Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,525)

Search Parameters:
Keywords = sediment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
46 pages, 1826 KB  
Review
CO2 Capture and Sequestration by Gas Hydrates: An Overview of the Influence and Chemical Characterization of Natural Compounds and Sediments in Marine Environments
by Lorenzo Remia, Andrea Tombolini, Rita Giovannetti and Marco Zannotti
J. Mar. Sci. Eng. 2025, 13(10), 1908; https://doi.org/10.3390/jmse13101908 - 3 Oct 2025
Abstract
Due to the rising atmospheric carbon dioxide levels driven by human activity, extensive scientific efforts have been dedicated to developing methods aimed at reducing its concentration in the atmosphere. A novel approach involves using hydrates as a long-lasting reservoir of CO2 sequestration. [...] Read more.
Due to the rising atmospheric carbon dioxide levels driven by human activity, extensive scientific efforts have been dedicated to developing methods aimed at reducing its concentration in the atmosphere. A novel approach involves using hydrates as a long-lasting reservoir of CO2 sequestration. This review provides an initial overview of hydrate characteristics, their formation mechanisms, and the experimental techniques commonly employed for their characterization, including X-ray, Raman spectroscopy, cryoSEM, DSC, and molecular dynamic simulation. One of the main challenges in CO2 sequestration via hydrates is the requirement of high pressures and low temperatures to stabilize CO2 molecules within the hydrate crystalline cavities. However, deviations from classical temperature-pressure phase diagrams observed in natural and engineered environments can be explained by considering that hydrate stability and formation are primarily governed by chemical potentials, not just temperature and pressure. Activity, which reflects concentration and non-ideal interactions, greatly influences chemical potentials, emphasizing the importance of solution composition, salinity, and additives. In this context the role of promoters and inhibitors in facilitating or hindering hydrate formation is discussed. Furthermore, the review presents an overview of the impact of marine sediments and naturally occurring compounds on CO2 hydrate formation, along with the sampling methodologies used in sediments to determine the composition of these natural compounds. Special attention is given to the effect and chemical characterization of dissolved organic matter (DOM) in marine aquatic environments. The focus is placed on the key roles of various natural occurring molecules, such as amino acids, protein derivatives, and humic substances, along with the analytical techniques employed for their chemical characterization, highlighting their central importance in the CO2 gas hydrates formation. Full article
(This article belongs to the Special Issue Advances in Marine Gas Hydrates)
26 pages, 7006 KB  
Article
Assessment of Heavy Metal Contamination, Bioaccumulation, and Nutritional Quality in Fish from the Babina–Cernovca Romanian Sector of the Danube River
by Ioan Oroian, Bogdan Ioachim Bulete, Ecaterina Matei, Antonia Cristina Maria Odagiu, Petru Burduhos, Camelia Oroian, Ovidiu Daniel Ștefan and Daniela Bordea
Foods 2025, 14(19), 3419; https://doi.org/10.3390/foods14193419 - 3 Oct 2025
Abstract
Danube Delta (DD), an ecologically vulnerable site, together with fish populations, which are significant food resources, are largely exposed to heavy metal contamination. This study was developed in the Babina–Cernovca sector of DD in September 2023. Zinc (Zn), and iron (Fe) were identified [...] Read more.
Danube Delta (DD), an ecologically vulnerable site, together with fish populations, which are significant food resources, are largely exposed to heavy metal contamination. This study was developed in the Babina–Cernovca sector of DD in September 2023. Zinc (Zn), and iron (Fe) were identified in water, while copper (Cu), iron (Fe), and manganese (Mn) were in sediments (mud). Proximate composition of the muscle tissues of eight fish species identified in the area was assessed. The muscle was also tested to identify heavy metals contamination. The contamination degree was assessed using bioaccumulation and bioconcentrations factors. The relation between nutritional parameters and metals was tested using bivariate and multivariate analyses. Samples were analyzed by specific laboratory tests, and data were processed using ANOVA, Spearman correlation, Principal Component Analysis (PCA), and hierarchical clustering. S. erythrophthalmus, C. gibelio, and A. alburnus have the highest metal bioaccumulation capacity, exhibiting species-specific accumulation patterns. PCA and clustering analysis reflect the influence of species and environmental factors on heavy metal accumulation in fish tissue. The study integrates the heavy metals content with nutritional parameters in fish muscular tissue, using bivariate and multivariate analysis for assessing fish vulnerability to heavy metals exposure in the Danube River. Full article
(This article belongs to the Special Issue Mechanism and Control of Quality Changes in Aquatic Products)
Show Figures

