Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,149)

Search Parameters:
Keywords = self−healing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1107 KB  
Article
Stenting Versus Endoscopic Vacuum Therapy for Anastomotic Leakage After Esophago-Gastric Surgery
by Carlo Galdino Riva, Stefano Siboni, Matteo Capuzzo, Francesca Senzani, Lorenzo Cusmai, Daniele Bernardi, Pamela Milito, Andrea Lovece, Eleonora Vico, Marco Sozzi and Emanuele Luigi Giuseppe Asti
J. Clin. Med. 2025, 14(19), 7075; https://doi.org/10.3390/jcm14197075 - 7 Oct 2025
Abstract
Background: Anastomotic leakage (AL) is a major complication after esophago-gastric surgery, with incidence rates of 11–21% and mortality up to 14%. Early intervention is essential to reduce morbidity. Endoscopic treatments have advanced, with self-expandable metal stents (SEMSs) as the traditional standard (success ~90%), [...] Read more.
Background: Anastomotic leakage (AL) is a major complication after esophago-gastric surgery, with incidence rates of 11–21% and mortality up to 14%. Early intervention is essential to reduce morbidity. Endoscopic treatments have advanced, with self-expandable metal stents (SEMSs) as the traditional standard (success ~90%), but they carry risks like migration, stenosis, and need for drainage. Endoscopic vacuum therapy (EVT), applying negative pressure to drain secretions and promote healing, has shown success rates of 66–100%. Limited comparative data exists from small retrospective studies. This study compares SEMS and EVT for safety and efficacy in AL management. Methods: A retrospective case–control study from a prospective database at our institution was performed (March 2012–2025). We included patients with AL post-esophageal/gastric surgery treated endoscopically (SEMS or EVT). We excluded patients treated with conservative or surgical management. Demographics, comorbidities, oncology, surgery type, leak details, treatments, and outcomes were collected. Primary outcome was complete healing of the leak, while secondary outcomes were time to success, number of procedures needed, hospital stay, complications, mortality. Results: From 592 resections, we extracted 68 AL (11.5%), 45 of which met the inclusion criteria (22 SEMS, 23 EVT). Groups were similar demographically, but SEMS had more respiratory issues (43% vs. 8.7%, p = 0.018). SEMS were used more after esophagectomy (86.4% vs. 56.5%, p = 0.004); EVT was performed mostly after gastrectomy (34.7% vs. 9.1%, p = 0.009). Success rate was 86.4% for SEMS vs. 95.6% for EVT (p = 1.000). Complications were significantly lower in EVT (8.3% vs. 50%, p = 0.001; SEMS: 36.4% migrations, 18.2% stenoses). Leak onset time, modality of diagnosis, and leak size were comparable among the groups. Need for jejunostomy was higher in EVT (43.5% vs. 9.1%, p = 0.015), while chest drains in SEMS (63.7% vs. 13.1%, p < 0.001). Hospital stays (33–38 days, p = 0.864) and mortality (22.7% vs. 8.7%, p = 0.225) were similar. No differences were observed in terms of long-term mortality (log-rank p = 0.815). Conclusions: SEMS and EVT are both effective for AL after esophago-gastric surgery. EVT offers fewer complications and shorter treatment, so it is favored especially for esophago-jejunal leaks. Full article
Show Figures

