Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = seabed digital twin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 13651 KiB  
Article
Dense In Situ Underwater 3D Reconstruction by Aggregation of Successive Partial Local Clouds
by Loïca Avanthey and Laurent Beaudoin
Remote Sens. 2024, 16(24), 4737; https://doi.org/10.3390/rs16244737 - 19 Dec 2024
Viewed by 954
Abstract
Assessing the completeness of an underwater 3D reconstruction on-site is crucial as it allows for rescheduling acquisitions, which capture missing data during a mission, avoiding additional costs of a subsequent mission. This assessment needs to rely on a dense point cloud since a [...] Read more.
Assessing the completeness of an underwater 3D reconstruction on-site is crucial as it allows for rescheduling acquisitions, which capture missing data during a mission, avoiding additional costs of a subsequent mission. This assessment needs to rely on a dense point cloud since a sparse cloud lacks detail and a triangulated model can hide gaps. The challenge is to generate a dense cloud with field-deployable tools. Traditional dense reconstruction methods can take several dozen hours on low-capacity systems like laptops or embedded units. To speed up this process, we propose building the dense cloud incrementally within an SfM framework while incorporating data redundancy management to eliminate recalculations and filtering already-processed data. The method evaluates overlap area limits and computes depths by propagating the matching around SeaPoints—the keypoints we design for identifying reliable areas regardless of the quality of the processed underwater images. This produces local partial dense clouds, which are aggregated into a common frame via the SfM pipeline to produce the global dense cloud. Compared to the production of complete dense local clouds, this approach reduces the computation time by about 70% while maintaining a comparable final density. The underlying prospect of this work is to enable real-time completeness estimation directly on board, allowing for the dynamic re-planning of the acquisition trajectory. Full article
Show Figures

Figure 1

25 pages, 20202 KiB  
Article
Remote Operation of Marine Robotic Systems and Next-Generation Multi-Purpose Control Rooms
by Antonio Vasilijevic, Jens Einar Bremnes and Martin Ludvigsen
J. Mar. Sci. Eng. 2023, 11(10), 1942; https://doi.org/10.3390/jmse11101942 - 8 Oct 2023
Cited by 4 | Viewed by 2754
Abstract
Since 2017, NTNU’s Applied Underwater Robotics Laboratory has been developing an infrastructure for remote marine/subsea operations in Trondheim Fjord. The infrastructure, named the OceanLab subsea node, allows remote experimentation for three groups of assets: seabed infrastructure, surface or subsea vehicles/robots, and assets at [...] Read more.
Since 2017, NTNU’s Applied Underwater Robotics Laboratory has been developing an infrastructure for remote marine/subsea operations in Trondheim Fjord. The infrastructure, named the OceanLab subsea node, allows remote experimentation for three groups of assets: seabed infrastructure, surface or subsea vehicles/robots, and assets at remote experimentation sites. To achieve this task, a shoreside control room serves as a hub that enables efficient and diverse communication with assets in the field as well as with remote participants/operators. Remote experimentation has become more popular in recent years due to technological developments and convenience, the COVID-19 pandemic, and travel restrictions that were imposed. This situation has shown us that physical presence at the experimentation site is not necessarily the only option. Sharing of the infrastructure among different experts, which are geographically distributed, but participating in a single, local, real-time experiment, increases the level of expertise available and the efficiency of the operations. This paper also elaborates on the development of a virtual experimentation environment that includes simulators and digital twins of various marine vehicles, infrastructures, and the operational marine environment. By leveraging remote and virtual experimentation technologies, users and experts can achieve relevant results in a shorter time frame and at a reduced cost. Full article
(This article belongs to the Special Issue New Trends in Marine Robotics: Virtual Experiments and Remote Access)
Show Figures

Figure 1

Back to TopTop