Figure 1

22 pages, 21043 KB  
Article
Sediment Distribution and Seafloor Substratum Mapping on the DD Guyot, Western Pacific
by Wei Gao, Heshun Wang, Yongfu Sun, Weikun Xu and Yuanyuan Gui
J. Mar. Sci. Eng. 2025, 13(10), 1904; https://doi.org/10.3390/jmse13101904 - 3 Oct 2025
Abstract
The DD Guyot, a flat-topped seamount located in the Western Pacific, was completely mapped using multibeam echosounders (MBESs) in 2024. Clarifying substratum patterns is crucial for understanding seafloor evolution, sediment transport processes, and resource assessment. This study integrates near-bottom video data from the [...] Read more.
The DD Guyot, a flat-topped seamount located in the Western Pacific, was completely mapped using multibeam echosounders (MBESs) in 2024. Clarifying substratum patterns is crucial for understanding seafloor evolution, sediment transport processes, and resource assessment. This study integrates near-bottom video data from the manned submersible Jiaolong, multibeam bathymetry and backscatter data from EM124, and a convolutional neural network (CNN) model to classify the four substratum types (exposed bedrock, thinly sedimented bedrock, sediment–rock transition zone, and continuous sediment) of the DD Guyot. The results indicate that exposed bedrock predominates on the summit platform, while sediment cover increases with water depth along the flank. The base of the guyot is almost entirely covered by sediments. Two landslide areas were identified, with clear main scarps, sidewalls, and debris accumulations. These features, together with underflow erosion, collectively influence sediment distribution patterns. The resulting substratum maps provide guidance for seabed resource exploration. The results are consistent with a post-drowning onlap framework, which points to a drowning unconformity, but video and surface acoustic data alone are insufficient for definitive confirmation. Further investigation is required to more clearly elucidate the substratum characteristics of the DD Guyot. Full article
(This article belongs to the Special Issue Advances in Sedimentology and Coastal and Marine Geology, 3rd Edition)
Show Figures

Figure 1

18 pages, 2770 KB  
Article
Distribution Characteristics and Enrichment Mechanisms of Fluoride in Alluvial–Lacustrine Facies Clayey Sediments in the Land Subsidence Area of Cangzhou Plain, China
by Juyan Zhu, Rui Liu, Haipeng Guo, Juan Chen, Di Ning and Xisheng Zang
Water 2025, 17(19), 2887; https://doi.org/10.3390/w17192887 - 3 Oct 2025
Abstract
Compression of clayey sediments not only causes land subsidence but also results in geogenic high fluoride groundwater. The distribution characteristics and enrichment mechanisms of fluoride in alluvial−lacustrine facies clayey sediments in the land subsidence area of Cangzhou Plain, China, were investigated using sample [...] Read more.
Compression of clayey sediments not only causes land subsidence but also results in geogenic high fluoride groundwater. The distribution characteristics and enrichment mechanisms of fluoride in alluvial−lacustrine facies clayey sediments in the land subsidence area of Cangzhou Plain, China, were investigated using sample collection, mineralogical research, and hydrogeochemical and isotopic analysis. The results show that F concentration of groundwater samples ranged from 0.31 to 5.54 mg/L in aquifers. The total fluoride content of clayey sediments ranged from 440 to 792 mg/kg and porewater F concentration ranged from 0.77 to 4.18 mg/L. Clay minerals containing fine particles, such as muscovite, facilitate the enrichment of fluoride in clayey sediments, resulting in higher total fluoride levels than those in sandy sediments. The clay porewater F predominantly originated from the dissolution of water-soluble F and the desorption of exchangeable F from sediments. The F concentration in porewater was further influenced by ionic interactions such as cation exchange. The stable sedimentary environment and intense compression promoted the dissolution of F–bearing minerals and the desorption of adsorbed F in deep clayey sediments. The similar composition feature of δ2H−δ18O in deep groundwater and clay porewater samples suggests a significant mixing effect. These findings highlight the joint effects of hydrogeochemical and mineralogical processes on F behavior in clayey sediments. Full article
Show Figures

