Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,236)

Search Parameters:
Keywords = seismic events

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4438 KB  
Article
Seismic Assessment of Concrete Gravity Dam via Finite Element Modelling
by Sanket Ingle, Lan Lin and S. Samuel Li
GeoHazards 2025, 6(3), 53; https://doi.org/10.3390/geohazards6030053 - 6 Sep 2025
Viewed by 105
Abstract
The failure of large gravity dams during an earthquake could lead to calamitous flooding, severe infrastructural damage, and massive environmental destruction. This paper aims to demonstrate reliable methods for evaluating dam performance after a seismic event. The work included a seismic hazard analysis [...] Read more.
The failure of large gravity dams during an earthquake could lead to calamitous flooding, severe infrastructural damage, and massive environmental destruction. This paper aims to demonstrate reliable methods for evaluating dam performance after a seismic event. The work included a seismic hazard analysis and nonlinear finite element modelling of concrete cracking for two large dams (D1 and D2, of 35 and 90 m in height, respectively) in Eastern Canada. Dam D1 is located in Montreal, and Dam D2 is located in La Malbaie, Quebec. The modelling approach was validated using the Koyna Dam, which was subjected to the 1967 Mw 6.5 earthquake. This paper reports tensile cracks of D1 and D2 under combined hydrostatic and seismic loading. The latter was generated from ground motion records from 11 sites during the 1988 Mw 5.9 Saguenay earthquake. These records were each scaled to two times the design level. It is shown that D1 remained stable, with minor localised cracking, whereas D2 experienced widespread tensile damage, particularly at the crest and base under high-energy and transverse inputs. These findings highlight the influence of dam geometry and frequency characteristics on seismic performance. The analysis and modelling procedures reported can be adopted for seismic risk classification and safety compliance verification of other dams and for recommendations such as monitoring and upgrading. Full article
(This article belongs to the Special Issue Seismological Research and Seismic Hazard & Risk Assessments)
Show Figures

Figure 1

11 pages, 2267 KB  
Article
Earthquake Swarm Activity in the Tokara Islands (2025): Statistical Analysis Indicates Low Probability of Major Seismic Event
by Tomokazu Konishi
GeoHazards 2025, 6(3), 52; https://doi.org/10.3390/geohazards6030052 - 5 Sep 2025
Viewed by 273
Abstract
The Tokara Islands, a volcanic archipelago located south of Japan’s main islands, experienced earthquake swarm activity in 2025. Public concern has emerged regarding the potential triggering of the anticipated Nankai Trough earthquake, which the Japan Meteorological Agency has dismissed; however, the underlying mechanisms [...] Read more.
The Tokara Islands, a volcanic archipelago located south of Japan’s main islands, experienced earthquake swarm activity in 2025. Public concern has emerged regarding the potential triggering of the anticipated Nankai Trough earthquake, which the Japan Meteorological Agency has dismissed; however, the underlying mechanisms of this seismic activity remain inadequately explained. This study employs Exploratory Data Analysis (EDA) to characterise the statistical properties of the swarm and compare them with historical patterns. Earthquake intervals followed exponential distributions, but swarm events exhibited distinctive short intervals that clearly distinguished them from background seismicity. Similarly, whilst earthquake magnitudes conformed to normal distributions, swarm events demonstrated low mean values and reduced variability, characteristics markedly different from regional background activity. The frequency and magnitude distributions of the 2025 swarm demonstrate remarkable similarity to two previous swarms that occurred in 2021. All the episodes coincided with volcanic activity at Suwanose Island, located approximately 10 km from the epicentral region, suggesting a causal relationship between magmatic processes and seismic activity. Statistical analysis reveals that the earthquake swarm exhibits exceptionally low magnitude scale, characteristics consistent with magma-driven seismicity rather than tectonic stress accumulation. The parameter contrasted markedly with pre-seismic conditions observed before the 2011 Tohoku earthquake, where it was substantially elevated. Our findings indicate that the current seismic activity represents localised volcanic-related processes rather than precursory behaviour associated with major tectonic earthquakes. These results demonstrate the utility of statistical seismology in distinguishing between volcanic and tectonic seismic processes for hazard assessment purposes. Full article
Show Figures

