Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (455)

Search Parameters:
Keywords = seed dormancy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1152 KB  
Article
Seed Dormancy and Germination of Scrophularia koraiensis, an Endemic Species in the Korean Peninsula
by Seung Youn Lee, Kyu Seong Choi, Chung Ho Ko and Yong Ha Rhie
Seeds 2025, 4(4), 56; https://doi.org/10.3390/seeds4040056 - 5 Nov 2025
Viewed by 178
Abstract
This study aimed to develop seed-based mass propagation techniques for the conservation and horticultural and medicinal uses of Scrophularia koraiensis Nakai, an endemic plant in the Korean Peninsula. Seeds were collected from four different locations (accessions) and subjected to untreated (control), gibberellic acid [...] Read more.
This study aimed to develop seed-based mass propagation techniques for the conservation and horticultural and medicinal uses of Scrophularia koraiensis Nakai, an endemic plant in the Korean Peninsula. Seeds were collected from four different locations (accessions) and subjected to untreated (control), gibberellic acid (GA)-only treatment, cold stratification-only treatment, or a cold stratification + GA treatment. Except for seeds collected from one location, the control group exhibited low germination of below 20% in all other locations. However, the GA-only and cold stratification-only treatments released seed dormancy and promoted germination compared with the control. In particular, the cold stratification-only treatment at 5 °C for 4 weeks resulted in about 80% germination in all accessions and demonstrated positive effects on germination speed and uniformity. These findings indicated that S. koraiensis seeds exhibit non-deep physiological dormancy (PD). Upon comparing the seed dormancy classes across various species of Scrophularia, native to different continents and countries, we confirmed that PD is very well conserved in the genus Scrophularia. Therefore, the study outcomes will provide fundamental and practical insights into the seed dormancy and germination characteristics of various Scrophularia species for future studies. Full article
Show Figures

Figure 1

15 pages, 4392 KB  
Article
Fumarylacetoacetate Hydrolase Regulates Seed Dormancy and Germination Through the Gibberellin Pathway in Arabidopsis
by Chao Hu, Hua Yang, Xuewen Zhang, Chunmei Ren and Lihua Huang
Plants 2025, 14(21), 3342; https://doi.org/10.3390/plants14213342 - 31 Oct 2025
Viewed by 230
Abstract
Tyrosine (Tyr) degradation is a crucial pathway in animals. However, its role in plants remains to be examined. Fumarylacetoacetate hydrolase (FAH) is the final enzyme involved in Tyr degradation. Studies of a mutant of the SHORT-DAY SENSITIVE CELL DEATH 1 (SSCD1) [...] Read more.
Tyrosine (Tyr) degradation is a crucial pathway in animals. However, its role in plants remains to be examined. Fumarylacetoacetate hydrolase (FAH) is the final enzyme involved in Tyr degradation. Studies of a mutant of the SHORT-DAY SENSITIVE CELL DEATH 1 (SSCD1) gene encoding FAH in Arabidopsis have shown that blockage of this pathway results in the accumulation of Tyr metabolites, thereby inducing cell death under short-day conditions. Seed dormancy is a critical trait which is regulated by endogenous and environmental cues, among which abscisic acid (ABA) and gibberellin (GA) are the primary effectors. ABA induces seed dormancy, whereas GA releases seed dormancy. In this study, sscd1 seeds displayed deep dormancy and hypersensitivity to the GA biosynthesis inhibitor paclobutrazol, but not to ABA during germination. However, exogenous GA3 could not completely recover dormancy or germination of sscd1 seeds. Moreover, GA3 level was reduced, which was consistent with the decreased expression of GA3-oxidase 1 in imbibed sscd1 seeds. Furthermore, SSCD1 acted upstream of RGA-LIKE 2. Eliminating the accumulation of Tyr metabolites by inhibiting homogentisate dioxygenase, an enzyme upstream of FAH, completely rescued the phenotype of sscd1 seeds. Additionally, germination of sscd1 seeds was hypersensitive to FAH deficiency-induced accumulation of succinylacetone, which is a Tyr metabolite. These findings suggest that FAH deficiency in sscd1 causes accumulation of Tyr metabolites, thereby disrupting GA biosynthesis and signaling. This resulted in deep dormancy and hypersensitivity to paclobutrazol during germination and highlights the important role of the Tyr degradation pathway in GA-mediated seed dormancy and germination. Full article
(This article belongs to the Special Issue Molecular Regulation of Plant Development and Stress Responses)
Show Figures

