Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = sealaplugging capabilities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1766 KB  
Review
Fuzzy-Ball Fluids: Fundamentals, Mechanisms, and Prospects for Clean Energy and Oilfield Applications
by Long Jin, Chinedu J. Okere, Qin Guo and Lihui Zheng
Energies 2025, 18(7), 1592; https://doi.org/10.3390/en18071592 - 22 Mar 2025
Cited by 2 | Viewed by 605
Abstract
Fuzzy-ball fluids have emerged as a novel class of chemical sealaplugging materials with significant potential for enhancing both traditional oilfield operations and clean energy technologies. They are characterized by unique viscoelastic properties, plugging, self-adapting capabilities, and the ability to regulate multi-phase fluid flow [...] Read more.
Fuzzy-ball fluids have emerged as a novel class of chemical sealaplugging materials with significant potential for enhancing both traditional oilfield operations and clean energy technologies. They are characterized by unique viscoelastic properties, plugging, self-adapting capabilities, and the ability to regulate multi-phase fluid flow under extreme subsurface conditions. In oilfield applications, fuzzy-ball fluids offer solutions for drilling, hydraulic fracturing, workover operations, and enhanced oil recovery in shallow, deep, and offshore reservoirs. In clean energy fields such as hydrogen storage, carbon capture, utilization, and storage, and geothermal energy, they show promise in improving energy efficiency, storage security, and environmental sustainability. This review explores the fundamental principles and mechanisms behind fuzzy-ball fluids, examines their field applications in the oil and gas industry, and investigates their potential in emerging clean energy technologies. This study also identifies key challenges, including material stability, economic viability, and environmental impact, which must be addressed to ensure the successful deployment of fuzzy-ball fluids. Furthermore, we outline future research directions, emphasizing material optimization, large-scale field trials, environmental impact assessments, and interdisciplinary collaboration to accelerate the commercialization of fuzzy-ball fluid technologies. By addressing these challenges, fuzzy-ball fluids could play a transformative role in both conventional and clean energy fields, contributing to sustainable and efficient energy solutions. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

Back to TopTop