Figure 1

38 pages, 41296 KB  
Article
The Volcanic Geoheritage in the Pristine Natural Environment of Harrat Lunayyir, Saudi Arabia: Opportunities for Geotourism and Geohazard Issues
by Károly Németh, Abdulrahman Sowaigh, Vladyslav Zakharovskyi, Mostafa Toni, Mahmoud Ashor, Vladimir Sokolov, Fawaz Moqeem, Khalid Abdulhafaz, Turki Hablil, Turki Sehli and Khalid Yousef
Heritage 2025, 8(9), 363; https://doi.org/10.3390/heritage8090363 - 4 Sep 2025
Viewed by 478
Abstract
The Lunayyir Volcanic Field (Harrat Lunayyir), located on the western boundary of the Arabian Microplate, comprises a Quaternary volcanic region featuring approximately 150 volcanoes formed from around 700 vents. In 2009, a significant volcano-seismic event occurred, resulting in the formation of a nearly [...] Read more.
The Lunayyir Volcanic Field (Harrat Lunayyir), located on the western boundary of the Arabian Microplate, comprises a Quaternary volcanic region featuring approximately 150 volcanoes formed from around 700 vents. In 2009, a significant volcano-seismic event occurred, resulting in the formation of a nearly 20 km long fissure. Geophysical modeling has demonstrated that this area lies above an eruptible magma system, unequivocally confirming ongoing volcanic activity. Recent geological mapping and age determinations have further established the field as a young Quaternary volcanic landscape. Notably, the 2009 event provided critical evidence of the region’s volcanic activity and underscored the potential to connect its volcanic geoheritage with hazard mitigation strategies. The volcanic field displays diverse features, including effusive eruptions—primarily pāhoehoe and ‘a‘ā lava flows—and explosive structures such as spatter ramparts and multi-crater scoria cones. While effusive eruptions are most common and exert long-term impacts, explosive eruptions tend to be less intense; however, some events have reached a Volcanic Explosivity Index (VEI) of 4, distributing ash up to 250 km. Recognizing the geoheritage and geodiversity of the area may enhance resilience to volcanic hazards through geoconservation, educational initiatives, managed visitation, and establishment of a geoheritage reserve to preserve site conditions. Hazards associated with this dispersed monogenetic volcanic field manifest with recurrence intervals ranging from centuries to millennia, presenting challenges for effective communication. Although eruptions are infrequent, they have the potential to impact regional infrastructure. Documentation of volcanic geoheritage supports hazard communication efforts. Within the northern development sector, 26 geosites have been identified, 22 of which pertain to the Quaternary basaltic volcanic field, each representing a specific hazard and contributing vital information for resilience planning. Full article
(This article belongs to the Special Issue Geological Hazards and Heritage Safeguard)
Show Figures