Figure 1

11 pages, 3728 KB  
Article
Linking Seed Size and Thermal Tolerance in Seed Germination of Hymenaea stigonocarpa, a Fire-Prone Neotropical Savanna Tree
by Marcilio Fagundes, Maria Isabela Rodrigues Silva, Bruno Henrique Silva Mayrink, Walisson Kenedy-Siqueira, Luiz Henrique Arymura Figueiredo and Tatiana Cornelissen
Seeds 2025, 4(4), 54; https://doi.org/10.3390/seeds4040054 - 28 Oct 2025
Viewed by 260
Abstract
The Neotropical Savanna (Cerrado) is a fire-prone biome characterized by seasonal climate, nutrient-poor soils, and variable fire regimes. While fire-induced germination responses are well documented in Cerrado plants, the role of seed size in mediating thermal tolerance remains poorly understood. Here, we investigate [...] Read more.
The Neotropical Savanna (Cerrado) is a fire-prone biome characterized by seasonal climate, nutrient-poor soils, and variable fire regimes. While fire-induced germination responses are well documented in Cerrado plants, the role of seed size in mediating thermal tolerance remains poorly understood. Here, we investigate how seed size and fire-related heat treatments influence germination in Hymenaea stigonocarpa, a keystone Cerrado tree species. Specifically, we test the predictions that (i) low to moderate fire temperatures (<270 °C) do not impair seed germination and (ii) larger seeds exhibit greater heat tolerance than smaller seeds. We exposed 360 seeds from 30 individual trees to five heat-shock treatments (27, 100, 150, 200, and 270 °C) simulating fire intensities typically experienced in the Cerrado. Our results show that H. stigonocarpa produces relatively large seeds with an average germination rate of approximately 42%. The average time required for germination was 12.18 ± 0.43 (average ± standard error) days. The time required for seed germination varied significantly as a function of heat-shock treatment and seed mass, with seeds exposed to the highest temperature (270 °C) taking longer to germinate. Moreover, seed mass had a positive effect on the time required for seed germination. The germination percentage remains stable across heat treatments and seed sizes, indicating that H. stigonocarpa seeds exhibit characteristics typical of heat-tolerant species rather than those of heat-stimulated species. Our study showed that H. stigonocarpa trees produce large seeds that germinate quickly and are tolerant to moderate temperatures. These seed traits play a crucial role in the reproductive success of individual plants in fire-prone, nutrient-poor, and water-limited ecosystems. Furthermore, our results offer important guidance by emphasizing the role of seed size in effective restoration initiatives. Full article
Show Figures

Figure 1

14 pages, 7156 KB  
Article
Agroecology of Cyperus rotundus: Emergence Dynamics of as a Tool for Sustainable Weed Management
by Stefano Benvenuti
Sustainability 2025, 17(21), 9543; https://doi.org/10.3390/su17219543 - 27 Oct 2025
Viewed by 413
Abstract
Trials were carried out to investigate the effects of light and temperature on C. rotundus seeds and tubers under two conditions: (i) in vitro and (ii) after sowing in soil. In the latter, seedling emergence was evaluated after sowing at increasing depths in [...] Read more.
Trials were carried out to investigate the effects of light and temperature on C. rotundus seeds and tubers under two conditions: (i) in vitro and (ii) after sowing in soil. In the latter, seedling emergence was evaluated after sowing at increasing depths in different soil textures. While dormancy was evident in over 50% of the seeds, which also required light for germination, in contrast, tubers showed a significantly shorter period of dormancy that was independent of light. Seed burial strongly hindered seedling emergence, showing an “active” seed bank only in the shallowest soil layer (few mm). In contrast, tubers showed a marked ability to emerge from a depth exceeding 40 cm. Emergence capacity was found to be proportional to the size of the tubers, attributable to the greater energy reserves needed during autotrophic pre-emergence growth. Seedling emergence from both seeds and tubers, sown at increasing depths, was inhibited to a greater extent in a clay soil texture. A lower inhibitory effect was reported for sandy soils. Tuber vitality was significantly reduced or eliminated within a few days from progressive drying following exposure to solar rays during summer periods. Finally, the data were discussed within the context of planning the agronomic management of C. rotundus, in terms of soil tillage modalities, to ensure sustainable control of this strongly invasive and persistent weed. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