Figure 1

16 pages, 250 KB  
Article
Beyond the Wound: Queer Trauma, Memory, and Resistance in Rainbow Milk
by Corpus Navalón-Guzmán
Humanities 2025, 14(10), 196; https://doi.org/10.3390/h14100196 - 7 Oct 2025
Abstract
This paper explores how trauma functions not only as a mark of suffering but as a generative force of memory, agency, and resistance. Traditional trauma narratives often confine queer bodies to sites of pain, overlooking their role in reshaping history and reclaiming identity. [...] Read more.
This paper explores how trauma functions not only as a mark of suffering but as a generative force of memory, agency, and resistance. Traditional trauma narratives often confine queer bodies to sites of pain, overlooking their role in reshaping history and reclaiming identity. Drawing on Ann Cvetkovich’s concept of queer trauma as an anti-pathological force, this study examines how Rainbow Milk portrays distress not as an individual affliction requiring clinical intervention but as an insidious, intergenerational experience that circulates through familial silence and socio-cultural marginalization. At the same time, the novel illustrates how trauma can open pathways to self-expression and historical reclamation. By uncovering his family’s hidden past, the protagonist embarks on an unconventional healing process that links personal memory with collective histories of exclusion. In doing so, Rainbow Milk reframes trauma not as a fixed wound but as a dynamic, lived experience that enables identity reconstruction through remembrance, connection, and resilience. Full article
(This article belongs to the Section Literature in the Humanities)
21 pages, 3017 KB  
Article
Interface Rotation in Accumulative Rolling Bonding (ARB) Cu/Nb Nanolaminates Under Constrained and Unconstrained Loading Conditions as Revealed by In Situ Micromechanical Testing
by Rahul Sahay, Ihor Radchenko, Pavithra Ananthasubramanian, Christian Harito, Fabien Briffod, Koki Yasuda, Takayuki Shiraiwa, Mark Jhon, Rachel Speaks, Derrick Speaks, Kangjae Lee, Manabu Enoki, Nagarajan Raghavan and Arief Suriadi Budiman
Nanomaterials 2025, 15(19), 1528; https://doi.org/10.3390/nano15191528 - 7 Oct 2025
Abstract
Accumulative rolling bonding (ARB) Cu/Nb nanolaminates have been widely observed to exhibit unique and large numbers of interface-based plasticity mechanisms, and these have been associated with the many extraordinary properties of the material system, especially resistances in extreme engineering environments (mechanical/pressure, thermal, irradiation, [...] Read more.
Accumulative rolling bonding (ARB) Cu/Nb nanolaminates have been widely observed to exhibit unique and large numbers of interface-based plasticity mechanisms, and these have been associated with the many extraordinary properties of the material system, especially resistances in extreme engineering environments (mechanical/pressure, thermal, irradiation, etc.) and ability to self-heal defects (microstructural, as well as radiation-induced). Recently, anisotropy in the interface shearing mechanisms in the material system has been observed and much discussed. The Cu/Nb nanolaminates appear to shear on the interface planes to a much larger extent in the transverse direction (TD) than in the rolling direction (RD). Related to that, in this present study we observe interface rotation in Cu/Nb ARB nanolaminates under constrained and unconstrained loading conditions. Although the primary driving force for interface shearing was expected only in the RD, additional shearing in the TD was observed. This is significant as it represents an interface rotation, while there was no external rotational driving force. First, we observed interface rotation in in situ rectangular micropillar compression experiments, where the interface is simply sheared in one particular direction only, i.e., in the RD. This is rather unexpected as, in rectangular micropillar compression, there is no possibility of extra shearing or driving force in the perpendicular direction due to the loading conditions. This motivated us to subsequently perform in situ microbeam bending experiments (microbeam with a pre-made notch) to verify if similar interface rotation could also be observed in other loading modes. In the beam bending mode, the notch area was primarily under tensile stress in the direction of the beam longitudinal axis, with interfacial shear also in the same direction. Hence, we expect interface shearing only in that direction. We then found that interface rotation was also evident and repeatable under certain circumstances, such as under an offset loading. As this behaviour was consistently observed under two distinct loading modes, we propose that it is an intrinsic characteristic of Cu/Nb interfaces (or FCC/BCC interfaces with specific orientation relationships). This interface rotation represents another interface-based or interface-mediated plasticity mechanism at the nanoscale with important potential implications especially for design of metallic thin films with extreme stretchability and other emerging applications. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