Figure 1

24 pages, 5303 KB  
Article
Preliminary Documentation and Radon Tracer Studies at a Tourist Mining Heritage Site in Poland’s Old Copper Basin: A Case Study of the “Aurelia” Gold Mine
by Lidia Fijałkowska-Lichwa and Damian Kasza
Appl. Sci. 2025, 15(17), 9743; https://doi.org/10.3390/app15179743 - 4 Sep 2025
Viewed by 339
Abstract
This study presents the results of preliminary documentation and radon tracer investigations conducted at the “Aurelia” Mine in Złotoryja. Measurements of 222Rn activity concentrations were carried out between 17 March and 26 August 2023, while terrestrial laser scanning (TLS) for mapping purposes [...] Read more.
This study presents the results of preliminary documentation and radon tracer investigations conducted at the “Aurelia” Mine in Złotoryja. Measurements of 222Rn activity concentrations were carried out between 17 March and 26 August 2023, while terrestrial laser scanning (TLS) for mapping purposes was performed on 16 November 2024. The radon data exhibited a consistently right-skewed distribution, with skewness coefficients ranging from 0.9 to 8.2 and substantial standard deviations, indicating significant data dispersion. Outliers and extreme outliers were identified as key factors influencing average radon activity concentrations from April through August, whereas data from March displayed homogeneity, with no detected anomalies. The average 222Rn activity concentrations recorded from March to July ranged from 51.4 Bq/m3 to 65.9 Bq/m3. In contrast, July and August showed elevated average values (75.8 Bq/m3 and 5784.8 Bq/m3, respectively) due to the presence of outliers and extreme values. Upon removal of these anomalies, the adjusted means were 73.8 Bq/m3 and 1003.6 Bq/m3, respectively, resulting in reduced skewness and improved representativeness. These findings suggest that the annual average radon concentrations at the “Aurelia” Mine remain compliant with the regulatory threshold of 300 Bq/m3 set by the Atomic Law Act, with exceedances likely related to atypical or rare geophysical phenomena requiring further statistical validation. August exhibited a significant occurrence of outliers and extreme outliers in 222Rn activity concentration data, particularly concentrated between the 13th and 17th days of the month. This anomaly is hypothesized to be associated with geological processes, notably mining-induced seismic events within the LGOM (Legnica–Głogów Copper District) region. It is proposed that periodic transitions between tensional and compressional phases within the rock mass, triggered by mining activity, may lead to abrupt increases in radon exhalation, potentially occurring before or after seismic events with a magnitude exceeding 2.5. Although the presented data provide preliminary evidence supporting the influence of tectonic kinematic changes on subsurface radon dynamics, further systematic observations are required to confirm this relationship. At the current stage, the hypothesis remains speculative but may contribute to the broader understanding of radon behavior in geologically active underground environments. Complementing the geochemical analysis, TLS enabled detailed geological mapping and 3D spatial modeling of the mine’s underground tourist infrastructure. The resulting simplified linked data model—integrating radon activity concentrations, geological structures, and spatial parameters—provides a foundational framework for developing a comprehensive GIS database. This integrative approach highlights the feasibility of combining tracer studies with spatial and cartographic data to improve radon risk assessment models and ensure regulatory compliance in underground occupational settings. Full article
(This article belongs to the Special Issue Advances in Environmental Monitoring and Radiation Protection)
Show Figures

Figure 1

22 pages, 3112 KB  
Article
Health Assessment of Zoned Earth Dams by Multi-Epoch In Situ Investigations and Laboratory Tests
by Ernesto Ausilio, Maria Giovanna Durante, Roberto Cairo and Paolo Zimmaro
Geotechnics 2025, 5(3), 60; https://doi.org/10.3390/geotechnics5030060 - 3 Sep 2025
Viewed by 249
Abstract
The long-term safety and operational reliability of zoned earth dams depend on the structural integrity of their internal components, including core, filters, and shell zones. This is particularly relevant for old dams which have been operational for a long period of time. Such [...] Read more.
The long-term safety and operational reliability of zoned earth dams depend on the structural integrity of their internal components, including core, filters, and shell zones. This is particularly relevant for old dams which have been operational for a long period of time. Such existing infrastructure systems are exposed to various loading types over time, including environmental, seepage-related, extreme event, and climate change effects. As a result, even when they look intact externally, changes might affect their internal structure, composition, and possibly functionality. Thus, it is important to delineate a comprehensive and cost-effective strategy to identify potential issues and derive the health status of existing earth dams. This paper outlines a systematic approach for conducting a comprehensive health check of these structures through the implementation of a multi-epoch geotechnical approach based on a variety of standard measured and monitored quantities. The goal is to compare current properties with baseline data obtained during pre-, during-, and post-construction site investigation and laboratory tests. Guidance is provided on how to judge such multi-epoch comparisons, identifying potential outcomes and scenarios. The proposed approach is tested on a well-documented case study in Southern Italy, an area prone to climate change and subjected to very high seismic hazard. The case study demonstrates how the integration of historical and contemporary geotechnical data allows for the identification of critical zones requiring attention, the validation of numerical models, and the proactive formulation of targeted maintenance and rehabilitation strategies. This comprehensive, multi-epoch-based approach provides a robust and reliable assessment of dams’ health, enabling better-informed decision-making workflows and processes for asset management and risk mitigation strategies. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