11 pages, 620 KB  
Article
Seed Dormancy Variability in Lonicera etrusca and Its Relationship with Environmental Heterogeneity Across Localities
by Alejandro Santiago, Jesus Márquez-Pablo, Natalia Celaya-Rojas, José María Herranz and Pablo Ferrandis
Seeds 2025, 4(4), 52; https://doi.org/10.3390/seeds4040052 - 24 Oct 2025
Viewed by 275
Abstract
Seed dormancy is a key ecological attribute influencing germination timing and the ability of species to establish in variable environments. This study investigated whether inter-population variability in seed dormancy expression exists in Lonicera etrusca, a Mediterranean shrub known for producing seeds with [...] Read more.
Seed dormancy is a key ecological attribute influencing germination timing and the ability of species to establish in variable environments. This study investigated whether inter-population variability in seed dormancy expression exists in Lonicera etrusca, a Mediterranean shrub known for producing seeds with underdeveloped embryos and multiple dormancy types. Seeds were collected from four geographically and ecologically distinct populations in central Iberia and subjected to a series of germination experiments simulating natural seasonal temperature regimes, stratification treatments, and gibberellic acid application. Across all populations, seeds exhibited morphological dormancy (MD) and varying degrees of morphophysiological dormancy (MPD), including non-deep simple and deep complex types. Despite high intra-specific variability in dormancy expression, no significant differences were found among populations for germination patterns or embryo growth responses. This indicates that dormancy variability is an intrinsic, conserved feature of the species rather than a locally adaptive trait. The homogenization of germination strategies across populations may be facilitated by bird-mediated seed dispersal, promoting gene flow and limiting local selection. These findings support the hypothesis that dormancy polymorphism in L. etrusca reflects a flexible germination strategy that enhances colonization potential across heterogeneous Mediterranean environments, rather than an environmentally induced plastic response. Full article
Show Figures

Figure 1

31 pages, 1887 KB  
Review
Omics for Improving Seed Quality and Yield
by Jake Cummane, William J. W. Thomas, Maria Lee, Mohammad Sayari, David Edwards, Jacqueline Batley and Aria Dolatabadian
Seeds 2025, 4(4), 49; https://doi.org/10.3390/seeds4040049 - 24 Oct 2025
Viewed by 301
Abstract
Seed-related traits such as seed size, germination, vigour, dormancy, biochemical composition, and stress resistance are critical to ensuring agricultural productivity and global food security, particularly in current scenarios of climate change and environmental unpredictability. This review examines the transformative potential of omics technologies, [...] Read more.
Seed-related traits such as seed size, germination, vigour, dormancy, biochemical composition, and stress resistance are critical to ensuring agricultural productivity and global food security, particularly in current scenarios of climate change and environmental unpredictability. This review examines the transformative potential of omics technologies, encompassing genomics, transcriptomics, proteomics, metabolomics, epigenomics, and phenomics, in enhancing our understanding of seed biology and its applications in crop improvement. Genomics and transcriptomics are key technologies in future plant breeding and gene editing to optimise seed yield and quality. We reviewed the role of metabolomic approaches in uncovering the molecular mechanisms behind seed germination, vigour, dormancy, and the proteomic advances to elucidate markers of seed quality, combining these omic technologies to decipher DOG1 as a marker of dormancy. Both biotic and abiotic stress resistance in seeds were reviewed from a multi-omics perspective to determine the best avenues for improving the resilience of seeds against drought, salinity and pathogens. Moreover, omics approaches have been reviewed to optimise plant–microbe interactions, particularly in enhancing symbiotic relationships within the soil microbiome. Full article
Show Figures

