rapana venosa hold the top positions in terms of cultivation and harvesting volumes. Mollusk shells are attracting attention due to their potential use in various biotechnological applications, including nutraceutical production. In the present study, using inductively coupled plasma mass spectrometry, concentrations of essential trace elements (Cr, Mn, Fe, Co, Cu, Zn, Se, Mo, and I) were measured in shells of the five mollusks sampled from the same biotope. The essential element concentrations in the mollusk shells differed significantly. The highest concentrations of Cr, Mn, and I were found in Anadara shells; Fe and Co in Crassostrea shells; Zn in Mytilus shells; and Cu and Se in Rapana shells. Principal component analyses demonstrated the overall accumulation of all elements as the main cause of the total data variance and the species-specific accumulation of certain elements as the second most important source of the data dispersion. Matrices of element concentration correlations showed considerable dissimilarity, which suggested species specificity in the concerted or competing element accumulation. Powdered shells of Anadara, Crassostrea, and Rapana are most suitable to fulfill the daily human requirements for many essential elements, and the consumption of these powders in amounts of less than a few tens of grams appears to be sufficient for this purpose. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

14 pages, 8312 KB  
Article
Influence of Reflow Cycles of the Pb–Free/Pb Hybrid Assembly Process on the IMCs Growth Interface of Micro-Solder Joints
by Xinyuan He, Qi Zhang, Qiming Cui, Yifan Bai, Lincheng Fu, Zicong Zhao, Chuanhang Zou and Yong Wang
Crystals 2025, 15(6), 516; https://doi.org/10.3390/cryst15060516 - 28 May 2025
Viewed by 539
Abstract
Under the dual impetus of environmental regulations and reliability requirements, the Pb–free/Pb hybrid assembly process in aerospace-grade ball grid array (BGA) components has become an unavoidable industrial imperative. However, constrained process compatibility during single or multiple reflow protocols amplifies structural heterogeneity in solder [...] Read more.
Under the dual impetus of environmental regulations and reliability requirements, the Pb–free/Pb hybrid assembly process in aerospace-grade ball grid array (BGA) components has become an unavoidable industrial imperative. However, constrained process compatibility during single or multiple reflow protocols amplifies structural heterogeneity in solder joints and accelerates dynamic microstructural evolution, thereby elevating interfacial reliability risks at solder joint interfaces. This paper systematically investigated phase composition, grain dimensions, thickness evolution, and crystallographic orientation patterns of interfacial intermetallic compounds (IMCs) in hybrid micro-solder joints under multiple reflows, employing electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The result shows that the first reflow induces prismatic Cu6Sn5 grain formation driven by Pb aggregation zones and elevated Cu concentration gradients. Surface-protruding fine grains significantly increase kernel average misorientation (KAMave) of 0.68° while minimizing crystallographic orientation preference density (PFmax) of 15.5. Higher aspect ratios correlate with elongated grain morphology, consequently elevating grain size of 5.3 μm and IMC thickness of 5.0 μm. Subsequent reflows fundamentally alter material dynamics: Pb redistribution transitions from clustered to randomized spatial configurations, while grains develop pronounced in-plane orientation preferences that reciprocally influence Sn crystal alignment. The second reflow produces scallop-type grains with minimized dimensions of 4.0 μm and a thickness of 2.1 μm, with a KAMave of 0.37° and PFmax of 20.5. The third reflow initiates uniform growth of scalloped grains of 7.0 μm with a stable population density, whereas the fifth reflow triggers a semicircular grain transformation of 9.1 μm through conspicuous coalescence mechanisms. This work elucidates multiple reflow IMC growth mechanisms in Pb–free/Pb hybrid solder joints, providing critical theoretical and practical insights for optimizing hybrid technologies and reliability management strategies in high-reliability aerospace electronics. Full article
(This article belongs to the Special Issue Surface Modification Treatments of Metallic Materials (2nd Edition))
Show Figures