Figure 1

13 pages, 1023 KB  
Article
The Clinical Features and Prognosis of Idiopathic and Infection-Triggered Acute Exacerbation of Idiopathic Inflammatory Myopathy-Associated Interstitial Lung Disease: A Preliminary Study
by Jingping Zhang, Kai Yang, Lingfei Mo, Liyu He, Jiayin Tong, He Hei, Yuting Zhang, Yadan Sheng, Blessed Kondowe and Chenwang Jin
Diagnostics 2025, 15(19), 2516; https://doi.org/10.3390/diagnostics15192516 - 3 Oct 2025
Abstract
Background: Acute exacerbation (AE) of idiopathic inflammatory myopathy-associated interstitial lung disease (IIM-ILD) is fatal. Infection is one of the most important triggers of the AE of IIM-ILD. We evaluated the clinical features and prognosis of idiopathic (I-AE) and infection-triggered (iT-AE) acute exacerbation [...] Read more.
Background: Acute exacerbation (AE) of idiopathic inflammatory myopathy-associated interstitial lung disease (IIM-ILD) is fatal. Infection is one of the most important triggers of the AE of IIM-ILD. We evaluated the clinical features and prognosis of idiopathic (I-AE) and infection-triggered (iT-AE) acute exacerbation in IIM-ILD patients. Methods: We retrospectively reviewed 278 consecutive patients with IIM admitted to our hospital between January 2014 and December 2020. Among them, 69 patients experienced AE of IIM-ILD, including 34 with I-AE and 35 with iT-AE. Clinical features and short- and long-term outcomes were analyzed in this preliminary study. Results: Compared with I-AE, patients with iT-AE presented with lower hemoglobin and PaO2/FiO2 ratios but higher pulse, body temperature, white blood cell count, neutrophil percentage (NEU), C-reactive protein, erythrocyte sedimentation rates, lactate dehydrogenase, and hydroxybutyrate dehydrogenase levels. They also had more extensive ground-glass opacities (GGOs) on high-resolution computed tomography (all p < 0.05). Mortality was significantly higher in iT-AE than that in I-AE at 30 days (28.6% vs. 5.9%), 90 days (34.3% vs. 14.9%), and 1 year (54.3% vs. 17.6%; log-rank test, p = 0.002). Multivariate logistic regression showed that the combination of NEU and GGO extent could help discriminate iT-AE from I-AE (area under the receiver operating characteristic curve: 0.812; 95% confidence interval: 0.711–0.913; sensitivity: 71.4%, specificity: 73.5%, accuracy: 72.5%). Conclusion: This study found that iT-AE patients exhibited more severe hyperinflammation and markedly worse survival than I-AE patients. Combining NEU and GGO extent may assist in differentiating AE subtypes. Larger prospective studies are required to validate these findings. Full article
Show Figures