23 pages, 3338 KB  
Article
Hierarchical Fuzzy-Adaptive Position Control of an Active Mass Damper for Enhanced Structural Vibration Suppression
by Omer Saleem, Massimo Leonardo Filograno, Soltan Alharbi and Jamshed Iqbal
Mathematics 2025, 13(17), 2816; https://doi.org/10.3390/math13172816 - 2 Sep 2025
Viewed by 422
Abstract
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the [...] Read more.
This paper presents the formulation and simulation-based validation of a novel hierarchical fuzzy-adaptive Proportional–Integral–Derivative (PID) control framework for a rectilinear active mass damper, designed to enhance vibration suppression in structural applications. The proposed scheme utilizes a Linear–Quadratic Regulator (LQR)-optimized PID controller as the baseline regulator. To address the limitations of this baseline PID controller under varying seismic excitations, an auxiliary fuzzy adaptation layer is integrated to adjust the state-weighting matrices of the LQR performance index dynamically. The online modification of the state weightages alters the Riccati equation’s solution, thereby updating the PID gains at each sampling instant. The fuzzy adaptive mechanism modulates the said weighting parameters as nonlinear functions of the classical displacement error and normalized acceleration. Normalized acceleration provides fast, scalable, and effective feedback for vibration mitigation in structural control using AMDs. By incorporating the system’s normalized acceleration into the adaptation scheme, the controller achieves improved self-tuning, allowing it to respond efficiently and effectively to changing conditions. The hierarchical design enables robust real-time PID gain adaptation while maintaining the controller’s asymptotic stability. The effectiveness of the proposed controller is validated through customized MATLAB/SIMULINK-based simulations. Results demonstrate that the proposed adaptive PID controller significantly outperforms the baseline PID controller in mitigating structural vibrations during seismic events, confirming its suitability for intelligent structural control applications. Full article
Show Figures

Figure 1

30 pages, 20277 KB  
Article
A Multidisciplinary Approach to Mapping Morphostructural Features and Their Relation to Seismic Processes
by Simona Bongiovanni, Raffaele Martorana, Alessandro Canzoneri, Maurizio Gasparo Morticelli and Attilio Sulli
Geosciences 2025, 15(9), 337; https://doi.org/10.3390/geosciences15090337 - 1 Sep 2025
Viewed by 790
Abstract
A multidisciplinary investigation was conducted in southwestern Sicily, near the seismically active Belice Valley, based on the analysis of morphostructural features. These were observed as open fractures between 2014 and 2017; they were subsequently filled anthropogenically and then reactivated during a seismic swarm [...] Read more.
A multidisciplinary investigation was conducted in southwestern Sicily, near the seismically active Belice Valley, based on the analysis of morphostructural features. These were observed as open fractures between 2014 and 2017; they were subsequently filled anthropogenically and then reactivated during a seismic swarm in 2019. We generated a seismic event distribution map to analyze the location, magnitude, and depth of earthquakes. This analysis, combined with multitemporal satellite imagery, allowed us to investigate the spatial and temporal relationship between seismic activity and fracture evolution. To investigate the spatial variation in thickness of the superficial cover and to assess the depth to the underlying bedrock or stiffer substratum, 45 Horizontal-to-Vertical Spectral Ratio (HVSR) ambient noise measurements were conducted. This method, which analyzes the resonance frequency of the ground, produced maps of the amplitude, frequency, and vulnerability index of the ground (Kg). By inverting the HVSR curves, constrained by Multichannel Analysis of Surface Waves (MASW) results, a subsurface model was created aimed at supporting the structural interpretation by highlighting variations in sediment thickness potentially associated with fault-controlled subsidence or deformation zones. The surface investigation revealed depressed elliptical deformation zones, where mainly sands outcrop. Grain-size and morphoscopic analyses of sediment samples helped understand the processes generating these shapes and predict future surface deformation. These elliptical shapes recall the liquefaction process. To investigate the potential presence of subsurface fluids that could have contributed to this process, Electrical Resistivity Tomography (ERT) was performed. The combination of the maps revealed a correlation between seismic activity and surface deformation, and the fractures observed were interpreted as inherited tectonic and/or geomorphological structures. Full article
Show Figures

