Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = scototaxis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1318 KB  
Article
Effects of Sublethal Exposure to Three Water Pollutants on Scototaxis in Rare Minnow (Gobiocypris rarus)
by Ning Qiu, Wenjing Li, Jianna Jia, Guoqiang Ma and Shitao Peng
Water 2024, 16(20), 2948; https://doi.org/10.3390/w16202948 - 16 Oct 2024
Viewed by 1030
Abstract
The biological early warning system with fish behavior as the detection index is an efficient and rapid early warning technology for the ecological damage caused by water pollutants. However, the attempt to apply the scototaxis (dark preference) behavior of fish to biological early [...] Read more.
The biological early warning system with fish behavior as the detection index is an efficient and rapid early warning technology for the ecological damage caused by water pollutants. However, the attempt to apply the scototaxis (dark preference) behavior of fish to biological early warning is still relatively lacking. In this study, we delved into the dark and light preferences of the rare minnows (Gobiocypris rarus), employing three distinct tank configurations. Additionally, we systematically examined the modulating effects of environmental illumination, nutritional status, and the number of test subjects on this behavior, aiming to establish optimal experimental parameters for its observation. Furthermore, cadmium ions [Cd2+], tricaine methanesulfonate [MS222], and p-chloroaniline were employed as representative heavy metal ions, neuroactive agents, and organic toxicants, respectively, to test the impact of chemicals on scototaxis in gradient concentrations. The results demonstrated that the rare minnow exhibited a clear scototaxis (dark preference), and this behavior was not affected by the nutritional status of the test fish, the illumination, or the number of subjects. While the dark chamber was consistently the preferred location of rare minnows during the chemical exposure tests, the degree of scototaxis by the rare minnow significantly decreased at Cd2+ ≥ 3 mg/L, MS222 ≥ 11 mg/L, and p-chloroaniline ≥ 29 mg/L, suggesting a potential disruption of their innate behavioral patterns by these chemicals. These findings underscore the sensitivity of rare minnows to water pollutants. Therefore, the scototaxis behavior of rare minnows can be a potential and useful behavioral indicator for biological early warning, which can be used for early biological warning of sudden water pollution caused by chemicals such as Cd2+, MS222, and p-chloroaniline. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Contaminants in Water Environment)
Show Figures

Figure 1

18 pages, 3130 KB  
Article
Assessing Chronodisruption Distress in Goldfish: The Importance of Multimodal Approaches
by Nuria Saiz, Lisbeth Herrera-Castillo, Nuria de Pedro, María Jesús Delgado, Sven David Arvidsson, Miguel Ángel Marugal-López and Esther Isorna
Animals 2023, 13(15), 2481; https://doi.org/10.3390/ani13152481 - 1 Aug 2023
Cited by 4 | Viewed by 2257
Abstract
Chronodisruption caused by factors such as light at night and mistimed meals has been linked to numerous physiological alterations in vertebrates and may be an anxiogenic factor affecting welfare. This study aims to investigate whether chronodisruption causes measurable changes in the anxiety responses [...] Read more.
Chronodisruption caused by factors such as light at night and mistimed meals has been linked to numerous physiological alterations in vertebrates and may be an anxiogenic factor affecting welfare. This study aims to investigate whether chronodisruption causes measurable changes in the anxiety responses of goldfish under two conditions: randomly scheduled feeding (RF) and continuous light (LL). Anxiety-like behavior was assessed in the open field with object approach and black/white preference tests, which had been validated using diazepam. An increased thigmotaxis response and decreased object exploration under both chronodisruption protocols indicated anxiety states. Furthermore, locomotor activity was increased in LL fish. The black/white preference test discriminated anxiolysis induced by diazepam but was unable to detect anxiety caused by chronodisruption. Plasma cortisol increased in both RF and LL fish throughout the experiment, confirming that both conditions caused stress. The LL fish also showed an apparently desensitized hypothalamus–pituitary–interrenal HPI axis, with a decrease in pomc and crf expression. Individual analysis found no correlation between anxiety-like behavior and stress axis activation nor between scototaxis and thigmotaxis responses. However, individual differences in sensitivity to each test were detected. Altogether, these results highlight circadian disruption as a stressor for fish and endorse a multiple variable approach for reliably assessing animal discomfort. Full article
(This article belongs to the Special Issue Fish Welfare Assessment: Challenges for Aquaculture and Research)
Show Figures