Figure 1

21 pages, 3155 KB  
Article
Human Impacts on Heavy Metals in Lake Sediments of Northern China: History, Sources, and Trend Prediction
by Ruifeng Xie, Shuying Zang, Li Sun and Hongwei Ni
Water 2025, 17(19), 2884; https://doi.org/10.3390/w17192884 - 2 Oct 2025
Abstract
Lake sediments are important indicators of human activities and environmental changes, while lakes in northern China receive little attention. Heavy metal elements in core sediments from Bosten Lake (BST) in the arid area, Wuliangsuhai Lake (WLS) in the semi-arid area, and Chagan Lake [...] Read more.
Lake sediments are important indicators of human activities and environmental changes, while lakes in northern China receive little attention. Heavy metal elements in core sediments from Bosten Lake (BST) in the arid area, Wuliangsuhai Lake (WLS) in the semi-arid area, and Chagan Lake (CG) in the semi-humid area of northern China, based on the precise dating of 210Pb and 137Cs, were analyzed to evaluate the characteristics and sources of heavy metal pollution, analyze the influence of different types and intensities of human activities on heavy metals, and predict the development trend of heavy metal content in lake sediments in the future. The content of heavy metals in the sediments of the three lakes has gradually increased over time, with a decreasing trend of CG > WLS > BST, which is in accordance with the intensity of human activities. Co, Cu, Zn, Cd, As, and Pb are greatly influenced by human activities and mainly come from wastewater, waste residue, and waste gas produced by industrial activities, pesticide residues from agricultural activities, and pollution from domestic sewage, while, Cr and Ni come from both natural sources and human activities. Mn and Fe are relatively stable and mainly come from natural sources. The development trend of heavy metal content in the sediments of various lakes in the future is predicted by regression analysis. Fe and As in WLS and Cr, Mn, Ni, and Cu in BST show upward trends, indicating that the influences of industrial activities, agricultural activities, domestic emissions, and air pollutants on heavy metal pollution in lake sediments have a continuous effect. The results can provide a scientific basis for the effective control and environmental governance of heavy metal pollution in lakes. Full article
(This article belongs to the Section Water Quality and Contamination)
31 pages, 11924 KB  
Article
Enhanced 3D Turbulence Models Sensitivity Assessment Under Real Extreme Conditions: Case Study, Santa Catarina River, Mexico
by Mauricio De la Cruz-Ávila and Rosanna Bonasia
Hydrology 2025, 12(10), 260; https://doi.org/10.3390/hydrology12100260 - 2 Oct 2025
Abstract
This study compares enhanced turbulence models in a natural river channel 3D simulation under extreme hydrometeorological conditions. Using ANSYS Fluent 2024 R1 and the Volume of Fluid scheme, five RANS closures were evaluated: realizable k–ε, Renormalization-Group k–ε, Shear Stress Transport k–ω, Generalized k–ω, [...] Read more.
This study compares enhanced turbulence models in a natural river channel 3D simulation under extreme hydrometeorological conditions. Using ANSYS Fluent 2024 R1 and the Volume of Fluid scheme, five RANS closures were evaluated: realizable k–ε, Renormalization-Group k–ε, Shear Stress Transport k–ω, Generalized k–ω, and Baseline-Explicit Algebraic Reynolds Stress model. A segment of the Santa Catarina River in Monterrey, Mexico, defined the computational domain, which produced high-energy, non-repeatable real-world flow conditions where hydrometric data were not yet available. Empirical validation was conducted using surface velocity estimations obtained through high-resolution video analysis. Systematic bias was minimized through mesh-independent validation (<1% error) and a benchmarked reference closure, ensuring a fair basis for inter-model comparison. All models were realized on a validated polyhedral mesh with consistent boundary conditions, evaluating performance in terms of mean velocity, turbulent viscosity, strain rate, and vorticity. Mean velocity predictions matched the empirical value of 4.43 [m/s]. The Baseline model offered the highest overall fidelity in turbulent viscosity structure (up to 43 [kg/m·s]) and anisotropy representation. Simulation runtimes ranged from 10 to 16 h, reflecting a computational cost that increases with model complexity but justified by improved flow anisotropy representation. Results show that all models yielded similar mean flow predictions within a narrow error margin. However, they differed notably in resolving low-velocity zones, turbulence intensity, and anisotropy within a purely hydrodynamic framework that does not include sediment transport. Full article
Show Figures