Figure 1

19 pages, 5375 KB  
Article
Elastic Time-Lapse FWI for Anisotropic Media: A Pyrenees Case Study
by Yanhua Liu, Ilya Tsvankin, Shogo Masaya and Masanori Tani
Appl. Sci. 2025, 15(17), 9553; https://doi.org/10.3390/app15179553 - 30 Aug 2025
Viewed by 281
Abstract
In the context of reservoir monitoring, time-lapse (4D) full-waveform inversion (FWI) of seismic data can potentially estimate reservoir changes with high resolution. However, most existing field-data applications are carried out with isotropic, and often acoustic, FWI algorithms. Here, we apply a time-lapse FWI [...] Read more.
In the context of reservoir monitoring, time-lapse (4D) full-waveform inversion (FWI) of seismic data can potentially estimate reservoir changes with high resolution. However, most existing field-data applications are carried out with isotropic, and often acoustic, FWI algorithms. Here, we apply a time-lapse FWI methodology for transversely isotropic (TI) media with a vertical symmetry axis (VTI) to offshore streamer data acquired at Pyrenees field in Australia. We explore different objective functions, including those based on global correlation (GC) and designed to mitigate errors in the source signature (SI, or source-independent). The GC objective function, which utilizes mostly phase information, produces the most accurate inversion results by mitigating the difficulties associated with amplitude matching of the synthetic and field data. The SI FWI algorithm is generally more robust in the presence of distortions in the source wavelet than the other two methods, but its application to field data is hampered by reliance on amplitude matching. Taking anisotropy into account provides a better fit to the recorded data, especially at far offsets. In addition, the application of the anisotropic FWI improves the flatness of the major reflection events in the common-image gathers (CIGs). The 4D response obtained by FWI reveals time-lapse parameter variations likely caused by the reservoir gas coming out of solution and by the replacement of gas with oil. Full article
(This article belongs to the Special Issue Applied Geophysical Imaging and Data Processing)
Show Figures

Figure 1

17 pages, 6431 KB  
Article
Joint Inversion of InSAR and Seismic Data Unveiling the Dynamic Rupture Process and Seismotectonic Kinematics of the 2023 Mw 6.8 Morocco Earthquake
by Nan Fang, Zhidan Chen, Lei Zhao, Kai Sun, Lei Xie and Wenbin Xu
Remote Sens. 2025, 17(17), 2971; https://doi.org/10.3390/rs17172971 - 27 Aug 2025
Viewed by 557
Abstract
On 8 September 2023, an Mw 6.8 earthquake struck the High Atlas Mountains in western Morocco, where the tectonic regime has been poorly investigated due to its remoteness and weaker seismicity compared to the northern plate boundary. In this study, we combine the [...] Read more.
On 8 September 2023, an Mw 6.8 earthquake struck the High Atlas Mountains in western Morocco, where the tectonic regime has been poorly investigated due to its remoteness and weaker seismicity compared to the northern plate boundary. In this study, we combine the measurements from the Interferometric Synthetic Aperture Radar images and the seismic data to invert the coseismic slip model of the 2023 Morocco earthquake. The results show a predominantly reverse slip motion with a minor left-lateral strike slip. The rupture process lasts about 15 s and reaches the maximum of its seismic moment release rate at about 5 s. The coseismic slip is mainly distributed in a depth range of ~20–30 km, with the ~1.4 m maximum coseismic slip at a depth of ~25 km. The Coulomb stress change suggests a significant stress loading effect on surrounding faults. The high-angle transpressive rupture kinematics of the 2023 Morocco earthquake reveal steep oblique–reverse faulting of the Tizi n’Test fault within the western High Atlas Mountains. The slight left-lateral strike slip and focal depth anomaly of this event are largely attributed to differential crustal shortening and the rejuvenation of early rift structures inherited from the Mesozoic complex evolution. Full article
(This article belongs to the Special Issue Advances in Surface Deformation Monitoring Using SAR Interferometry)
Show Figures