Figure 1

17 pages, 2171 KB  
Article
Quantifying the Neural and Behavioral Correlates of Repeated Social Competition in the Fighting Fish Betta splendens
by Solanch Dupeyron and Kelly J. Wallace
Fishes 2023, 8(8), 384; https://doi.org/10.3390/fishes8080384 - 25 Jul 2023
Cited by 2 | Viewed by 5097
Abstract
The fighting fish Betta splendens, long studied for its aggressive territorial competitions, has the potential to be a tractable and relevant model for studying the intersection of cognitive ecology and social neuroscience. Yet, few studies have comprehensively assessed Betta behavior across both [...] Read more.
The fighting fish Betta splendens, long studied for its aggressive territorial competitions, has the potential to be a tractable and relevant model for studying the intersection of cognitive ecology and social neuroscience. Yet, few studies have comprehensively assessed Betta behavior across both social and nonsocial contexts. Furthermore, the present study is the first to quantify the expression of phosphorylated ribosomal protein S6 (PS6), a proxy for neural response, in the Betta telencephalon. Here, we assessed male Betta behavior across a suite of tasks and found that response to a mirror, but not neophilia (a novel object) nor anxiety (scototaxis), predicted behavior in a social competition. To then explore the cognitive aspects of social competition, we exposed Betta to either a familiar or novel opponent and compared their competitive behavior as well as their neural responses in the teleost homologs of the hippocampus, basolateral amygdala, and lateral septum. We did not detect any differences between familiar-exposed and novel-exposed individuals, but by implementing the first use of a habituation–dishabituation competition design in a study of Betta, we were able to observe remarkable consistency in competitive outcomes across repeated exposures. Taken together, the present study lays the groundwork for expanding the use of Betta to explore integrative and multidimensional questions of social cognition. Full article
(This article belongs to the Special Issue Causes and Consequences of Cognitive Variation in Fishes)
Show Figures

Graphical abstract

16 pages, 4493 KB  
Article
Silibinin and Naringenin against Bisphenol A-Induced Neurotoxicity in Zebrafish Model—Potential Flavonoid Molecules for New Drug Design, Development, and Therapy for Neurological Disorders
by Geethanjali Thayumanavan, Srikanth Jeyabalan, Shivkanya Fuloria, Mahendran Sekar, Monica Ravi, Logesh Kumar Selvaraj, Logeshwari Bala, Kumarappan Chidambaram, Siew Hua Gan, Nur Najihah Izzati Mat Rani, M. Yasmin Begum, Vetriselvan Subramaniyan, Kathiresan V. Sathasivam, Dhanalekshmi U. Meenakshi and Neeraj Kumar Fuloria
Molecules 2022, 27(8), 2572; https://doi.org/10.3390/molecules27082572 - 15 Apr 2022
Cited by 32 | Viewed by 4888
Abstract
Bisphenol A (BPA), a well-known xenoestrogen, is commonly utilised in the production of polycarbonate plastics. Based on the existing evidence, BPA is known to induce neurotoxicity and behavioural issues. Flavonoids such as silibinin and naringenin have been shown to have biological activity against [...] Read more.
Bisphenol A (BPA), a well-known xenoestrogen, is commonly utilised in the production of polycarbonate plastics. Based on the existing evidence, BPA is known to induce neurotoxicity and behavioural issues. Flavonoids such as silibinin and naringenin have been shown to have biological activity against a variety of illnesses. The current research evaluates the neuropharmacological effects of silibinin and naringenin in a zebrafish model against neurotoxicity and oxidative stress caused by Bisphenol A. In this study, a novel tank diving test (NTDT) and light–dark preference test (LDPT) were used in neurobehavioural investigations. The experimental protocol was planned to last 21 days. The neuroprotective effects of silibinin (10 μM) and naringenin (10 μM) in zebrafish (Danio rerio) induced by BPA (17.52 μM) were investigated. In the brine shrimp lethality assay, the 50% fatal concentrations (LC50) were 34.10 μg/mL (silibinin) and 91.33 μg/mL (naringenin) compared to the standard potassium dichromate (13.15 μg/mL). The acute toxicity investigation found no mortality or visible abnormalities in the silibinin- and naringenin-treated groups (LC50 > 100 mg/L). The altered scototaxis behaviour in LDPT caused by BPA was reversed by co-supplementation with silibinin and naringenin, as shown by decreases in the number of transitions to the light zone and the duration spent in the light zone. Our findings point to BPA’s neurotoxic potential in causing altered scototaxis and bottom-dwelling behaviour in zebrafish, as well as the usage of silibinin and naringenin as potential neuroprotectants. Full article
(This article belongs to the Special Issue Drug Development Inspired by Natural Products)
Show Figures