Figure 1

14 pages, 1358 KB  
Article
Toxic Metals in Road Dust from Urban Industrial Complexes: Seasonal Distribution, Bioaccessibility and Integrated Health Risk Assessment Using Triangular Fuzzy Number
by Yazhu Wang, Jinyuan Guo, Zhiguang Qu and Fei Li
Toxics 2025, 13(10), 842; https://doi.org/10.3390/toxics13100842 - 2 Oct 2025
Abstract
Urban industrial complexes have been expanding worldwide, reducing the spatial separation between agricultural, residential, and industrial zones, particularly in developing nations. Urban road dust contamination, a sensitive indicator of urban environmental quality, primarily originates in urbanization and industrialization. Its detrimental impacts on human [...] Read more.
Urban industrial complexes have been expanding worldwide, reducing the spatial separation between agricultural, residential, and industrial zones, particularly in developing nations. Urban road dust contamination, a sensitive indicator of urban environmental quality, primarily originates in urbanization and industrialization. Its detrimental impacts on human health arise not only from particulate matter itself but also from toxic and harmful substances embedded within dust particles. Toxic metals in road dust can pose health risks through inhalation, ingestion and contact. To investigate the seasonal patterns, bioaccessibility levels and the potential human health risks linked to toxic metals (Cadmium (Cd), Nickel (Ni), Arsenic (As), Lead (Pb), Zinc (Zn), Copper (Cu), and Chromium (Cr)), 34 dust samples were collected from key roads in proximity to representative industrial facilities in Wuhan’s Qingshan District. The study found that the concentrations of Cd, Pb, and Cu in road dust were within the limits set by the national standard (GB 15618-2018), while Ni and As were not. Seasonally, Ni, As, Pb, Zn, and Cr exhibited higher concentrations during the summer than in other seasons, whereas Cd levels were lowest in spring and highest in autumn, the opposite of Cu. According to the Simplified Bioaccessibility Extraction Test (SBET), the average bioaccessibility rates of toxic metals were Cd > Zn > Cu > Ni > Cr > As > Pb. An improved health risk assessment model was developed, integrating metal enrichment, bioaccessibility, and parameter uncertainty. Results indicated that Cd, Ni, Zn, Cu, As, and Cr posed no significant non-carcinogenic risk. However, for children, the carcinogenic risks of Cd and As were relatively high, identifying them as priority control metals. Therefore, it is recommended to periodically monitor As and Cd and regulate their potential emission sources, especially in winter and spring. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

25 pages, 4589 KB  
Review
Soil Properties, Processes, Ecological Services and Management Practices of Mediterranean Riparian Systems
by Pasquale Napoletano, Noureddine Guezgouz, Lorenza Parato, Rosa Maisto, Imen Benradia, Sarra Benredjem, Teresa Rosaria Verde and Anna De Marco
Sustainability 2025, 17(19), 8843; https://doi.org/10.3390/su17198843 - 2 Oct 2025
Abstract
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At [...] Read more.
Riparian zones, located at the interface between terrestrial and aquatic systems, are among the most dynamic and ecologically valuable landscapes. These transitional areas play a pivotal role in maintaining environmental health by supporting biodiversity, regulating hydrological processes, filtering pollutants, and stabilizing streambanks. At the core of these functions lie the unique characteristics of riparian soils, which result from complex interactions between water dynamics, sedimentation, vegetation, and microbial activity. This paper provides a comprehensive overview of the origin, structure, and functioning of riparian soils, with particular attention being paid to their physical, chemical, and biological properties and how these properties are shaped by periodic flooding and vegetation patterns. Special emphasis is placed on Mediterranean riparian environments, where marked seasonality, alternating wet–dry cycles, and increasing climate variability enhance both the importance and fragility of riparian systems. A bibliographic study, covering 25 years (2000–2025), was carried out through Scopus and Web of Science. The results highlight that riparian areas are key for carbon sequestration, nutrient retention, and ecosystem connectivity in water-limited regions, yet they are increasingly threatened by land use change, water abstraction, pollution, and biological invasions. Climate change exacerbates these pressures, altering hydrological regimes and reducing soil resilience. Conservation requires integrated strategies that maintain hydrological connectivity, promote native vegetation, and limit anthropogenic impacts. Preserving riparian soils is therefore fundamental to sustain ecosystem services, improve water quality, and enhance landscape resilience in vulnerable Mediterranean contexts. Full article
(This article belongs to the Section Sustainability, Biodiversity and Conservation)
16 pages, 1811 KB  
Article
Detection and Quantification Limits for Polyethylene Particles Combining the Thermal Rock-Eval® Method with a Mathematical Extrapolation Procedure
by Maria-Fernanda Romero-Sarmiento, Daniela Bauer and Sébastien Rohais
Microplastics 2025, 4(4), 71; https://doi.org/10.3390/microplastics4040071 - 2 Oct 2025
Abstract
The main aim of this work is to define the limits of detection (LOD) and quantification (LOQ) for polyethylene (PE) particles using a pyrolysis and oxidation-based method, the thermal Rock-Eval® device, combined with a mathematical extrapolation procedure. The influences of particle size [...] Read more.
The main aim of this work is to define the limits of detection (LOD) and quantification (LOQ) for polyethylene (PE) particles using a pyrolysis and oxidation-based method, the thermal Rock-Eval® device, combined with a mathematical extrapolation procedure. The influences of particle size and shape on the thermal degradation of PE polymers are also investigated in this study. Thermal Total HC and Tpeak parameters, recently used to characterize polymer samples, are evaluated as a function of both polymer grain size and shape. Results indicate a LOD for the investigated PE polymers of around 1.7–2 μg in 60 mg of composite sediment (28–33 ppm). A conservative LOQ for the PE samples ranges between 5 and 6 μg (83–100 ppm). The LOQ is on the same order of magnitude for any size or shape of the studied PE polymers. By contrast, the LOD for the PE samples is slightly affected by both the polymer grain size and shape. Results also demonstrate that it is possible to detect PE nanoparticles of 79 nm in size. Finally, this study provides specific Rock-Eval® parameters, linear regressions, and a mathematical extrapolation procedure that can be used to better quantify very small PE mass contents, including nanoplastics in environmental samples. Full article
Show Figures