21 pages, 487 KB  
Article
Therapeutic Goals of One-on-One Viniyoga: A Qualitative Study of Practitioner Perspectives and Case Applications
by Jennifer Vasquez, Michele Quintin Quill and Chase Bossart
Healthcare 2025, 13(19), 2527; https://doi.org/10.3390/healthcare13192527 - 6 Oct 2025
Abstract
Background/Objectives: Viniyoga is a person-centered approach to yoga that emphasizes individualized adaptation of breath, movement, and meditative practices to support health and well-being. This qualitative study investigates the therapeutic goals of one-to-one Viniyoga from the perspective of experienced therapists. Methods: Fourteen certified Viniyoga [...] Read more.
Background/Objectives: Viniyoga is a person-centered approach to yoga that emphasizes individualized adaptation of breath, movement, and meditative practices to support health and well-being. This qualitative study investigates the therapeutic goals of one-to-one Viniyoga from the perspective of experienced therapists. Methods: Fourteen certified Viniyoga practitioners participated in in-depth interviews, which were analyzed using Interpretative Phenomenological Analysis (IPA). This study details how Viniyoga therapists define therapeutic Viniyoga. Results: The findings identify three core therapeutic goals that guide Viniyoga therapy: restoring balance, cultivating self-regulation, and guiding transformation. Two case studies are presented to illustrate the application of these goals in clinical contexts. Conclusions: Qualitative information provided by the interviewed Viniyoga therapists supports the positive role of individualized Viniyoga therapy in contributing to sustainable healing and supporting clients’ return to balance, self-regulation, and personal transformation. The Viniyoga therapeutic model is applicable across diverse populations and in a variety of integrative and complementary healthcare settings. Full article
31 pages, 5792 KB  
Article
Development, Characterization, and Biological Evaluation of a Self-Healing Hydrogel Patch Loaded with Ciprofloxacin for Wound Dressings
by Wasan Al-Farhan, Osama H. Abusara, Mohammad Abu-Sini, Suhair Hikmat, Ola Tarawneh, Sameer Al-Kouz and Rania Hamed
Polymers 2025, 17(19), 2686; https://doi.org/10.3390/polym17192686 - 4 Oct 2025
Abstract
Hydrogels are crosslinked polymer chains that form a three-dimensional network, widely used for wound dressing due to their ability to absorb significant amounts of fluid. This study aimed to develop a hydrogel patch for wound dressing with self-healing properties, particularly for joints and [...] Read more.
Hydrogels are crosslinked polymer chains that form a three-dimensional network, widely used for wound dressing due to their ability to absorb significant amounts of fluid. This study aimed to develop a hydrogel patch for wound dressing with self-healing properties, particularly for joints and stretchable body parts, providing a physical barrier while maintaining an optimal environment for wound healing. Polyvinyl alcohol (PVA) and sodium carboxymethyl cellulose (Na CMC) were crosslinked with borax, which reacts with the active hydroxyl groups in both polymers to form a hydrogel. The patches were loaded with ciprofloxacin HCl (CIP), a broad-spectrum antibiotic used to prevent and treat various types of wound infections. Hydrogels were subjected to rheological, morphological, antimicrobial, self-healing, ex vivo release, swelling, cytotoxicity, wound healing, and stability studies. The hydrogels exhibited shear-thinning, thixotropic, and viscoelastic properties. Microscopic images of the CIP hydrogel patch showed a porous, crosslinked matrix. The antimicrobial activity of the patch revealed antibacterial effectiveness against five types of Gram-positive and Gram-negative bacteria, demonstrating a minimum inhibitory concentration of 0.05 μg/mL against E. coli. The swelling percentage was found to be 337.4 ± 12.7%. The cumulative CIP release percentage reached 103.7 ± 3.7% after 3 h, followed by zero-order release kinetics. The stability studies revealed that the crossover point shifted toward higher frequencies after 3 months of storage at room temperature, suggesting a relaxation in the hydrogel bonds. The cytotoxicity study revealed that the CIP hydrogel patch is non-cytotoxic. Additionally, the in vivo study demonstrated that the CIP hydrogel patch possesses wound-healing ability. Therefore, the CIP PVA/Na CMC/Borax patch could be used in wound dressing. Full article
(This article belongs to the Special Issue Biopolymers for Wound Management: Translation for Clinical Practice)
Show Figures

