Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,957)

Search Parameters:
Keywords = seed germination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1763 KB  
Article
Evaluation of Different Procedures to Pollinate Self-Compatible ‘Royal Red’ Pitaya Under Protected Cultivation
by Juan José Hueso, El Mehdi Bouzar and Julián Cuevas
Plants 2025, 14(19), 3102; https://doi.org/10.3390/plants14193102 - 9 Oct 2025
Abstract
The growing interest in pitaya has led to an increase in its cultivation worldwide. Unfortunately, the production of pitaya often depends on expensive hand-pollination. In this experiment, we compared the efficiency of different procedures in transferring pollen grains to flower stigmas and analyzed [...] Read more.
The growing interest in pitaya has led to an increase in its cultivation worldwide. Unfortunately, the production of pitaya often depends on expensive hand-pollination. In this experiment, we compared the efficiency of different procedures in transferring pollen grains to flower stigmas and analyzed pollen–pistil interactions, fruit set, and quality in response in ‘Royal Red’, a self-compatible genotype of pitaya. The results show that pollen adhesion on the stigma achieved by transferring pollen with a paintbrush or with a duster was higher than pollen adhesion using blowers and much higher than the pollen load in the stigmas of open-pollinated or bagged flowers. However, good pollen germination and sufficient pollen tube growth in the flowers pollinated using blowers enabled high fruit and seed sets, leading to the production of fruits of commercial size in a less expensive manner. The results of free open pollinated and bagged flowers matched exactly, highlighting that the occasional insect visitors of the freely exposed flowers in the greenhouses of southeast Spain are not efficient pollinators. The high fruit set obtained in bagged flowers confirms the self-compatibility of this genotype, although the reduced pollen load and low pollen germination led to smaller fruit with fewer seeds. Full article
Show Figures

Figure 1

19 pages, 916 KB  
Review
The Mechanisms of Sphagneticola trilobata Invasion as One of the Most Aggressive Invasive Plant Species
by Hisashi Kato-Noguchi and Midori Kato
Diversity 2025, 17(10), 698; https://doi.org/10.3390/d17100698 - 6 Oct 2025
Viewed by 74
Abstract
Sphagneticola trilobata (L.) Pruski has been introduced to many countries due to its ornamental and economic value. However, it has been listed in the world’s 100 worst alien invasive species due to its invasive nature. This species easily escapes cultivation and forms dense [...] Read more.
Sphagneticola trilobata (L.) Pruski has been introduced to many countries due to its ornamental and economic value. However, it has been listed in the world’s 100 worst alien invasive species due to its invasive nature. This species easily escapes cultivation and forms dense ground covers. It reproduces asexually through ramet formation from stem fragments. It also produces a large number of viable seeds that establish extensive seed banks. The movement of stem fragments and the dispersal of seeds, coupled with human activity, contribute to its short- and long-distance distribution. S. trilobata grows rapidly due to its high nutrient absorption and photosynthetic abilities. It exhibits high genetic and epigenetic variation. It can adapt to the different habitats and tolerate various adverse environmental conditions, including cold and high temperatures, low and high light irradiation, low nutrient levels, waterlogging, drought, salinity and global warming. S. trilobata has powerful defense systems against herbivory and pathogen infection. These systems activate the jasmonic acid signaling pathway, producing several defensive compounds. This species may also acquire more resources through allelopathy, which suppresses the germination and growth of neighboring plants. These life history traits and defensive abilities likely contribute to its invasive nature. This is the first review to focus on the mechanisms of its invasiveness in terms of growth, and reproduction, as well as its ability to adapt to different environmental conditions and defend itself. Full article
(This article belongs to the Special Issue Ecology, Distribution, Impacts, and Management of Invasive Plants)
13 pages, 2439 KB  
Article
2-Hydroxymelatonin Induces Husk-Imposed Vivipary in the Transgenic Rice Overexpressing Melatonin 2-Hydroxylase
by Kyungjin Lee and Kyoungwhan Back
Biomolecules 2025, 15(10), 1412; https://doi.org/10.3390/biom15101412 - 4 Oct 2025
Viewed by 223
Abstract
Pre-harvest sprouting (PHS) reduces the quality and quantity of crop seeds. PHS can be imposed through the embryo or husk pathway of cereal crops. Most reported PHS seeds are imposed via the embryo pathway. Here, we generated transgenic rice plants overexpressing rice melatonin [...] Read more.
Pre-harvest sprouting (PHS) reduces the quality and quantity of crop seeds. PHS can be imposed through the embryo or husk pathway of cereal crops. Most reported PHS seeds are imposed via the embryo pathway. Here, we generated transgenic rice plants overexpressing rice melatonin 2-hydroxylase (OsM2H), which catalyzes the hydroxylation of melatonin to 2-hydroxymelatonin (2-OHM). OsM2H overexpression (M2H-OE) showed PHS under paddy conditions. Germination assays revealed that intact seeds harvested at 26 and 36 days after heading (DAH) showed PHS, whereas dehusked seeds did not, indicating husk-imposed PHS. Overproduction of 2-OHM was observed in M2H-OE seeds compared to wild-type control. In addition, M2H-OE lines produced more hydrogen peroxide than the wild-type. 2-OHM-induced reactive oxygen species resulted in the induction of OsGA3ox2, a gibberellin (GA) biosynthesis gene, and repression of OsGA2ox3, a GA degradation gene, in caryopses at 2 DAH, but in the induction of the ABA degradation gene OsABA8ox3 in intact seeds at 26 DAH. In addition, M2H-OE seedlings were longer and showed increased levels of hydrogen peroxide and OsGA3ox2 expression versus the wild-type. This is the first report showing that 2-OHM can induce PHS via the husk pathway in rice seeds through the induction of GA biosynthetic and ABA degradation genes. Full article
(This article belongs to the Special Issue New Insights into Hormonal Control of Plant Growth and Development)
Show Figures