Figure 1

19 pages, 4331 KB  
Article
Effects of Plasma and Activated Water on Biological Characteristics of Bromus inermis Seeds Under Different Power Supply Excitation
by Jiawen Xie, Fubao Jin, Shangang Ma, Jinqiang Shi and Yanming Qi
Plasma 2025, 8(4), 43; https://doi.org/10.3390/plasma8040043 - 24 Oct 2025
Viewed by 363
Abstract
To explore the potential of plasma technology in regulating seed germination, this study compared the effects of direct treatment with needle-plate electrodes using DC and pulse power supplies, and indirect treatment with plasma-activated water on the growth characteristics of Bromus inermis seeds. By [...] Read more.
To explore the potential of plasma technology in regulating seed germination, this study compared the effects of direct treatment with needle-plate electrodes using DC and pulse power supplies, and indirect treatment with plasma-activated water on the growth characteristics of Bromus inermis seeds. By comparing different pulse power parameters, including voltage, pulse width, frequency, and duration, it was found that treatments at 15 kV, 2500 ns, 6 kHz, and 10 min significantly increased the surface hydrophilicity and germination performance of the seeds. The best conditions for DC power supply were 15 kV and 10 min. Indirect treatment with plasma-activated water (15 kV, 10 min) effectively broke the seed dormancy by regulating active nitrogen oxygen particle components, increasing the germination percentage by 50%. Analysis of antioxidant enzyme activity showed that in seedlings the activities of superoxide dismutase (SOD) and peroxidase (POD) increased by 75% and 21%, respectively, after treatment, revealing the mechanism of oxidative stress response induced by plasma. This study provides theoretical and technical references for the application of plasma technology in enhancing seed vitality and agricultural practices. Full article
Show Figures

Figure 1

17 pages, 951 KB  
Review
Advances in Research on the Biological Characteristics of Weedy Rice
by Xingyi Liang, Can Zhao, Kunlun Liu, Weiling Wang, Zhongyang Huo, Xiaoling Song and Sheng Qiang
Plants 2025, 14(20), 3188; https://doi.org/10.3390/plants14203188 - 17 Oct 2025
Viewed by 531
Abstract
Weedy rice (Oryza spp.) has become one of the most harmful weeds in rice fields worldwide. It is a conspecific plant of cultivated rice (Oryza sativa L.) belonging to the genus Oryza, widely occurring in global rice production systems with [...] Read more.
Weedy rice (Oryza spp.) has become one of the most harmful weeds in rice fields worldwide. It is a conspecific plant of cultivated rice (Oryza sativa L.) belonging to the genus Oryza, widely occurring in global rice production systems with a cosmopolitan distribution across major rice-growing regions. Due to its unique biological characteristics, such as strong environmental adaptability, stress resistance, seed shattering propensity, seed dormancy, and competitive dominance, weedy rice can rapidly proliferate and persist in fields, posing a severe threat to rice production systems. This review summarizes the current research progress on the biological characteristics of weedy rice and introduces the significant differences in biological characteristics between weedy and cultivated rice, such as phenotypic diversity, seed shattering, dormancy, strong competitiveness, stress resistance, and early maturity. These distinct biological traits, which significantly differ from cultivated rice, serve as essential mechanisms in the survival strategy of weedy rice. Our review will provide a theoretical reference for a deeper understanding of weedy rice and its integrated management. Full article
(This article belongs to the Special Issue The Bioecology and Sustainable Management of Weeds)
Show Figures

Figure 1

20 pages, 1626 KB  
Article
Seed Germination Ecology and Dormancy Release in Some Native and Underutilized Plant Species with Agronomic Potential
by Georgios Varsamis, Theodora Merou, Ioanna Alexandropoulou, Chrysoula Menti and Eleftherios Karapatzak
Agriculture 2025, 15(20), 2139; https://doi.org/10.3390/agriculture15202139 - 14 Oct 2025
Viewed by 791
Abstract
Within the context of sustainable exploitation of phytogenetic resources, the present study aimed to develop species-specific seed germination protocols for eighteen native and potentially underutilized plant species originating from northeastern Greece. The taxa were selected based on their antioxidant potential and their provenance [...] Read more.
Within the context of sustainable exploitation of phytogenetic resources, the present study aimed to develop species-specific seed germination protocols for eighteen native and potentially underutilized plant species originating from northeastern Greece. The taxa were selected based on their antioxidant potential and their provenance to enhance their regional exploitation potential, thus utilizing the species’ local adaptation traits. To quantify the maximum germination potential in each case, seed viability was assessed using the tetrazolium (TTZ) test. The pre-treatments applied for seed dormancy release included cold stratification and the application of gibberellic acid (GA3) and kinetin. Germination tests revealed that 9 of the 18 species exhibited high germination percentages in the control treatment (ranging between 64 and 90%) indicating that after-ripening was sufficient for any seed dormancy release in a significant portion of the seed lot. Furthermore, cold stratification and hormonal treatments significantly enhanced germination in seven species (final seed germination up to 85%), indicating deeper physiological dormancy and confirming the role of cold stratification and phytohormones in dormancy release. Two species showed no germination under any pre-treatment while viable, indicating the presence of more complex dormancy mechanisms. Germination percentages were frequently lower than the corresponding seed viability values, which ranged from 70% to 100%, suggesting that a portion of the seed lot exhibited deeper dormancy throughout. The results showcased species with favorable germination patterns, thus successfully identifying species that can be readily propagated, as well as species that require specific pre-treatments. The study sets the basis for domestication and sustainable use of local antioxidant-rich flora, providing a clear roadmap for the agronomic utilization of the focal species to support the regional bioeconomy. Full article
(This article belongs to the Section Seed Science and Technology)
Show Figures