Figure 1

19 pages, 2437 KB  
Article
Effects of Agricultural Production Patterns on Surface Water Quality in Central China’s Irrigation Districts: A Case Study of the Four Lakes Basin
by Yanping Hu, Zhenhua Wang, Dongguo Shao, Rui Li, Wei Zhang, Meng Long, Kezheng Song and Xiaohuan Cao
Sustainability 2025, 17(19), 8838; https://doi.org/10.3390/su17198838 - 2 Oct 2025
Abstract
To explore the coupling between agricultural farming models and surface water environmental in central China’s irrigation districts, this study focuses on the Four Lakes Basin within Jianghan Plain, a key grain-producing and ecological protection area. Integrating remote sensing images, statistical yearbooks, and on-site [...] Read more.
To explore the coupling between agricultural farming models and surface water environmental in central China’s irrigation districts, this study focuses on the Four Lakes Basin within Jianghan Plain, a key grain-producing and ecological protection area. Integrating remote sensing images, statistical yearbooks, and on-site monitoring data, the study analyzed the phased characteristics of the basin’s agricultural pattern transformation, the changes in non-point source nitrogen and phosphorus loads, and the responses of water quality in main canals and Honghu Lake to agricultural adjustments during the period 2010~2023. The results showed that the basin underwent a significant transformation in agricultural patterns from 2016 to 2023: the area of rice-crayfish increased by 14%, while the areas of dryland crops and freshwater aquaculture decreased by 11% and 4%, respectively. Correspondingly, the non-point source nitrogen and phosphorus loads in the Four Lakes Basin decreased by 11~13%, and the nitrogen and phosphorus concentrations in main canals decreased slightly by approximately 2 mg/L and 0.04 mg/L, respectively; however, the water quality of Honghu Lake continued to deteriorate, with nitrogen and phosphorus concentrations increasing by approximately 0.46 mg/L and 0.06 mg/L, respectively. This indicated that the adjustment of agricultural farming models was beneficial to improving the water quality of main canals, but it did not bring about a substantial improvement in the sustainable development of Honghu Lake. This may be related to various factors that undermine the sustainability of the lake’s aquatic ecological environment, such as climate change, natural disasters, internal nutrient release from sediments, and the decline in water environment carrying capacity. Therefore, to advance sustainability in this basin and similar irrigation districts, future efforts should continue optimizing agricultural models to reduce nitrogen/phosphorus inputs, while further mitigating internal nutrient release and climate disaster risks, restoring aquatic vegetation, and enhancing water environment carrying capacity. Full article
Show Figures