Figure 1

26 pages, 16624 KB  
Article
Design and Evaluation of an Automated Ultraviolet-C Irradiation System for Maize Seed Disinfection and Monitoring
by Mario Rojas, Claudia Hernández-Aguilar, Juana Isabel Méndez, David Balderas-Silva, Arturo Domínguez-Pacheco and Pedro Ponce
Sensors 2025, 25(19), 6070; https://doi.org/10.3390/s25196070 - 2 Oct 2025
Viewed by 205
Abstract
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to [...] Read more.
This study presents the development and evaluation of an automated ultraviolet-C irradiation system for maize seed treatment, emphasizing disinfection performance, environmental control, and vision-based monitoring. The system features dual 8-watt ultraviolet-C lamps, sensors for temperature and humidity, and an air extraction unit to regulate the microclimate of the chamber. Without air extraction, radiation stabilized within one minute, with internal temperatures increasing by 5.1 °C and humidity decreasing by 13.26% over 10 min. When activated, the extractor reduced heat build-up by 1.4 °C, minimized humidity fluctuations (4.6%), and removed odors, although it also attenuated the intensity of ultraviolet-C by up to 19.59%. A 10 min ultraviolet-C treatment significantly reduced the fungal infestation in maize seeds by 23.5–26.25% under both extraction conditions. Thermal imaging confirmed localized heating on seed surfaces, which stressed the importance of temperature regulation during exposure. Notable color changes (ΔE>2.3) in treated seeds suggested radiation-induced pigment degradation. Ultraviolet-C intensity mapping revealed spatial non-uniformity, with measurements limited to a central axis, indicating the need for comprehensive spatial analysis. The integrated computer vision system successfully detected seed contours and color changes under high-contrast conditions, but underperformed under low-light or uneven illumination. These limitations highlight the need for improved image processing and consistent lighting to ensure accurate monitoring. Overall, the chamber shows strong potential as a non-chemical seed disinfection tool. Future research will focus on improving radiation uniformity, assessing effects on germination and plant growth, and advancing system calibration, safety mechanisms, and remote control capabilities. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Graphical abstract