Figure 1

21 pages, 10649 KB  
Article
APMEG: Quadratic Time–Frequency Distribution Analysis of Energy Concentration Features for Unveiling Reliable Diagnostic Precursors in Global Major Earthquakes Towards Short-Term Prediction
by Fabian Lee, Shaiful Hashim, Noor’ain Kamsani, Fakhrul Rokhani and Norhisam Misron
Appl. Sci. 2025, 15(17), 9325; https://doi.org/10.3390/app15179325 - 25 Aug 2025
Viewed by 563
Abstract
Earthquake prediction remains a significant challenge in seismology, and advancements in signal processing techniques have opened new avenues for improving prediction accuracy. This paper explores the application of Time–Frequency Distributions (TFDs) to seismic signals to identify diagnostic precursory patterns of major earthquakes. TFDs [...] Read more.
Earthquake prediction remains a significant challenge in seismology, and advancements in signal processing techniques have opened new avenues for improving prediction accuracy. This paper explores the application of Time–Frequency Distributions (TFDs) to seismic signals to identify diagnostic precursory patterns of major earthquakes. TFDs provide a comprehensive analysis of the non-stationary nature of seismic data, allowing for the identification of precursory patterns based on energy concentration features. Current earthquake prediction models primarily focus on long-term forecasts, predicting events by identifying a cycle in historical data, or on nowcasting, providing alerts seconds after a quake has begun. However, both approaches offer limited utility for disaster management, compared to short-term earthquake prediction methods. This paper proposes a new possible precursory pattern of major earthquakes, tested through analysis of recent major earthquakes and their respective prior minor earthquakes for five earthquake-prone countries, namely Türkiye, Indonesia, the Philippines, New Zealand, and Japan. Precursors in the time–frequency domain have been consistently identified in all datasets within several hours or a few days before the major earthquakes occurred, which were not present in the observation and analysis of the earthquake catalogs in the time domain. This research contributes towards the ongoing efforts in earthquake prediction, highlighting the potential of quadratic non-linear TFDs as a significant tool for non-stationary seismic signal analysis. To the best of the authors’ knowledge, no similar approach for consistently identifying earthquake diagnostics precursors has been proposed, and, therefore, we propose a novel approach in reliable earthquake prediction using TFD analysis. Full article
(This article belongs to the Special Issue Earthquake Detection, Forecasting and Data Analysis)
Show Figures

Figure 1

12 pages, 3058 KB  
Article
2005–2024 Time–Space Features of VT Seismicity at Stromboli: New Insights into the Volcano Plumbing System and Link to Effusive Eruptions
by Salvatore Gambino and Antonio Scaltrito
Appl. Sci. 2025, 15(16), 9182; https://doi.org/10.3390/app15169182 - 21 Aug 2025
Viewed by 406
Abstract
Volcano-tectonic seismic events (VT) are quite rare at Stromboli, numbering about ten events per year and generally with low magnitude. Using a dataset of 98 events from the 2005–2024 period, we report an improved relocation of VT events here. Relocated earthquakes are mainly [...] Read more.
Volcano-tectonic seismic events (VT) are quite rare at Stromboli, numbering about ten events per year and generally with low magnitude. Using a dataset of 98 events from the 2005–2024 period, we report an improved relocation of VT events here. Relocated earthquakes are mainly distributed on the island and in an area located SSW of Stromboli. These VT events are related to the activation of seismogenic structures by a stress increase related to magma ascent. The shallowest seismicity (4–5 km) is positioned under the Stromboli summit, with a high occurrence in 2006–2007 and in 2019–2024, suggesting a major recharge of the HP magma reservoir. The deepest VT seismicity affects a depth of 7–12 km located in the submerged edifice SSW of the summit and is attributable to the dynamics of the LP magma reservoir, which was more active in 2006–2014 and much less so in the successive years. The increase in the occurrence rate of VT shallow seismicity seems to precede the most significant Stromboli activities, such as the 2007 and 2024 lava effusions followed by paroxysms. For these episodes, VT seismicity would appear to indicate a recharging in the first 4–5 km during the months preceding them, thereby representing a medium–short-term warning signal. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