Figure 1

23 pages, 970 KB  
Review
bHLH Transcription Factors in Cereal Crops: Diverse Functions in Regulating Growth, Development and Stress Responses
by Song Song, Nannan Zhang, Xiaowei Fan and Guanfeng Wang
Int. J. Mol. Sci. 2025, 26(20), 9915; https://doi.org/10.3390/ijms26209915 - 12 Oct 2025
Viewed by 631
Abstract
Basic helix-loop-helix (bHLH) transcription factors represent one of the largest transcriptional regulator families in cereal crops such as rice, maize, and wheat. They play crucial and diverse roles in regulating key agronomic traits and essential physiological processes. This review provides a systematic synthesis [...] Read more.
Basic helix-loop-helix (bHLH) transcription factors represent one of the largest transcriptional regulator families in cereal crops such as rice, maize, and wheat. They play crucial and diverse roles in regulating key agronomic traits and essential physiological processes. This review provides a systematic synthesis of the functionally characterized bHLH genes across the three major cereals, offering a comparative perspective on their roles in growth, development, and stress responses. We comprehensively summarize their documented functions, highlighting specific regulators such as TaPGS1 for grain size, rice ILI subfamily for leaf angle, OsbHLH004 for seed dormancy and maize “Ms23-Ms32-bHLH122-bHLH51” cascade for the anther development. Their conserved and species-specific functions in iron homeostasis (e.g., IRO2) and in responses to drought, cold, salinity, and pathogens are also detailed. Additionally, we discuss the underlying molecular mechanisms, including specific binding to E-box/G-box cis-elements, protein dimerization, and integration with hormone signaling pathways. By integrating the current knowledge, this review serves as a consolidated and up-to-date reference that highlights the strategic potential of bHLH transcription factors in molecular breeding programs for improving yield, quality, and stress tolerance in cereals. Full article
Show Figures

Figure 1

13 pages, 2180 KB  
Article
Mutation in the LONGIFOLIA1 Gene Resulted in Suppressed Insensitivity of Arabidopsis thaliana proteolysis6 Mutant to Ethylene During Seed Germination
by Xu Wang, Ying Luo, Yuan Cao, Yujin Gong, Francoise Corbineau and Yong Xiang
Seeds 2025, 4(4), 48; https://doi.org/10.3390/seeds4040048 - 30 Sep 2025
Viewed by 489
Abstract
Seed dormancy and germination is regulated by internal hormones and exogenous environment cues. Ethylene is one of the hormones that break seed dormancy and induce seed germination. Our previous study showed that N-degron pathway gene, proteolysis6 (PRT6) was involved in dormancy [...] Read more.
Seed dormancy and germination is regulated by internal hormones and exogenous environment cues. Ethylene is one of the hormones that break seed dormancy and induce seed germination. Our previous study showed that N-degron pathway gene, proteolysis6 (PRT6) was involved in dormancy release by ethylene, the defection of which exhibiting ethylene-insensitivity in Arabidopsis thaliana. In the present study, through screening an ethyl methyl sulfonate-mutagenized (EMS) population of prt61, we isolated a recessive mutant that acted as a suppressor of prt6 that rescued its insensitivity to ethylene as well as a phenotype of shorter silique length. Further bulk segregant analysis on F2 population identified a premature termination located in the third exon of LONGIFOLIA1 (LNG1), previously reported in the regulation of longitudinal cell elongation. Mutation of LNG1 in prt61 background by CRISPR-Cas9 confirmed that LNG1 was epistatic to PRT6 in seed responsiveness to ethylene. Our finding proposed the pleiotropic effect of LNG1 in seed dormancy breakage by ethylene via PRT6, providing novel functional component at the downstream of the coordinated PRT6 and ethylene signaling pathway. Full article
Show Figures