18 pages, 2457 KB  
Article
The Potential for Reusing Superabsorbent Polymer from Baby Diapers for Water Retention in Agriculture
by Kamilla B. Shishkhanova, Vyacheslav S. Molchanov, Ilya V. Prokopiv, Alexei R. Khokhlov and Olga E. Philippova
Gels 2025, 11(10), 795; https://doi.org/10.3390/gels11100795 - 2 Oct 2025
Viewed by 250
Abstract
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and [...] Read more.
Annually, about 2.4 million tons of superabsorbent polymers (SAPs) used in disposable diapers are thrown away, polluting our planet. This study aims to explore the potential for reusing SAPs removed from diapers to enhance soil water retention. To this end, the swelling and water retention properties of SAP gels from three different types of diapers were compared to those of an agricultural gel, Aquasorb. Sand was used as a model for soil. When mixed with sand, diaper gels have a swelling degree of ca. 100 g per gram of dried polymer, and a swelling pressure of 12–26 kPa, which are similar to those of Aquasorb gel. Using a synthesized poly(acrylamide-co-sodium acrylate) gel as an example, the correlation between the swelling pressure and the compression modulus of the swollen gel was demonstrated. Soil-hydrological constants were estimated from water retention curves obtained by equilibrium centrifugation of gel/sand mixtures. It was observed that adding 0.3 vol% of diaper gels to sand leads to a 3–4-fold increase in water range available to plants, which is close to that provided by agricultural gel Aquasorb. The water-holding properties were shown to be maintained during several swelling/deswelling cycles in the sand medium. The addition of diaper gels to soil had a significant positive impact on mustard (Brassica juncea L.) seed germination and seedling growth, similar to the agricultural gel Aquasorb. This suggests high potential for the reuse of SAPs from diaper waste to improve soil water retention and water accessibility to plants. This would provide both economic and environmental benefits, conserving energy and raw materials to produce new agricultural gels and limiting the amount of waste. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

20 pages, 7005 KB  
Article
Floral Characteristics and Reproductive Biology in Brazilian Melon Accessions: Insights from Commercial and Exotic Varieties
by Nadia Carolina Sanabria-Verón, Cláusio Antônio Ferreira de Melo, Glauber Henrique de Sousa Nunes, Delmira Da Costa Silva, Margarete Magalhães de Souza and Ronan Xavier Corrêa
Plants 2025, 14(19), 3047; https://doi.org/10.3390/plants14193047 - 1 Oct 2025
Viewed by 423
Abstract
Melon has great economic importance in Brazil, and flower development is the basis for fruit and seed production. The objective of this study was to elucidate the variability of flowering characteristics and to compare qualitative and quantitative reproductive variations in relation to pollen [...] Read more.
Melon has great economic importance in Brazil, and flower development is the basis for fruit and seed production. The objective of this study was to elucidate the variability of flowering characteristics and to compare qualitative and quantitative reproductive variations in relation to pollen viability and stigmatic receptivity in 21 genotypes, which includes 15 Brazilian accessions. In addition, we evaluated the influence of time on the growth of the pollen tube and its arrival at the ovule in vivo at different intervals (1 h, 2 h, 3 h) after hand pollination in three commercial varieties, one exotic accession, and two intervarietal hybrids, by epifluorescence technique. Three groups were distributed by the clustering method of Scott–Knott at 5% probability; group III included only commercial varieties for the flower width descriptor. C. melo germplasm presented 81% andromonoecious plants and 19% trimonoecious plants. Through the multivariate strategy, these 21 genotypes were distributed into six groups with distinct reproductive characteristics, and male flowering was accelerated compared to female flowering. Regarding pollen viability, it was greater than 95% according to staining methods. Pollen germination rate in vivo was affected by time, with an almost 12.5% increase between 1 h and 3 h after hand pollination, and the in vivo pollen germination in hybrids was lower than in commercial varieties. Brazilian accessions, despite stability in pollen viability and stigma receptivity, have great differences in reproductive terms, such as variations in the quantitative and qualitative characteristics of floral pieces and flowering. This work contributes to the knowledge on varieties, hybrids, exotic accession, and Brazilian melon germplasm by characterizing some of their main agricultural traits, such as reproduction floral biology, and opens up prospects for yield evaluation in plant breeding programs. Full article
(This article belongs to the Special Issue Genetics and Genomics of Plant Reproductive Systems)
Show Figures