16 pages, 4771 KB  
Article
Identifying Deep Seismogenic Sources in Southern Piedmont (North-Western Italy) via the New Tool TESLA for Microseismicity Analysis
by Francisca Guiñez-Rivas, Guido Maria Adinolfi, Cesare Comina and Sergio Carmelo Vinciguerra
GeoHazards 2025, 6(3), 47; https://doi.org/10.3390/geohazards6030047 - 20 Aug 2025
Viewed by 382
Abstract
The analysis of earthquake source mechanisms is key for seismotectonic studies, but it is often limited to traditional methods plagued with issues of precision and automation. This is particularly true in low-seismicity areas with deep and/or hidden seismogenic sources, where the identification of [...] Read more.
The analysis of earthquake source mechanisms is key for seismotectonic studies, but it is often limited to traditional methods plagued with issues of precision and automation. This is particularly true in low-seismicity areas with deep and/or hidden seismogenic sources, where the identification of precise source mechanisms is a difficult and non-trivial task. In this study, we present a detailed application of TESLA (Tool for automatic Earthquake low-frequency Spectral Level estimAtion), a novel tool designed to overcome these limitations. We demonstrated TESLA’s effectiveness in defining source mechanism analysis by applying it to seismic sequences that occurred near Asti (AT), in the Monferrato area (Southern Piedmont, Italy). Our analysis reveals that the observed clusters consist of two distinct seismic sequences, occurring in 1991 and 2012, which were activated by the same seismogenic source. We relocated a total of 36 events with magnitudes ranging from 1.1 to 3.7, using a 3D velocity model, and computed 12 well-constrained focal mechanism solutions using the first motion polarities and the low-frequency spectral level ratios. The results highlight a relatively small seismogenic source located at approximately 5 km north of Asti (AT), at a depth of between 10 and 25 km, trending SW–NE with strike-slip kinematics. A smaller cluster of three events shows an activation of a different fault segment at around 60 km of depth, also showing strike-slip kinematics. These findings are in good agreement with the regional stress field acting in the Monferrato area and support the use of investigation tools such as TESLA for microseismicity analysis. Full article
Show Figures

Figure 1

18 pages, 4832 KB  
Article
Real-Time Spatiotemporal Seismic Fragility Assessment of Structures Based on Site-Specific Seismic Response and Sensor-Integrated Modeling
by Han-Saem Kim, Taek-Kyu Chung and Mingi Kim
Sensors 2025, 25(16), 5171; https://doi.org/10.3390/s25165171 - 20 Aug 2025
Viewed by 491
Abstract
Earthquake hazards, such as strong ground motion, liquefaction, and landslides, pose significant threats to structures built on seismically vulnerable, loose, and saturated sandy soils. Therefore, a structural failure evaluation method that accounts for site-specific seismic responses is essential for developing effective and appropriate [...] Read more.
Earthquake hazards, such as strong ground motion, liquefaction, and landslides, pose significant threats to structures built on seismically vulnerable, loose, and saturated sandy soils. Therefore, a structural failure evaluation method that accounts for site-specific seismic responses is essential for developing effective and appropriate earthquake hazard mitigation strategies. In this study, a real-time assessment framework for structural seismic susceptibility is developed. To evaluate structural susceptibility to earthquakes, seismic fragility functions are employed as thresholds for structural failure and are linked to a geotechnical spatial grid that incorporates correlation equations for seismic load determination. The real-time assessment consists of the following procedures. First, the geotechnical spatial grid is constructed based on the geostatistical method to estimate the site-specific site response to be correlated with the earthquake hazard potential. Second, the peak ground accelerations are determined from seismic load correlation and assigned to the geotechnical spatial grid. Third, the damage grade of structure is determined by calculating the failure probabilities of defined damage levels and integrating the geotechnical spatial grids for the target structure in real time. The proposed assessment was simulated at Incheon Port, South Korea, using both an actual earthquake event (the 2017 Pohang Earthquake) and a hypothetical earthquake scenario. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