Figure 1

17 pages, 2274 KB  
Article
The Effect of Smoke-Water on Seed Germination of 18 Grassland Plant Species
by Nicholas Peterson, Wendy Gardner and Lauchlan H. Fraser
Fire 2025, 8(10), 382; https://doi.org/10.3390/fire8100382 - 25 Sep 2025
Viewed by 1107
Abstract
There is an urgent and constant need for land reclamation and to restore self-sustaining, stable, and resilient ecosystems. It is necessary to enhance the frequency, consistency, and success rates of applying native plant seed for ecological restoration. Smoke-water can affect seed germination of [...] Read more.
There is an urgent and constant need for land reclamation and to restore self-sustaining, stable, and resilient ecosystems. It is necessary to enhance the frequency, consistency, and success rates of applying native plant seed for ecological restoration. Smoke-water can affect seed germination of plants, regardless of whether they occur in fire-prone ecosystems. Germination trials of 18 native species of Indigenous value in the southern interior grasslands of British Columbia, Canada were conducted using a smoke aqueous solution. Locally sourced parent plant material was burned to produce smoke-water. Seeds were collected from multiple populations of the species across a wide geographic range within the B.C. southern interior to increase the genetic diversity of the seed stock. Seeds were soaked in smoke aqueous solution in various concentrates, including 0% (control), 1% (1:100), 10% (1:10), 20% (1:5), and 100%. The results indicate that germination rates in the presence of smoke-water are species-specific. Five species showed an increase in germination with smoke-water (Erythronium grandiflorum, Calochortus macrocarpus, Arnica latifolia, Lomatium nudicaule, and Shepherdia canadensis); four species showed no change (Rosa woodsii, Crataegus douglasii, Lewisia rediviva, and Prunus virginiana); and nine species showed some level of decrease (Fritillaria affinis, Fritillaria pudica, Berberis aquifolium, Claytonia lanceolata, Gaillardia aristate, Balsamorhiza sagittata, Allium cernuum, Amelanchier alnifolia, and Lomatium macrocarpum). Smoke-water also affected germination rate by plant form (herbs > shrubs), plant phenology (spring ephemeral and protracted > summer quiescent and summer mature) and plant dispersal mechanism (wind > animal). The treatments applied to encourage the germination of seeds from interior grassland forbs and shrubs have demonstrated that smoke-water can effectively break dormancy and enhance the germination rate from certain native plant species. Full article
Show Figures

Figure 1

20 pages, 6932 KB  
Article
Seed Morphometry and Germination of Four Edible Species of Passiflora spp. Conserved in a Gene Bank
by Fabricio Verdezoto-Merino, Álvaro Monteros-Altamirano, Alberto Roura and Héctor Andrade-Bolaños
Crops 2025, 5(5), 64; https://doi.org/10.3390/crops5050064 - 23 Sep 2025
Viewed by 551
Abstract
The Passifloraceae family is one of the most representative in tropical America, with food, pharmaceutical, and ornamental importance. This study evaluated seed morphometry and germination of eight accessions of four Passiflora edible species, P. edulis; P. ligularis; P. quadrangularis; and [...] Read more.
The Passifloraceae family is one of the most representative in tropical America, with food, pharmaceutical, and ornamental importance. This study evaluated seed morphometry and germination of eight accessions of four Passiflora edible species, P. edulis; P. ligularis; P. quadrangularis; and P. tripartita var. mollissima, by studying accessions conserved several years in the gene bank (−15 °C) and recently collected accessions. Four experimental phases were carried out as follows: (1) morphometric characterization of seeds with qualitative and quantitative variables; (2) evaluation of germination under two thermal regimes (20 °C/30 °C and 25 °C); (3) application of six pre-germination treatments to overcome dormancy; and (4) tetrazolium tests. In phase 1, P. quadrangularis stood out for its unique morphological characteristics according to multivariate analysis. In phase 2, the alternating thermal regime (20 °C/30 °C) promoted the highest germination. In phase 3, the germination response was specific to each species: mechanical scarification in P. edulis (85.7%), KNO3 (0.5%) in P. ligularis (35.7%), control in P. quadrangularis (71.1%), and gibberellic acid (GA3 400 ppm) in P. tripartita (71.4%). The tetrazolium phase 4 identified the viability status of the seeds. It is concluded that the differences in morphometry and germination reflect the intrinsic characteristics of each species, highlighting the importance of specific protocols for their germination. This study provides tools to optimize the conservation and regeneration of Passiflora spp. germplasm under ex situ conditions, as a genetic base to be utilized in the future. Full article
Show Figures