Figure 1

18 pages, 11690 KB  
Article
Preparation and Herbicidal Evaluation of Butyl Hydroxybenzoate Emulsion
by Tianqi Wang, Haixia Zhu, Lijuan Bao, Suifang Zhang and Yongqiang Ma
Plants 2025, 14(19), 3041; https://doi.org/10.3390/plants14193041 - 1 Oct 2025
Viewed by 263
Abstract
In order to develop a new environmentally friendly microbial herbicide for the field of weed control, this study used the metabolite butyl hydroxybenzoate (BP) of the HY-02 strain of Alternaria as the research object. The BP emulsion formula was determined to be a [...] Read more.
In order to develop a new environmentally friendly microbial herbicide for the field of weed control, this study used the metabolite butyl hydroxybenzoate (BP) of the HY-02 strain of Alternaria as the research object. The BP emulsion formula was determined to be a mixture of BP, methanol, and Tween-20 in a ratio of 1:1:2 g/mL. The seed germination inhibition effect, the phytotoxicity of living plants, crop safety, and the field effect of the emulsion were studied. Research has found that adding 0.75% BP emulsion to the seed culture medium inhibits the germination of weed seeds such as Amaranthus retroflexus L., Malva verticillata L. var., and Chenopodium album L. While Brassica campestris L. seeds were unaffected, Triticum aestivum L and Hordeum vulgare L. stem and leaf growth were inhibited. Cucumis sativus L., Lactuca sativa L. var. asparagina, Spinacia oleracea L., and Capsicum annuum L. seeds are significantly inhibited, with germination rates below 20%. We sprayed 0.75% BP emulsion onto live potted plants; among the weeds, the incidence of Amaranthus retroflexus L., Lepyrodiclis holosteoides, Thlaspi arvense L, Galium spurium L., Malva verticillata L. var. Crispa, Chenopodium album L., and Avena fatua L reached 100%. The Pisum sativum L. and Triticum aestivum L. crops were not affected (NS), and they had slight plant height inhibition and slight susceptibility (LS) to highland Hordeum vulgare L. and peppers. They were highly phytotoxicity to Cucumis sativus L. and Spinacia oleracea L. Some plant leaves became infected and died, with incidences of 85% and 82%, respectively. The field experiment showed that after diluting the BP emulsifiable concentrate, the seedling stage spray was inoculated into the Triticum aestivum L. field, and it was found that the BP emulsifiable concentrate at the concentration of 1.00%~0.75% had a herbicidal effect on weeds such as Chenopodium album L., Elsholtzia densa Benth, and Amaranthus retroflexus L. in the Triticum aestivum L. field, and it was safe for Triticum aestivum L. crops in the field. These results indicate that BP emulsion could be developed into a new environmentally friendly microbial herbicide for field application in grass (Triticum aestivum L. and Hordeum vulgare L.) crops. At the same time, BP’s excellent antibacterial, low-toxicity, hydrolysis, and other effects can promote diversification in herbicide development. Full article
(This article belongs to the Special Issue Biopesticides for Plant Protection)
Show Figures