Figure 1

15 pages, 1026 KB  
Article
Flexible, Stretchable, and Self-Healing MXene-Based Conductive Hydrogels for Human Health Monitoring
by Ruirui Li, Sijia Chang, Jiaheng Bi, Haotian Guo, Jianya Yi and Chengqun Chu
Polymers 2025, 17(19), 2683; https://doi.org/10.3390/polym17192683 - 3 Oct 2025
Abstract
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In [...] Read more.
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In this study, polyvinyl alcohol (PVA) and polyacrylamide (PAM) were used as the dual-network matrix, lithium chloride and MXene were added, and a simple immersion strategy was adopted to synthesize a multifunctional MXene-based conductive hydrogel in a glycerol/water (1:1) binary solvent system. A subsequent investigation was then conducted on the hydrogel. The prepared PVA/PAM/LiCl/MXene hydrogel exhibits excellent tensile properties (~1700%), high electrical conductivity (1.6 S/m), and good self-healing ability. Furthermore, it possesses multimodal sensing performance, including humidity sensitivity (sensitivity of −1.09/% RH), temperature responsiveness (heating sensitivity of 2.2 and cooling sensitivity of 1.5), and fast pressure response/recovery times (220 ms/230 ms). In addition, the hydrogel has successfully achieved real-time monitoring of human joint movements (elbow and knee bending) and physiological signals (pulse, breathing), as well as enabled monitoring of spatial pressure distribution via a 3 × 3 sensor array. The performance and versatility of this hydrogel make it a promising candidate for next-generation flexible sensors, which can be applied in the fields of human health monitoring, electronic skin, and human–machine interaction. Full article
(This article belongs to the Special Issue Semiflexible Polymers, 3rd Edition)
22 pages, 4598 KB  
Article
Machinability of Vitrified Semi-Finished Products: Chip Formation and Heat Development at the Cutting Edge
by Jannick Fuchs, Yehor Kozlovets, Jonathan Alms, Markus Meurer, Christian Hopmann, Thomas Bergs and Mustapha Abouridouane
Polymers 2025, 17(19), 2681; https://doi.org/10.3390/polym17192681 - 3 Oct 2025
Abstract
Fibre-reinforced composites are facing new challenges in the context particular in sustainability and recyclability. Vitrimers could be useful as new matrices to support the increase in sustainability. Due to their high strength, which is comparable to that of thermosets often used in composites, [...] Read more.
Fibre-reinforced composites are facing new challenges in the context particular in sustainability and recyclability. Vitrimers could be useful as new matrices to support the increase in sustainability. Due to their high strength, which is comparable to that of thermosets often used in composites, and their covalent adaptive networks, which make them reshapeable for scaled-up manufacturing and recycling purposes, they are very useful. Orthogonal cutting is used for precise reshaping and functional integration into carbon fibre reinforced plastics. Vitrimers could improve processing results at the cutting edge as well as surface quality thanks to their self-healing properties compared to brittle matrices, as well as enabling the recycling of formed chips and scrap. This study showcases the manufacturing of a carbon fibre-reinforced vitrimer using 4-aminophenyl disulfide as a hardener, with vacuum-assisted resin infusion. The temperature of chip formation and the cutting parameters are then shown for different fibre orientations, cutting widths and speeds. The observed cutting forces are lower (less than 140 N) and more irregular for fibre orientations 45°/135°, increasing with cutting depth, and fluctuating periodically during machining. Despite varying cutting speeds, the forces remain relatively constant in range between 85 N and 175 N for 0°/90° fibre orientation and 50 N and 120 N for 45°/135° fibre orientation, with no significant tool wear observed and lower-damage depth and overhanging fibres observed for 0°/90° fibre orientation. Damage observation of the cutting tool shows promising results, with lower abrasion observed compared to thermoset matrices. Microscopic images of the broached surface also show good quality, which could be improved by self-healing of the matrix at higher temperatures. Temperature measurements of chip formation using a high-speed camera show a high temperature gradient as cutting speeds increase, but the temperature only ever exceeds 180 °C at cutting speeds of 150 m/min, ensuring reprocessability since this is below the degradation temperature. Therefore, orthogonal cutting of vitrimers can impact sustainable composite processing. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