Graphical abstract

15 pages, 1449 KB  
Article
The Impact of Brain Lateralization and Anxiety-Like Behaviour in an Extensive Operant Conditioning Task in Zebrafish (Danio rerio)
by Maria Elena Miletto Petrazzini, Alessandra Pecunioso, Marco Dadda and Christian Agrillo
Symmetry 2019, 11(11), 1395; https://doi.org/10.3390/sym11111395 - 12 Nov 2019
Cited by 11 | Viewed by 3683
Abstract
Several studies in mammals, birds, and fish have documented better cognitive abilities associated with an asymmetrical distribution of cognitive functions in the two halves of the brain, also known as ‘functional brain lateralization’. However, the role of brain lateralization in learning abilities is [...] Read more.
Several studies in mammals, birds, and fish have documented better cognitive abilities associated with an asymmetrical distribution of cognitive functions in the two halves of the brain, also known as ‘functional brain lateralization’. However, the role of brain lateralization in learning abilities is still unclear. In addition, although recent studies suggest a link between some personality traits and accuracy in cognitive tasks, the relation between anxiety and learning skills in Skinner boxes needs to be clarified. In the present study, we tested the impact of brain lateralization and anxiety-like behaviour in the performance of an extensive operant conditioning task. Zebrafish tested in a Skinner box underwent 500 trials in a colour discrimination task (red vs. yellow and green vs. blue). To assess the degree of lateralization, fish were observed in a detour test in the presence of a dummy predator, and anxiety-like behaviour was studied by observing scototaxis response in an experimental tank divided into light and dark compartments. Although the low performance in the colour discrimination task did not permit the drawing of firm conclusions, no correlation was found between the accuracy in the colour discrimination task and the behaviour in the detour and scototaxis tests. This suggests that neither different degrees of asymmetries in brain lateralization nor anxiety may significantly impact the learning skills of zebrafish. Full article
Show Figures

Figure 1

21 pages, 4011 KB  
Article
Anxiolytic and Antidepressant Effects of the Hydroethanolic Extract from the Leaves of Aloysia polystachya (Griseb.) Moldenke: A Study on Zebrafish (Danio rerio)
by Nayara Costa de Melo, Brenda Lorena Sánchez-Ortiz, Tafnis Ingret dos Santos Sampaio, Arlindo César Matias Pereira, Fernando Luiz Pinheiro da Silva Neto, Heitor Ribeiro da Silva, Rodrigo Alves Soares Cruz, Hady Keita, Ana Maria Soares Pereira and José Carlos Tavares Carvalho
Pharmaceuticals 2019, 12(3), 106; https://doi.org/10.3390/ph12030106 - 11 Jul 2019
Cited by 33 | Viewed by 6895
Abstract
Medicinal plants such as Aloysia polystachya are often used in the treatment of psychiatric diseases, including anxiety- and depression-related humor disturbances. In folk medicine, A. polystachya is used to treat digestive and respiratory tract disturbances, as a sedative and antidepressant agent, and as [...] Read more.
Medicinal plants such as Aloysia polystachya are often used in the treatment of psychiatric diseases, including anxiety- and depression-related humor disturbances. In folk medicine, A. polystachya is used to treat digestive and respiratory tract disturbances, as a sedative and antidepressant agent, and as a tonic for the nerves. This study aimed to evaluate the antidepressant and anxiolytic effect from the hydroethanolic extract from the leaves of Aloysia polystachya (HELAp) in zebrafish. The extract was analyzed through ultra-performance liquid chromatography-mass spectroscopy (UPLC-MS) and the main compound detected was acteoside. HELAp was administered orally (10 mg/kg) and through immersion (mg/L). The anxiolytic activity was evaluated through the scototaxis (light–dark) test using caffeine as an anxiogenic agent and buspirone as a positive control. The parameters assessed were: period spent in the white compartment (s), latency (s), alternations (n), erratic swims (n), period of freezing (s), thigmotaxis (s), and risk evaluation (n). The antidepressant effect was evaluated through the novel tank diving test using 1% ethanol, unpredictable chronic stress, and social isolation as depressors; fluoxetine was used as a positive control. The parameters assessed were: period spent at the top of the tank, latency, quadrants crossed, erratic swim, period of freezing, and distance of swam. The main chemical compound of HELAp was acteoside. The administration of the extract on zebrafish managed to revert the anxiogenic effect of caffeine without impairing their locomotion. Additionally, the treatment exerted antidepressant activity similarly to fluoxetine. Overall, the results suggest a significant anxiolytic and antidepressant activity to the extract, which is probably due to the presence of the major compound, acteoside. Full article
Show Figures

Graphical abstract

Back to TopTop