Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = seismo-electromagnetic theory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2928 KB  
Article
PIC Modeling of Ionospheric Plasma Diagnostics by Hemispherical Probes: Study of the LAP-CSES at Magnetic Conjugates
by Nadia Imtiaz, Saeed Ur Rehman, Liu Chao, Rui Yan and Richard Marchand
Plasma 2025, 8(4), 39; https://doi.org/10.3390/plasma8040039 - 30 Sep 2025
Viewed by 294
Abstract
We present three dimensional particle-in-cell simulations of current-voltage characteristics of the hemispherical Langmuir probe (LAP), onboard the China Seismo-Electromagnetic Satellite (CSES). Using realistic plasma parameters and background magnetic fields obtained from the International Reference Ionosphere (IRI) and International Geomagnetic Reference Field (IGRF) models, [...] Read more.
We present three dimensional particle-in-cell simulations of current-voltage characteristics of the hemispherical Langmuir probe (LAP), onboard the China Seismo-Electromagnetic Satellite (CSES). Using realistic plasma parameters and background magnetic fields obtained from the International Reference Ionosphere (IRI) and International Geomagnetic Reference Field (IGRF) models, we simulate probe–plasma interactions at three locations: the equatorial region and two magnetically conjugate mid-latitude sites: Millstone Hill (Northern Hemisphere) and Rothera (Southern Hemisphere). The simulations, performed using the PTetra PIC code, incorporate realistic LAP geometry and spacecraft motion in the ionospheric plasma. Simulated current voltage characteristics or I–V curves are compared against in-situ LAP measurements from CSES Orbit-026610, with Pearson’s correlation coefficients used to assess agreement. Our findings indicate how plasma temperature, density, and magnetization affect sheath structure and probe floating potential. The study highlights the significance of kinetic modeling in enhancing diagnostic accuracy, particularly in variable sheath regimes where classic analytical models such as the Orbital-Motion-Limited (OML) theory may be inadequate. Full article
Show Figures

Figure 1

18 pages, 5075 KB  
Article
Investigating Equatorial Plasma Depletions through CSES-01 Satellite Data
by Paola De Michelis, Giuseppe Consolini, Tommaso Alberti, Alessio Pignalberi, Igino Coco, Roberta Tozzi, Fabio Giannattasio and Michael Pezzopane
Atmosphere 2024, 15(7), 868; https://doi.org/10.3390/atmos15070868 - 22 Jul 2024
Cited by 3 | Viewed by 1177
Abstract
Ionospheric plasma density irregularities, which are one of the primary sources of disturbance for the Global Navigation Satellite System, significantly impact the propagation of electromagnetic signals, leading to signal degradation and potential interruptions. In the equatorial ionospheric F region after sunset, certain plasma [...] Read more.
Ionospheric plasma density irregularities, which are one of the primary sources of disturbance for the Global Navigation Satellite System, significantly impact the propagation of electromagnetic signals, leading to signal degradation and potential interruptions. In the equatorial ionospheric F region after sunset, certain plasma density irregularities, identified as equatorial plasma bubbles, encounter optimal conditions for their formation and development. The energy spectra of electron density fluctuations associated with these irregularities exhibit a power-law scaling behavior qualitatively similar to the Kolmogorov power law observed in fluid turbulence theory. This intriguing similarity raises the possibility that these plasma density irregularities may possess turbulent characteristics. In this study, we analyzed electron density, temperature, and pressure data obtained from the China Seismo-Electromagnetic Satellite (CSES-01) to delve into the spectral properties of equatorial plasma depletions in the ionospheric F region at an altitude of about 500 km. This research marks the first exploration of these properties utilizing CSES-01 data and focuses on 14 semi-orbits that crossed the equator after midnight (01:00–03:00 LT), characterized by a geomagnetic quiet condition (Kp < 1). The analysis of electron temperature, density and pressure within equatorial plasma depletions revealed power-law scaling behavior for all the selected parameters. Notably, the spectral index values of these parameters are different from each other. The significance of these findings in terms of investigating plasma depletions via magnetic field signatures, as well as their relationship to the occurrence of Rayleigh–Taylor convective turbulence, is examined and discussed. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