Figure 1

16 pages, 3188 KB  
Article
Nitrogen-Enriched Porous Carbon from Chinese Medicine Residue for the Effective Activation of Peroxymonosulfate for Degradation of Organic Pollutants: Mechanisms and Applications
by Xiaoyun Lei, Dong Liu, Weixin Zhou, Xiao Liu, Xingrui Gao, Tongtong Wang and Xianzhao Shao
Catalysts 2025, 15(10), 926; https://doi.org/10.3390/catal15100926 - 1 Oct 2025
Viewed by 251
Abstract
Advanced oxidation processes (AOPs) utilizing peroxymonosulfate (PMS) have recently gained attention for effectively removing organic dyes. Biochar, a carbon-based material, can act as a catalyst carrier for PMS activation. This study developed a nitrogen-doped biochar catalyst (NCMR800–2) from waste Chinese medicine residue (CMR) [...] Read more.
Advanced oxidation processes (AOPs) utilizing peroxymonosulfate (PMS) have recently gained attention for effectively removing organic dyes. Biochar, a carbon-based material, can act as a catalyst carrier for PMS activation. This study developed a nitrogen-doped biochar catalyst (NCMR800–2) from waste Chinese medicine residue (CMR) through one-step pyrolysis to efficiently remove Rhodamine B (RhB) from wastewater. Results indicate that NCMR800–2 rapidly achieved complete removal of 20 mg/L Rhodamine B (RhB), the primary focus of this study, within 30 min, while maintaining high degradation efficiencies for other pollutants and significantly outperforming the unmodified material. The material demonstrates strong resistance to ionic interference and operates effectively across a wide pH range. Quenching experiments and in situ testing identified singlet oxygen (1O2) as the primary active species in RhB degradation. Electrochemical analysis showed that nitrogen doping significantly enhanced the electrical conductivity and electron transfer efficiency of the catalyst, facilitating PMS decomposition and RhB degradation. Liquid chromatography–mass spectrometry (LC-MS) identified intermediate products in the RhB degradation process. Seed germination experiments and TEST toxicity software confirmed a significant reduction in the toxicity of degradation products. In conclusion, this study presents a cost-effective, efficient catalyst with promising applications for removing persistent organic dyes. Full article
(This article belongs to the Special Issue Catalytic Materials for Hazardous Wastewater Treatment)
Show Figures

Graphical abstract

13 pages, 1333 KB  
Article
Study on Rice Submergence Germination Through the Combination of RNA-Seq and Genome Resequencing Strategies
by Xin Wang, Feng Yu, Linfeng Feng, Mingdong Zhu and Pingfang Yang
Plants 2025, 14(19), 3033; https://doi.org/10.3390/plants14193033 - 30 Sep 2025
Viewed by 216
Abstract
Submergence during germination is a major barrier to the adoption of direct-seeded rice (DSR). Despite its importance in overcoming this barrier, the genetic architecture underlying the rapid coleoptile elongation under submergence remains largely elusive. Through screening among 20 different rice cultivars, a submergence-tolerant [...] Read more.
Submergence during germination is a major barrier to the adoption of direct-seeded rice (DSR). Despite its importance in overcoming this barrier, the genetic architecture underlying the rapid coleoptile elongation under submergence remains largely elusive. Through screening among 20 different rice cultivars, a submergence-tolerant cultivar Xian133 and a sensitive cultivar Chang15 were obtained. Comparative transcriptomics and whole-genome resequencing were conducted between these two cultivars. The results show that rapid germination under flooding is driven primarily by transcriptional reprogramming rather than by antagonistic gene regulation. Transcriptome-wide analyses revealed a significant enrichment of the amino sugar and nucleotide sugar metabolism pathway in tolerant cultivar. This was further supported by the fact that promoter variants at the key loci OscPGM and OsAGPL1 modulate the expression of these genes and emerge as principal determinants of coleoptile elongation capacity under hypoxia. The identified single-nucleotide polymorphisms (SNPs) within these regulatory regions provide promising molecular targets for marker-assisted breeding of DSR cultivars. Full article
Show Figures

Figure 1

26 pages, 4070 KB  
Article
Evaluation of Paper Mill Sludge Using Bioindicators: Response of Soil Microorganisms and Plants
by Adam Pochyba, Dagmar Samešová, Juraj Poništ, Michal Sečkár, Jarmila Schmidtová, Marián Schwarz and Darina Veverková
Sustainability 2025, 17(19), 8788; https://doi.org/10.3390/su17198788 - 30 Sep 2025
Viewed by 301
Abstract
The growing demand for sustainable waste management practices has prompted interest in the land application of paper sludge as an alternative to landfilling and incineration. This study evaluates the environmental potential of paper sludge derived from recycled hygienic paper production by investigating its [...] Read more.
The growing demand for sustainable waste management practices has prompted interest in the land application of paper sludge as an alternative to landfilling and incineration. This study evaluates the environmental potential of paper sludge derived from recycled hygienic paper production by investigating its effects on soil respiration, seed germination, and seedling development. A comprehensive set of respirometric tests using the OxiTop® system assessed microbial activity in soil amended with various concentrations of paper sludge (1–100%). Concurrently, bioassays using Lepidium sativum L. and Pisum sativum L. seeds examined the phytotoxicity and physiological response during germination. The results show that low to moderate sludge concentrations (1–20%) stimulated microbial activity and enhanced germination parameters, with a germination index (GI) up to 150% at 1%. However, higher concentrations (>40%) led to oxygen depletion, microbial stress, and decreased plant growth, indicating potential phytotoxicity and the need for application thresholds. For certain intermediate concentrations (e.g., 30–40%), a delay of approximately 21 days before sowing is recommended to allow microbial communities to stabilize and avoid initial stress conditions for plants. This study demonstrates that controlled application of paper sludge in soil systems can serve as a viable and sustainable disposal method, supporting circular economy principles and reducing the environmental burden of paper industry by-products. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