49 pages, 1139 KB  
Review
Utilization of Stem Cells in Medicine: A Narrative Review
by Banu Ismail Mendi, Rahim Hirani, Alyssa Sayegh, Mariah Hassan, Lauren Fleshner, Banu Farabi, Mehmet Fatih Atak and Bijan Safai
Int. J. Mol. Sci. 2025, 26(19), 9659; https://doi.org/10.3390/ijms26199659 - 3 Oct 2025
Abstract
Regenerative medicine holds significant promise for addressing diseases and irreversible damage that are challenging to treat with conventional methods, making it a prominent research focus in modern medicine. Research on stem cells, a key area within regenerative medicine due to their self-renewal capabilities, [...] Read more.
Regenerative medicine holds significant promise for addressing diseases and irreversible damage that are challenging to treat with conventional methods, making it a prominent research focus in modern medicine. Research on stem cells, a key area within regenerative medicine due to their self-renewal capabilities, is expanding, positioning them as a novel therapeutic option. Stem cells, utilized in various treatments, are categorized based on their differentiation potential and the source tissue. The term ‘stem cell’ encompasses a broad spectrum of cells, which can be derived from embryonic tissues, adult tissues, or generated by reprogramming differentiated cells. These cells, applied across numerous medical disciplines including cardiovascular, neurological, and hematological disorders, as well as wound healing, demonstrate varying therapeutic applications based on their differentiation capacities, each presenting unique advantages and limitations. Nevertheless, the existing literature lacks a comprehensive synthesis examining stem cell therapy and its cellular subtypes across different medical specialties. This review addresses this lacuna by collectively categorizing contemporary stem cell research according to medical specialty and stem cell classification, offering an exhaustive analysis of their respective benefits and constraints, thereby elucidating multifaceted perspectives on the clinical implementation of this therapeutic modality. Full article
17 pages, 6514 KB  
Article
Effects of Aged Conditions on the Self-Healing Performance of Asphalt Mixtures: A Comparative Study of Long-Term and Short-Term Aging
by Zhenqing He, Anhua Xu, Aipeng Wang, Tengyu Zhu and Bowen Guan
Polymers 2025, 17(19), 2678; https://doi.org/10.3390/polym17192678 - 3 Oct 2025
Abstract
This study investigates how short- and long-term aging affect the microwave self-healing of steel slag asphalt mixtures (SSAMs). Binder-level healing was tested using a dynamic shear rheometer (DSR), and mixture-level crack behavior was analyzed using beam bending tests (BBTs) and digital image correlation [...] Read more.
This study investigates how short- and long-term aging affect the microwave self-healing of steel slag asphalt mixtures (SSAMs). Binder-level healing was tested using a dynamic shear rheometer (DSR), and mixture-level crack behavior was analyzed using beam bending tests (BBTs) and digital image correlation (DIC). Aging clearly reduced self-healing, with long-term aging causing the largest decline. Among the mixtures, OGFC-13 was most sensitive, while SMA-13 was least affected. Aging increased stiffness, reduced crack resistance, and shortened crack initiation time, leading to lower healing efficiency under microwave treatment. After heating, cracks propagated faster, indicating increased brittleness. These results quantify the impact of aging on performance and highlight the limitations of microwave repair, providing guidance for maintenance strategies and mixture design to improve long-term pavement performance. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

15 pages, 14001 KB  
Article
Single-Step Engineered Gelatin-Based Hydrogel for Integrated Prevention of Postoperative Adhesion and Promotion of Wound Healing
by Xinyu Wu, Lei Sun, Jianmei Chen, Meiling Su and Zongguang Liu
Gels 2025, 11(10), 797; https://doi.org/10.3390/gels11100797 - 2 Oct 2025
Abstract
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic [...] Read more.
Postoperative adhesion remains a major clinical challenge, often leading to chronic pain, functional disorders, and recurrent surgeries. Herein, we developed a multifunctional gelatin–polyphenol hydrogel (GPP20) featuring rapid gelation (within 5 min), strong tissue adhesion (lasting > 24 h under physiological conditions), and intrinsic wound healing capacity to achieve integrated prevention of postoperative adhesion. GPP20 was fabricated via dynamic crosslinking between gelatin and tea polyphenol, endowing it with injectability, self-healing, biodegradability, and excellent mechanical properties (shear stress of 14.2 N). In vitro studies demonstrated that GPP20 exhibited effective ROS scavenging (82% ABTS scavenging capability), which protects cells against oxidative stress, while possessing excellent hemocompatibility and in vivo safety. Notably, GPP20 significantly reduced postoperative cecum–abdominal wall adhesions through both physical barrier effects and modulation of inflammation and collagen deposition, demonstrating a comprehensive integrated prevention strategy. Furthermore, in full-thickness wound models, GPP20 accelerated tissue regeneration (85% wound closure rate on day 10) by promoting macrophage polarization toward the M2 phenotype and stimulating angiogenesis, thereby enhancing collagen deposition and re-epithelialization. Collectively, these findings demonstrate that GPP20 integrates anti-adhesion efficacy with regenerative support, offering a facile and clinically translatable strategy for postoperative care and wound healing. Full article
(This article belongs to the Special Issue Advances in Functional Gel (3rd Edition))
Show Figures