Figure 1

14 pages, 3321 KB  
Article
Parental Origin Influences Seed Quality and Seedling Establishment in Kiwifruit Cultivars
by Edgar Manuel Bovio-Zenteno, Benito Hernández-Castellanos, Alejandro Antonio Castro-Luna, Norma Flores-Estévez, Juan Guillermo Cruz-Castillo and Juan Carlos Noa-Carrazana
Agronomy 2025, 15(9), 2201; https://doi.org/10.3390/agronomy15092201 - 16 Sep 2025
Viewed by 609
Abstract
Kiwifruit (Actinidia Lindl.) cultivation is restricted to climates similar to its native habitat in China. The seeds, a product of sexual reproduction, are used to produce rootstocks in commercial plantations, being an important source of genetic diversity for adaptation to variable conditions [...] Read more.
Kiwifruit (Actinidia Lindl.) cultivation is restricted to climates similar to its native habitat in China. The seeds, a product of sexual reproduction, are used to produce rootstocks in commercial plantations, being an important source of genetic diversity for adaptation to variable conditions and emerging challenges. It is known that obtaining kiwifruit plants from seeds is difficult due to their characteristic dormancy. However, the effect of habitat and parents on seed characteristics and their relationship to the seedlings produced is unknown. Here, we show that plants with tolerance to extreme conditions provide advantages to their offspring. We point out that Actinidia arguta cv. Passion Poppers (kiwiberry), capable of tolerating extreme temperatures below zero, has a larger seed size (volume over 15 mm3) and weight (100 seeds weigh nearly 200 mg), greater germination capacity (90.75 ± 1.03), and more robust seedlings (quotient of 20.28 ± 0.75) than classic green and golden kiwifruits, and one tropicalized commercial kiwifruit from Veracruz, Mexico. These findings highlight that parental origin influences seed quality and seedling establishment. We noted that A. arguta seeds offer opportunities for mass plant propagation. In addition, the use of parental plants adapted to extreme conditions could be an effective strategy to improve seed and seedling quality, with factors such as long-term survival and development in new environments awaiting to be explored in extent. Full article
Show Figures

Graphical abstract

32 pages, 1343 KB  
Review
Long Noncoding RNAs as Emerging Regulators of Seed Development, Germination, and Senescence
by Adrian Motor, Marta Puchta-Jasińska, Paulina Bolc and Maja Boczkowska
Int. J. Mol. Sci. 2025, 26(17), 8702; https://doi.org/10.3390/ijms26178702 - 6 Sep 2025
Cited by 1 | Viewed by 1637
Abstract
Long noncoding RNAs (lncRNAs) have emerged as key regulators of gene expression during seed development and physiology. This review examines the diverse roles of lncRNAs in key stages of seed development, including embryogenesis, maturation, dormancy, germination, and aging. It integrates the current understanding [...] Read more.
Long noncoding RNAs (lncRNAs) have emerged as key regulators of gene expression during seed development and physiology. This review examines the diverse roles of lncRNAs in key stages of seed development, including embryogenesis, maturation, dormancy, germination, and aging. It integrates the current understanding of the biogenesis and classification of lncRNAs, emphasizing their functional mechanisms in seeds, particularly those acting in cis and trans. These mechanisms include the scaffolding of polycomb and SWI/SNF chromatin remodeling complexes, the guidance of RNA-directed DNA methylation, the ability to function as molecular decoys, and the modulation of small RNA pathways via competitive endogenous RNA activity. This review highlights the regulatory influence of lncRNAs on abscisic acid (ABA) and gibberellin (GA) signaling pathways, as well as light-responsive circuits that control dormancy and embryonic root formation. Endosperm imprinting processes that link parental origin to seed size and storage are also discussed. Emerging evidence for epitranscriptomic modifications, such as m6A methylation, and the formation of LncRNA–RNA-binding protein condensates that maintain resting states and coordinate reserve biosynthesis are also reviewed. Advances in methodologies, including single-cell and spatial transcriptomics, nascent transcription, direct RNA sequencing, and RNA–chromatin interaction mapping, are expanding the comprehensive lncRNA landscape during seed development and germination. These advances facilitate functional annotation. Finally, possible translational research applications are explored, with a focus on developing lncRNA-based biomarkers for seed vigor and longevity. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

Back to TopTop