18 pages, 1469 KB  
Article
Olive Pomace-Derived Compost: Phytotoxicity Assessment and Relevance for Soil Systems
by Qaiser Javed, Mohammed Bouhadi, Igor Palčić, Dominik Anđelini, Danko Cvitan, Nikola Major, Marina Lukić, Smiljana Goreta Ban, Dean Ban, David Heath, Tomaž Rijavec, Aleš Lapanje and Marko Černe
Soil Syst. 2025, 9(4), 107; https://doi.org/10.3390/soilsystems9040107 - 30 Sep 2025
Viewed by 335
Abstract
Olive pomace (OP) contains phytotoxic compounds that can impair plant growth and soil quality. Composting provides an effective method for detoxifying olive pomace (OP) and improving its suitability for agricultural use. Therefore, this study investigated the phytotoxic effects of raw olive pomace filtrate [...] Read more.
Olive pomace (OP) contains phytotoxic compounds that can impair plant growth and soil quality. Composting provides an effective method for detoxifying olive pomace (OP) and improving its suitability for agricultural use. Therefore, this study investigated the phytotoxic effects of raw olive pomace filtrate (OPF) on seed germination in radish (Raphanus sativus L.) and barley (Hordeum vulgare L.), as well as the impact of composted olive pomace (COP) on their growth. Seeds were exposed to OPF at concentrations of 0% (control), 1%, 3%, 5%, 10%, 20%, and 100%. Additionally, three composting treatments were evaluated: R1 (control: OP + barley straw), R2 (OP + barley straw + urea), and R3 (OP + barley straw + sheep litter). Results showed that OPF at concentrations of 10%, 20%, and 100% significantly reduced seed germination, with complete inhibition at concentrations > 10%. The COP treatments showed different physicochemical properties, such as R2 exhibiting better nutrient availability (C/N = 19, oil content = 0.04%). R3 had the highest concentrations of K (40,430.2 mg/kg) and P (6022.68 mg/kg). Results also indicated that R1 significantly reduced radish dry biomass production compared to barley, although R2 performed slightly better than R1 and R3. The findings highlight the need for proper compost stabilization to minimize the phytotoxicity and improve the agricultural potential of COP for improving soil health. Full article
Show Figures