19 pages, 7005 KB  
Article
Water Level Response to Earthquakes in an Open Well and in a Closed Well—Analysis of Field Observations
by Hallel Lutzky, Ittai Kurzon, Haim Gvirtzman, Vladimir Lyakhovsky and Eyal Shalev
Water 2025, 17(16), 2453; https://doi.org/10.3390/w17162453 - 19 Aug 2025
Viewed by 598
Abstract
Seismic waves induce pore pressure changes in aquifers, leading to water level oscillations in wells. These oscillations are often used to estimate the poroelastic properties of aquifers, but their interpretation is influenced by factors such as aquifer properties, seismic wave characteristics, and wellbore [...] Read more.
Seismic waves induce pore pressure changes in aquifers, leading to water level oscillations in wells. These oscillations are often used to estimate the poroelastic properties of aquifers, but their interpretation is influenced by factors such as aquifer properties, seismic wave characteristics, and wellbore storage. The aim of this study is to evaluate the effect of wellbore storage on seismically induced water level oscillations. We analyze water level responses to similar seismic forcing in two adjacent deep wells (~1000 m) tapping the same confined aquifer: one open (artesian) and one closed (flowing artesian). Seismic forcing was characterized using ground motion velocity data from a nearby seismic station. The results show that the wells differ by three orders of magnitude in their wellbore storage. In the open well, pore pressure oscillations are reliably detected only for teleseismic events, while in the closed well, they are also reliably recorded for regional earthquakes. Under these conditions, it is possible to estimate the first-order approximation of the aquifer’s poroelastic coefficients. These findings emphasize the importance of accounting for wellbore storage when interpreting seismically induced water level fluctuations. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

19 pages, 1164 KB  
Review
Addressing Real-World Localization Challenges in Wireless Sensor Networks: A Study of Swarm-Based Optimization Techniques
by Soumya J. Bhat and Santhosh Krishnan Venkata
Automation 2025, 6(3), 40; https://doi.org/10.3390/automation6030040 - 18 Aug 2025
Viewed by 327
Abstract
Wireless sensor networks (WSNs) have gained significant attention across various industries and scientific fields. Localization, a crucial aspect of WSNs, involves accurately determining node positions to track events and execute actions. Despite the development of numerous localization algorithms, real-world environments pose challenges such [...] Read more.
Wireless sensor networks (WSNs) have gained significant attention across various industries and scientific fields. Localization, a crucial aspect of WSNs, involves accurately determining node positions to track events and execute actions. Despite the development of numerous localization algorithms, real-world environments pose challenges such as anisotropy, noise, and faults. To improve accuracy amidst these complexities, researchers are increasingly adopting advanced methodologies, including soft computing, software-defined networking, maximum likelihood estimation, and optimization techniques. Our comprehensive review from 2020 to 2024 reveals that approximately 29% of localization solutions employ optimization techniques, 48% of which utilize nature-inspired swarm-based algorithms. These algorithms have proven effective for node localization in a variety of applications, including smart cities, seismic exploration, oil and gas reservoir monitoring, assisted living environments, forest monitoring, and battlefield surveillance. This underscores the importance of swarm intelligence algorithms in sensor node localization, prompting a detailed investigation in our study. Additionally, we provide a comparative analysis to elucidate the applicability of these algorithms to various localization challenges. This examination not only helps researchers understand current localization issues within WSNs but also paves the way for enhanced localization precision in the future. Full article
Show Figures

Figure 1

Back to TopTop