Figure 1

26 pages, 13403 KB  
Article
Sentinel-1 Noise Suppression Algorithm for High-Wind-Speed Retrieval in Tropical Cyclones
by Dechen Ge, Lihua Wang, Weiwei Sun, Hongmei Wang, Wenjing Jiang and Tian Feng
Remote Sens. 2025, 17(11), 1827; https://doi.org/10.3390/rs17111827 - 23 May 2025
Viewed by 548
Abstract
Sentinel-1 cross-polarization (cross-pol) SAR data, known for their unsaturated backscattering characteristics, hold strong potential for high-wind-speed retrieval in tropical cyclones (TCs). However, significant inherent noise in cross-pol data limits retrieval accuracy, especially under moderate-to-high wind conditions. Existing noise suppression methods remain insufficient due [...] Read more.
Sentinel-1 cross-polarization (cross-pol) SAR data, known for their unsaturated backscattering characteristics, hold strong potential for high-wind-speed retrieval in tropical cyclones (TCs). However, significant inherent noise in cross-pol data limits retrieval accuracy, especially under moderate-to-high wind conditions. Existing noise suppression methods remain insufficient due to their limited consideration of spatially varying noise characteristics within different TC structural regions. To address these challenges, this study proposes an enhanced two-dimensional noise field reconstruction framework based on Bayesian estimation, tailored to the structural features of TCs. The method begins by statistically characterizing cross-pol SAR backscatter to differentiate structural regions within TCs. Noise-scaling coefficients are then calculated to suppress scalloping artifacts, followed by the computation of power balance coefficients in sub-swath transition zones to mitigate abrupt inter-strip power variations through signal power equalization. Comparative assessments against the European Space Agency (ESA) noise vectors show that the proposed approach achieves an average signal-to-noise ratio (SNR) improvement of 2.54 dB. Subsequent sea surface wind speed retrievals using the denoised cross-pol data exhibit significant improvements: wind speed bias is reduced from −2.69 m/s to 0.65 m/s, accuracy is improved by 2.04 m/s, and the coefficient of determination (R2) increases to 0.88. These findings confirm the effectiveness of the proposed method in enhancing SAR-based wind speed retrieval under complex marine conditions associated with tropical cyclones. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

17 pages, 2712 KB  
Article
Simple Rapid Production of Calcium Acetate Lactate from Scallop Shell Waste for Agricultural Application
by Sorakit Mongkol, Somkiat Seesanong, Banjong Boonchom, Nongnuch Laohavisuti, Wimonmat Boonmee, Somphob Thompho and Pesak Rungrojchaipon
Int. J. Mol. Sci. 2025, 26(10), 4488; https://doi.org/10.3390/ijms26104488 - 8 May 2025
Viewed by 1340
Abstract
Calcium acetate lactate (CAL) was rapidly synthesized for the first time using the reaction between the scallop shell-derived calcium carbonate (CaCO3) and the binary phase of acetic and lactic acids. Calcium acetate (CA) and calcium lactate (CL) synthesized from the reaction [...] Read more.
Calcium acetate lactate (CAL) was rapidly synthesized for the first time using the reaction between the scallop shell-derived calcium carbonate (CaCO3) and the binary phase of acetic and lactic acids. Calcium acetate (CA) and calcium lactate (CL) synthesized from the reaction of scallop shell-derived CaCO3 with each acid by similarity routes are compared with the obtained CAL product. The production yields are 88.24, 79.17, and 96.44%, whereas the solubilities are 93.77, 90.18, and 95.08% for CA, CL, and CAL, respectively. All the synthesized CA, CL, and CAL samples were characterized and confirmed by X-ray fluorescence (XRF) to examine the calcium main element and other impurities of minor elements, X-ray diffraction (XRD) to investigate the crystallography, Fourier transform infrared (FTIR) to characterize the vibrational characteristics of the functional groups, scanning electron microscope (SEM) to observe the sample morphologies, and the thermogravimetric analysis (TGA) to investigate the thermal decomposition processes of samples. The experimental results pointed out that the synthesized CA, CL, and CAL were the monohydrate, pentahydrate, and dihydrate forms with chemical formulae of Ca(CH3COO)2·H2O, Ca(CH3CHOHCOO)2·5H2O, and Ca(CH3COO)(CH3CHOHCOO)·2H2O, respectively. The final thermal decomposition product of all calcium compounds was calcium oxide (CaO). The CAL sample’s vibrational characteristics, crystal phases, and morphologies show the binary acetate and lactate anion phases, confirming the new binary anionic calcium acetate lactate obtained. In conclusion, this research proposes an easy and low-cost technique to prepare a new valuable CAL compound using scallop shell waste as a cheap and renewable calcium source. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

Back to TopTop