9 pages, 2764 KB  
Proceeding Paper
Ionospheric Effects of Natural Hazards in Geophysics: From Single Examples to Statistical Studies Applied to M5.5+ Earthquakes
by Dedalo Marchetti, Kaiguang Zhu, Rui Yan, Zeren Zhima, Xuhui Shen, Wenqi Chen, Yuqi Cheng, Mengxuan Fan, Ting Wang, Jiami Wen, Donghua Zhang, Hanshuo Zhang and Yiqun Zhang
Proceedings 2023, 87(1), 34; https://doi.org/10.3390/IECG2022-13826 - 7 Dec 2022
Cited by 6 | Viewed by 2114
Abstract
Geophysical natural hazards, such as earthquakes and volcano eruptions, can have catastrophic effects on the population depending on the location and quality of construction. From the geophysical point of view, several aspects are still debated in the preparation phase of such events. In [...] Read more.
Geophysical natural hazards, such as earthquakes and volcano eruptions, can have catastrophic effects on the population depending on the location and quality of construction. From the geophysical point of view, several aspects are still debated in the preparation phase of such events. In particular, several theories propose that prior to an earthquake or volcano eruption, the releases of gas, fluids or charged particles from the lithosphere (e.g., from the fault for the earthquake) could create some effects on the atmosphere and ionosphere. In this work, several single examples will be shown of possible candidates of pre-earthquake ionospheric disturbances recorded by the China National Space Administration (in partnership with the Italian Space Agency), China Seismo Electromagnetic Satellite (CSES) and European Space Agency Swarm constellation. The examples show anomalous ionospheric status in terms of magnetic disturbances or increase of electron density before earthquakes, such as Mw = 7.1 Ridgecrest (US) 2019, or during the large recent volcano eruption of Hunga Tonga-Hunga Ha’Apai on 15 January 2022. In these cases, some couplings between the lithosphere and ionosphere are proposed. Finally, verifying if such pre-event ionospheric disturbances are by “chance” or are really linked to the incoming event is a crucial point. For this purpose, we perform worldwide statistical studies, not only supporting the recurrence of such phenomena for about 15% of M5.5+ shallow earthquakes but also showing a link between the magnitude of the upcoming seismic events and the pre-earthquake anticipation time. Furthermore, we also show the influence of the location (sea or land) on the frequency of the ionospheric electromagnetic disturbance. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Geosciences)
Show Figures

Figure 1

13 pages, 2061 KB  
Article
Fractal Clustering as Spatial Variability of Magnetic Anomalies Measurements for Impending Earthquakes and the Thermodynamic Fractal Dimension
by Patricio Venegas-Aravena, Enrique Cordaro and David Laroze
Fractal Fract. 2022, 6(11), 624; https://doi.org/10.3390/fractalfract6110624 - 26 Oct 2022
Cited by 9 | Viewed by 2430
Abstract
Several studies focusing on the anomalies of one specific parameter (such as magnetic, ionospheric, radon release, temperature, geodetic, etc.) before impending earthquakes are constantly challenged because their results can be regarded as noise, false positives or are not related to earthquakes at all. [...] Read more.
Several studies focusing on the anomalies of one specific parameter (such as magnetic, ionospheric, radon release, temperature, geodetic, etc.) before impending earthquakes are constantly challenged because their results can be regarded as noise, false positives or are not related to earthquakes at all. This rise concerns the viability of studying isolated physical phenomena before earthquakes. Nevertheless, it has recently been shown that all of the complexity of these pre-earthquake anomalies rises because they could share the same origin. Particularly, the evolution and concentration of uniaxial stresses within rock samples have shown the generation of fractal crack clustering before the macroscopic failure. As there are studies which considered that the magnetic anomalies are created by lithospheric cracks in the seismo-electromagnetic theory, it is expected that the crack clustering is a spatial feature of magnetic and non-magnetic anomalies measurements in ground, atmospheric and ionospheric environments. This could imply that the rise of multiparametric anomalies at specific locations and times, increases the reliability of impending earthquake detections. That is why this work develops a general theory of fractal-localization of different anomalies within the lithosphere in the framework of the seismo-electromagnetic theory. In addition, a general description of the fractal dimension in terms of scaling entropy change is obtained. This model could be regarded as the basis of future early warning systems for catastrophic earthquakes. Full article
Show Figures