Figure 1

23 pages, 6028 KB  
Article
Bayesian Analysis of Stormwater Pump Failures and Flood Inundation Extents
by Sebastian Ramsauer, Felix Schmid, Georg Johann, Daniela Falter, Hannah Eckers and Jorge Leandro
Water 2025, 17(19), 2876; https://doi.org/10.3390/w17192876 - 2 Oct 2025
Abstract
Former coal mining in the Ruhr area of North Rhine-Westphalia, Germany, leads to significant challenges in flood management due to drainless sinks in urban areas caused by ground depression. Consequently, pumping stations have been constructed to enable the drainage of incoming river discharge, [...] Read more.
Former coal mining in the Ruhr area of North Rhine-Westphalia, Germany, leads to significant challenges in flood management due to drainless sinks in urban areas caused by ground depression. Consequently, pumping stations have been constructed to enable the drainage of incoming river discharge, preventing overland flooding. However, in the event of the failure of pumping stations, these areas are exposed to a higher flood risk. To address this issue, a methodology has been developed to assess the probability of pumping failures by identifying the most significant failure mechanisms and integrating them into a Bayesian network. To evaluate the impact on the flood inundation probability, a new approach is applied that defines pump failure scenarios depending on available pump discharge capacity and integrates them into a flood inundation probability map. The result is a method to estimate the flood inundation probability stemming from pumping failure, which allows the integration of internal failure mechanisms (e.g., technical or electronic failure) as well as external failure mechanisms (e.g., sedimentation or heavy rainfall). Therefore, authorities can assess the most probable pumping failures and their impact on flood risk management strategies. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

27 pages, 8550 KB  
Article
Relationship Between Runoff and Sediment Transfer in a Slope–Gully Cascade System During Extreme Hydrological Events in the Lublin Upland, East Poland
by Grzegorz Janicki, Jan Rodzik and Waldemar Kociuba
Water 2025, 17(19), 2875; https://doi.org/10.3390/w17192875 - 2 Oct 2025
Abstract
Erosion monitoring was carried out between 2003 and 2022 using a hydrological station with a Thomson overflow, a water gauge, and a limnigraph installed at the outlet of the Kolonia Celejów gully system. The study area is located in the north-western part of [...] Read more.
Erosion monitoring was carried out between 2003 and 2022 using a hydrological station with a Thomson overflow, a water gauge, and a limnigraph installed at the outlet of the Kolonia Celejów gully system. The study area is located in the north-western part of the Lublin Upland in the Nałęczów Plateau mesoregion (SE Poland). The total amount and intensity of precipitation were measured using an automatic station and water runoff and suspended sediment yield (SST) were also continuously measured. High variability in water runoff was observed during this period (max. of about 76,000 m3 and mean > 26,000 m3), and as a result of numerous heavy rains, a significant increase in SST (max. of about 95 Mg to about 1200 Mg and mean of 24 Mg to about 215 Mg) was noted in the second half of the measurement period. Most of the material removed at that time came from the cutting of the gully bottom and from the redeposition of material transported from the catchment used for agricultural purposes. In order to determine the volume of material delivered to the slope–gully cascade system in November 2012, a second station was installed at the gully head, which only operated until June 2013. However, the measurements covered all snowmelts and summer runoffs, as well as the June downpours. At the same time, these measurements represent the first unique attempt to quantify the delivery of material from the slope subcatchment to the gully system. The year 2013 was also important in terms of water runoff from the loess gully catchment area (about 40,000 m3) and was a record year (SST > 1197 Mg) for the total amount of suspended material runoff (7.6% and 33.5% of the 20-year total, respectively). During the cool half of the year, 16,490 m3 of water (i.e., 42% of the annual total) flowed out of the gully catchment area, and during the warm half of the year, 23,742 m3 of water (59% of the annual total) flowed out. In contrast, 24,076.7 m3 of water flowed out of the slope subcatchment area during the year, with slightly more flowing out in the cool half of the year (12,395.9 m3 or 51.5% of the annual total). In the slope and gully subcatchment areas, the suspended sediment discharge clearly dominated in the warm half of the year (98% and 97%). The record-breaking SST amount in June was over 1100 Mg of suspended sediment, which accounted for 93% of the annual SST from the gully catchment area and over 94% in the case of the slope subcatchment area. The relationships in the slope–gully cascade system in 2013 were considered representative of the entire measurement series, which were used to determine the degree of connectivity between the slope and gully subsystems. During summer downpours, the delivery of slope material from agricultural fields accounted for approx. 15% of the material removed from the catchment area, which confirms the predominance of transverse transport in the slope catchment area and longitudinal transport in the gully. The opposite situation occurs during thaws, with as much as 90% of the material removed coming from the slope catchment area. At that time, longitudinal transport dominates on the slope and transverse transport dominates in the gully. Full article
(This article belongs to the Special Issue Soil Erosion and Sedimentation by Water)
Show Figures