Figure 1

31 pages, 12366 KB  
Article
Gateway-Free LoRa Mesh on ESP32: Design, Self-Healing Mechanisms, and Empirical Performance
by Danilo Arregui Almeida, Juan Chafla Altamirano, Milton Román Cañizares, Pablo Palacios Játiva, Javier Guaña-Moya and Iván Sánchez
Sensors 2025, 25(19), 6036; https://doi.org/10.3390/s25196036 - 1 Oct 2025
Abstract
LoRa is a long-range, low-power wireless communication technology widely used in Internet of Things (IoT) applications. However, its conventional implementation through Long Range Wide Area Network (LoRaWAN) presents operational constraints due to its centralized topology and reliance on gateways. To overcome these limitations, [...] Read more.
LoRa is a long-range, low-power wireless communication technology widely used in Internet of Things (IoT) applications. However, its conventional implementation through Long Range Wide Area Network (LoRaWAN) presents operational constraints due to its centralized topology and reliance on gateways. To overcome these limitations, this work designs and validates a gateway-free mesh communication system that operates directly on commercially available commodity microcontrollers, implementing lightweight self-healing mechanisms suitable for resource-constrained devices. The system, based on ESP32 microcontrollers and LoRa modulation, adopts a mesh topology with custom mechanisms including neighbor-based routing, hop-by-hop acknowledgments (ACKs), and controlled retransmissions. Reliability is achieved through hop-by-hop acknowledgments, listen-before-talk (LBT) channel access, and duplicate suppression using alternate link triggering (ALT). A modular prototype was developed and tested under three scenarios such as ideal conditions, intermediate node failure, and extended urban deployment. Results showed robust performance, achieving a Packet Delivery Ratio (PDR), the percentage of successfully delivered DATA packets over those sent, of up to 95% in controlled environments and 75% under urban conditions. In the failure scenario, an average Packet Recovery Ratio (PRR), the proportion of lost packets successfully recovered through retransmissions, of 88.33% was achieved, validating the system’s self-healing capabilities. Each scenario was executed in five independent runs, with values calculated for both traffic directions and averaged. These findings confirm that a compact and fault-tolerant LoRa mesh network, operating without gateways, can be effectively implemented on commodity ESP32-S3 + SX1262 hardware. Full article
16 pages, 3518 KB  
Article
Transparent Polyurethane Elastomers with Excellent Foamability and Self-Healing Property via Molecular Design and Dynamic Covalent Bond Regulation
by Rongli Zhu, Mingxi Linghu, Xueliang Liu, Liang Lei, Qi Yang, Pengjian Gong and Guangxian Li
Polymers 2025, 17(19), 2639; https://doi.org/10.3390/polym17192639 - 30 Sep 2025
Abstract
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable [...] Read more.
Microcellular thermoplastic polyurethane (TPU) foams with dynamic covalent bonds demonstrating exceptional self-healing capabilities, coupled with precisely controlled micron-scale cellular architectures, present a promising solution for developing advanced materials that simultaneously achieve damage recovery and low density. In this study, a series of self-healable materials (named as PU-S) with high light transmittance possessing two dynamic covalent bonds (oxime bond and disulfide bond) in different ratios were fabricated by the one-pot method, and then the prepared PU-S were foamed utilizing the green and efficient supercritical carbon dioxide (scCO2) foaming technology. The PU-S foams possess multiple dynamic covalent bonds as well as porous structures, and the effect of the dynamic covalent bonds endows the materials with excellent self-healing properties and recyclability. Owing to the tailored design of dynamic covalent bonding synergies and micron-sized porous structures, PU-S5 exhibits hydrophobicity (97.5° water contact angle), low temperature flexibility (Tg = −30.1 °C), high light transmission (70.6%), and light weight (density of 0.12 g/cm3) together with high expansion ratio (~10 folds) after scCO2 foaming. Furthermore, PU-S5 achieves damage recovery under mild thermal conditions (60 °C). Accordingly, self-healing PU-S based on multiple dynamic covalent bonds will realize a wide range of potential applications in biomedical, new energy automotive, and wearable devices. Full article
(This article belongs to the Special Issue Advances in Cellular Polymeric Materials)
Show Figures