Figure 1

18 pages, 12911 KB  
Article
Natural Fractals as Irreversible Disorder: Entropy Approach from Cracks in the Semi Brittle-Ductile Lithosphere and Generalization
by Patricio Venegas-Aravena, Enrique G. Cordaro and David Laroze
Entropy 2022, 24(10), 1337; https://doi.org/10.3390/e24101337 - 22 Sep 2022
Cited by 12 | Viewed by 2701
Abstract
The seismo-electromagnetic theory describes the growth of fractally distributed cracks within the lithosphere that generate the emission of magnetic anomalies prior to large earthquakes. One of the main physical properties of this theory is their consistency regarding the second law of thermodynamics. That [...] Read more.
The seismo-electromagnetic theory describes the growth of fractally distributed cracks within the lithosphere that generate the emission of magnetic anomalies prior to large earthquakes. One of the main physical properties of this theory is their consistency regarding the second law of thermodynamics. That is, the crack generation of the lithosphere corresponds to the manifestation of an irreversible process evolving from one steady state to another. Nevertheless, there is still not a proper thermodynamic description of lithospheric crack generation. That is why this work presents the derivation of the entropy changes generated by the lithospheric cracking. It is found that the growth of the fractal cracks increases the entropy prior impending earthquakes. As fractality is observed across different topics, our results are generalized by using the Onsager’s coefficient for any system characterized by fractal volumes. It is found that the growth of fractality in nature corresponds to an irreversible process. Full article
(This article belongs to the Collection Wavelets, Fractals and Information Theory)
Show Figures

Figure 1

16 pages, 5751 KB  
Article
The Electric Field Detector on Board the China Seismo Electromagnetic Satellite—In-Orbit Results and Validation
by Piero Diego, Jianping Huang, Mirko Piersanti, Davide Badoni, Zhima Zeren, Rui Yan, Gianmaria Rebustini, Roberto Ammendola, Maurizio Candidi, Yi-Bing Guan, Jungang Lei, Giuseppe Masciantonio, Igor Bertello, Cristian De Santis, Pietro Ubertini, Xuhui Shen and Piergiorgio Picozza
Instruments 2021, 5(1), 1; https://doi.org/10.3390/instruments5010001 - 24 Dec 2020
Cited by 29 | Viewed by 5022
Abstract
The aim of this work is to validate the China Seismo-Electromagnetic Satellite 01 (CSES-01) Electric Field Detector (EFD) measurements through the analysis of the instrument response to various inputs: (a) geomagnetic field variations, (b) plasma density depletions, and (c) electromagnetic signals from natural [...] Read more.
The aim of this work is to validate the China Seismo-Electromagnetic Satellite 01 (CSES-01) Electric Field Detector (EFD) measurements through the analysis of the instrument response to various inputs: (a) geomagnetic field variations, (b) plasma density depletions, and (c) electromagnetic signals from natural and artificial sources such as Schumann resonance and VLF (Very Low Frequency) antennas. The knowledge of the geomagnetic induced electric field vs×B (where vs is the satellite speed and B and the local magnetic field), and the plasma variations effect, described by the Orbit Motion Limited (OML) theory, are key parameters to determine the expected theoretical values of the EFD sensors potentials data. Based on the CSES on-board measurements of plasma parameters and geomagnetic field, a direct quantitative validation is presented. In addition, the electromagnetic signals detection capability is checked but only qualitatively confirmed, since the ionospheric complexity does not allow an accurate theoretical computation of waves modulation. The quantitative comparison highlights the very good agreement between observed and theoretical potentials values during average condition. Conversely, in case of strong electric fields, the OML theory shows partial inability in reproducing the actual space plasma conditions resulting in a reduced theoretical values reliability. Finally, both natural and artificial electromagnetic signals are satisfactorily identified showing a reliable sensitivity in different frequency bands. Full article
Show Figures

Figure 1

Back to TopTop