Graphical abstract

14 pages, 2686 KB  
Article
Transcriptomic Analysis Reveals the Role of Silver Nanoparticles in Promoting Maize Germination
by Zhipeng Yuan, Xuhui Li, Zhi Liang, Ran Li, Weiping Wang, Xiangfeng Li, Xuemei Du, Quanquan Chen, Riliang Gu, Jianhua Wang and Li Li
Plants 2025, 14(19), 3022; https://doi.org/10.3390/plants14193022 - 30 Sep 2025
Viewed by 292
Abstract
The germination, seedling growth, and crop productivity of maize seeds are significantly impacted by seed aging. This study investigated the efficacy of silver nanoparticles (AgNPs) as a seed priming agent for maize inbred lines exhibiting varying degrees of aging tolerance. Two inbred lines, [...] Read more.
The germination, seedling growth, and crop productivity of maize seeds are significantly impacted by seed aging. This study investigated the efficacy of silver nanoparticles (AgNPs) as a seed priming agent for maize inbred lines exhibiting varying degrees of aging tolerance. Two inbred lines, aging-sensitive I178 and aging-tolerant X178, were used. AgNP treatment significantly promoted the germination of I178 (from 55% to 85%, compared with water treatment). Notable improvements were observed in root length, shoot length, and lateral root formation after AgNP treatment in I178. However, X178 showed no significant changes in germination and seedling growth after the AgNP treatment. Further transcriptomic analysis was performed on X178 and I178 before (water treatment) and after AgNP treatment to study genes and the expression network of the mechanism induced by AgNP promotion. In I178, AgNP treatment led to a substantial increase in differentially expressed genes (DEGs). A total of 800 DEGs were identified, with 517 being upregulated and 283 downregulated. The DEGs in I178 were mainly involved in metabolic processes, stress responses, and membrane repair. For example, genes related to lipid metabolism and membrane integrity were upregulated, along with seven genes associated with antioxidant action and redox metabolism. This indicates that AgNPs might enhance membrane stability and stress tolerance in I178. In contrast, X178 had a limited transcriptomic response to AgNP treatment. Although 874 DEGs were detected, the number of genes related to key processes like those in I178 did not change significantly, which is in line with its inherent aging tolerance. Overall, these results suggest that AgNPs can effectively improve seed vigor and counteract the negative effects of seed aging, especially in aging-sensitive maize lines. The mechanism likely occurs through regulating gene expression related to stress response, metabolic repair, and membrane stability. This study provides new insights into the molecular basis of AgNP-mediated seed vigor enhancement, which has potential implications for improving seed quality in agricultural production. Full article
(This article belongs to the Special Issue Genetic Mechanisms Related to Crop Seed Development)
Show Figures

Figure 1

13 pages, 2180 KB  
Article
Mutation in the LONGIFOLIA1 Gene Resulted in Suppressed Insensitivity of Arabidopsis thaliana proteolysis6 Mutant to Ethylene During Seed Germination
by Xu Wang, Ying Luo, Yuan Cao, Yujin Gong, Francoise Corbineau and Yong Xiang
Seeds 2025, 4(4), 48; https://doi.org/10.3390/seeds4040048 - 30 Sep 2025
Viewed by 195
Abstract
Seed dormancy and germination is regulated by internal hormones and exogenous environment cues. Ethylene is one of the hormones that break seed dormancy and induce seed germination. Our previous study showed that N-degron pathway gene, proteolysis6 (PRT6) was involved in dormancy [...] Read more.
Seed dormancy and germination is regulated by internal hormones and exogenous environment cues. Ethylene is one of the hormones that break seed dormancy and induce seed germination. Our previous study showed that N-degron pathway gene, proteolysis6 (PRT6) was involved in dormancy release by ethylene, the defection of which exhibiting ethylene-insensitivity in Arabidopsis thaliana. In the present study, through screening an ethyl methyl sulfonate-mutagenized (EMS) population of prt61, we isolated a recessive mutant that acted as a suppressor of prt6 that rescued its insensitivity to ethylene as well as a phenotype of shorter silique length. Further bulk segregant analysis on F2 population identified a premature termination located in the third exon of LONGIFOLIA1 (LNG1), previously reported in the regulation of longitudinal cell elongation. Mutation of LNG1 in prt61 background by CRISPR-Cas9 confirmed that LNG1 was epistatic to PRT6 in seed responsiveness to ethylene. Our finding proposed the pleiotropic effect of LNG1 in seed dormancy breakage by ethylene via PRT6, providing novel functional component at the downstream of the coordinated PRT6 and ethylene signaling pathway. Full article
Show Figures