Figure 1

19 pages, 2024 KB  
Article
Immunoglobulin G Subclass-Specific Glycosylation Changes in Rheumatoid Arthritis
by Dániel Szabó, Balázs Gyebrovszki, Eszter Szarka, Felícia Auer, Bernadette Rojkovich, György Nagy, András Telekes, Károly Vékey, László Drahos, András Ács and Gabriella Sármay
Int. J. Mol. Sci. 2025, 26(19), 9626; https://doi.org/10.3390/ijms26199626 - 2 Oct 2025
Abstract
Rheumatoid arthritis (RA) is the most common inflammatory polyarthritis. In addition, 60–80% of patients express anti-citrullinated protein antibodies (ACPAs), which serve as a diagnostic marker for RA. The effector functions of these autoantibodies can be heavily affected by the N-glycosylation of their Fc [...] Read more.
Rheumatoid arthritis (RA) is the most common inflammatory polyarthritis. In addition, 60–80% of patients express anti-citrullinated protein antibodies (ACPAs), which serve as a diagnostic marker for RA. The effector functions of these autoantibodies can be heavily affected by the N-glycosylation of their Fc region. Here we present a comparison of the Fc N-glycosylation of ACPA IgG to that of non-ACPA IgG from the same patients, and of healthy controls, in an IgG isoform-specific manner. We isolated ACPA and normal serum IgG, digested by trypsin, and separated the resulting peptide mixture by a reversed-phase nanoLC coupled to a Bruker Maxis II Q-TOF, and determined the relative abundance of glycoforms. The paired analysis of galactosylation and sialylation of the IgG subclasses of ACPA and non-ACPA IgG has shown a significant, moderate negative correlation with the inflammatory markers, the level of C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR), as well as with rheuma-factor (RF), but not with the disease activity score (DAS) or cyclic citrullinated peptide specific antibodies (anti-CCP). However, we detected a significant negative correlation between glycosylation and DAS in the non-ACPA IgG fractions. Furthermore, the isoform-specific analysis revealed additional insight into the changes of the glycosylation features of IgG in RA: changes in the frequencies of the bisecting GlcNAc unit between sample groups could be explained by only the IgG1 isoform; while invariance in fucosylation is the result of the superposition of two isoforms with opposite changes. These results highlight the importance of analyzing immunoglobulin glycosylation in an isoform-specific manner. Full article
Show Figures

Figure 1

14 pages, 888 KB  
Article
Effects of Different Centrifugation Parameters on Equilibrium Solubility Measurements
by Rita Szolláth, Vivien Bárdos, Marcell Stifter-Mursits, Réka Angi and Károly Mazák
Methods Protoc. 2025, 8(5), 116; https://doi.org/10.3390/mps8050116 - 2 Oct 2025
Abstract
The bioavailability of a drug is closely linked to its solubility, making its early determination essential in drug development. The saturation shake-flask (SSF) method is the gold standard protocol for this, which includes a phase separation step—either by sedimentation, filtration, or centrifugation. This [...] Read more.
The bioavailability of a drug is closely linked to its solubility, making its early determination essential in drug development. The saturation shake-flask (SSF) method is the gold standard protocol for this, which includes a phase separation step—either by sedimentation, filtration, or centrifugation. This step is critical, as it can directly influence the accuracy of the results. This study investigated the impact of centrifugation parameters—time and rotation speed—on solubility measurements. Additionally, we compared two sample preparation protocols: continuous stirring for 24 h versus 6 h of stirring followed by 18 h of sedimentation before centrifugation. Four model compounds were tested at three pH values using Britton–Robinson buffers. Centrifugation was conducted for 5, 10, or 20 min at either 5000 or 10,000 rpm. Results showed that pre-sedimented samples yielded solubility values closer to sedimentation-only references, while continuous stirring often led to overestimated values, particularly at higher speeds and longer durations. One such example was papaverine hydrochloride, that showed solubility values 60–70% higher than the reference after centrifugation at 10,000 rpm for 20 min without prior sedimentation. Lower standard deviations were observed with shorter, slower centrifugation, with 5 min and 5000 rpm yielding results closest to the reference values. Full article
(This article belongs to the Section Biochemical and Chemical Analysis & Synthesis)
Show Figures

Graphical abstract

Back to TopTop