Figure 1

21 pages, 3074 KB  
Article
In Vitro Propagation of Endemic Kazakh Tulips: Effects of Temperature and Growth Regulators
by Damelya Tagimanova, Olesya Raiser, Balsulu Kubentayeva, Gulden Nagmetova, Ainur Turzhanova and Oxana Khapilina
Plants 2025, 14(19), 3014; https://doi.org/10.3390/plants14193014 - 29 Sep 2025
Viewed by 306
Abstract
Tulipa auliekolica and Tulipa turgaica have been recently described as endangered species endemic to Kazakhstan, which require urgent conservation amid rising human impact and climate change. Biotechnology offers effective tools for conserving such rare species; however, species-specific in vitro protocols tailored to their [...] Read more.
Tulipa auliekolica and Tulipa turgaica have been recently described as endangered species endemic to Kazakhstan, which require urgent conservation amid rising human impact and climate change. Biotechnology offers effective tools for conserving such rare species; however, species-specific in vitro protocols tailored to their biological traits remain largely unreported. This study aimed to develop an in vitro propagation protocol for these rare Tulipa species by investigating the effects of different temperature regimes and phytohormone treatments. We conducted a study on the in vitro propagation of two recently described species, T. auliekolica and T. turgaica. Species-specific temperature regimes for seed stratification were established. Maximum germination of T. auliekolica was achieved at alternating temperatures of 4/10 °C, and of T. turgaica at 10/20 °C. No seed germination from either species occurred at a constant temperature of 20 °C. Bulbs cultured on Murashige & Skoog (MS) medium supplemented with 90 g/L sucrose and the growth regulators mT (meta-topolin) and BAP (6-benzylaminopurine) were effective in stimulating the formation of up to 4–7 microbulbs. Cultivation on a medium supplemented with 0.5 mg L−1 IBA (indole-3-butyric acid) resulted in the formation of mature bulbs covered with scales. These results can be successfully used in biodiversity conservation programs for the endemic Tulipa species. In addition, they provide a valuable basis for future biotechnological research, including microclonal propagation, the establishment of gene banks, and the development of reintroduction methods for Kazakh endemic Tulipa species. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

22 pages, 4767 KB  
Article
Diversity and Function Potentials of Seed Endophytic Microbiota in a Chinese Medicinal Herb Panax notoginseng
by Hong-Yan Hu, Yun Wen, Shu-Cun Geng, Yu-Nuo Zhang, Yu-Bo Zhao, Xiao-Xia Pan, You-Yong Zhu, Xia-Hong He and Ming-Zhi Yang
Horticulturae 2025, 11(10), 1162; https://doi.org/10.3390/horticulturae11101162 - 29 Sep 2025
Viewed by 393
Abstract
As an important complementation of plant genetic traits, seed endophytes (SEs) have garnered significant attention due to their crucial roles in plant germination and early seedling establishment. In this study, we employed both culture-dependent and amplicon sequencing-based approaches to characterize the endophytic microbiome [...] Read more.
As an important complementation of plant genetic traits, seed endophytes (SEs) have garnered significant attention due to their crucial roles in plant germination and early seedling establishment. In this study, we employed both culture-dependent and amplicon sequencing-based approaches to characterize the endophytic microbiome in seed samples derived from different individual Panax notoginseng plants. Additionally, we evaluated the antagonistic activity of isolated culturable bacterial SEs against the root rot pathogens Fusarium solani and F. oxysporum. Our results demonstrated that a greater sampling quantity substantially increased the species richness (Observed OTUs) and diversity of seed endophytic microbiota, underscoring the importance of seed population size in facilitating the vertical transmission of diverse endophytes to progeny. The endophytic communities (including both fungi and bacteria) exhibited a conserved core microbiota alongside host-specific rare taxa, forming a phylogenetically and functionally diverse endophytic resource pool. Core bacterial genera included Streptococcus, Methylobacterium-Methylorubrum, Sphingomonas, Burkholderia-Caballeronia-Paraburkholderia, Pantoea, Halomonas, Acinetobacter, Pseudomonas, Vibrio, and Luteibacter, while core fungal genera comprised Davidiella, Thermomyces, Botryotinia, Myrothecium, Haematonectria, and Chaetomium. Among 256 isolated endophytic bacterial strains, 11 exhibited strong inhibitory effects on the mycelial growth of F. solani and F. oxysporum. Further evaluation revealed that two antagonistic strains, Bacillus cereus and B. toyonensis, significantly enhanced seed germination and plant growth in P. notoginseng, and effectively suppressed root rot disease in seedlings. These findings highlight the potential use of SEs as biocontrol agents and growth promoters in sustainable agriculture. Full article
Show Figures

Figure 1

Back to TopTop