Figure 1

13 pages, 3800 KB  
Article
Plasticizer-Enabled Solvent-Free Curing of Self-Healing Binder System for Energetic Materials
by Minghao Zhang, Xudong Hou, Qifa Yao, Hanyu Chen, Zuting Wei, Yue Zhao, Zhishuai Geng, Fanzhi Yang, Min Xia and Yunjun Luo
Polymers 2025, 17(19), 2635; https://doi.org/10.3390/polym17192635 - 29 Sep 2025
Abstract
Solvent processing hampers the reliability and energy density of self-healing binders for energetic materials. We report a solvent-free curing route for a Diels–Alder self-healing furanyl-terminated polybutadiene enabled by a functional external plasticizer, dibutyl phthalate (DBP), which acts not only to lower the viscosity [...] Read more.
Solvent processing hampers the reliability and energy density of self-healing binders for energetic materials. We report a solvent-free curing route for a Diels–Alder self-healing furanyl-terminated polybutadiene enabled by a functional external plasticizer, dibutyl phthalate (DBP), which acts not only to lower the viscosity of the binder but to disperse the high-melting bismaleimide, thereby driving crosslinked network formation. The 50 wt% DBP-plasticized film healed a pre-cut crack in 5 min at 120 °C and recovered nearly full mechanical properties after 24 h at 60 °C. Based on this binder system, a self-healing solid propellant with 80 wt% solid content was solvent-free cast into a dense and void-free grain that healed surface cracks within 5 min at 120 °C. This solvent-free approach overcomes the limitations of solvent-based processing and offers a viable fabrication route for self-healing energetic materials. Full article
(This article belongs to the Special Issue High-Energy-Density Polymer-Based Materials)
Show Figures

Graphical abstract

21 pages, 2027 KB  
Article
Fast Network Reconfiguration Method with SOP Considering Random Output of Distributed Generation
by Zhongqiang Zhou, Yuan Wen, Yixin Xia, Xiaofang Liu, Yusong Huang, Jialong Tan and Jupeng Zeng
Processes 2025, 13(10), 3104; https://doi.org/10.3390/pr13103104 - 28 Sep 2025
Abstract
Power outages in non-faulted zones caused by system failures significantly reduce the reliability of distribution networks. To address this issue, this paper proposes a fault self-healing technique based on the integration of soft open points (SOPs) and network reconfiguration. A mathematical model for [...] Read more.
Power outages in non-faulted zones caused by system failures significantly reduce the reliability of distribution networks. To address this issue, this paper proposes a fault self-healing technique based on the integration of soft open points (SOPs) and network reconfiguration. A mathematical model for power restoration is developed. The model incorporates SOP operational constraints and the stochastic output of photovoltaic (PV) distributed generation. And this formulation enables the determination of the optimal network reconfiguration strategy and enhances the restoration capability. The study first analyzes the operational principles of SOPs and formulates corresponding constraints based on their voltage support and power flow regulation capabilities. The stochastic nature of PV power output is then modeled and integrated into the restoration model to enhance its practical applicability. This restoration model is further reformulated as a second-order cone programming (SOCP) problem to enable efficient computation of the optimal network configuration. The proposed method is simulated and validated in MATLAB R2019a. Results demonstrate that combining the SOP with the reconfiguration strategy achieves a 100% load restoration rate. This represents a significant improvement compared to traditional network reconfiguration methods. Furthermore, the second-order cone programming (SOCP) transformation ensures computational efficiency. The proposed approach effectively enhances both the fault recovery capability and operational reliability of distribution networks with high penetration of renewable energy. Full article
Show Figures

Figure 1

20 pages, 5226 KB  
Article
Design and Performance of 3D-Printed Hybrid Polymers Exhibiting Shape Memory and Self-Healing via Acrylate–Epoxy–Thiol–Ene Chemistry
by Ricardo Acosta Ortiz, Alan Isaac Hernández Jiménez, José de Jesús Ku Herrera, Roberto Yañez Macías and Aida Esmeralda García Valdez
Polymers 2025, 17(19), 2594; https://doi.org/10.3390/polym17192594 - 25 Sep 2025
Abstract
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol [...] Read more.
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol tetrakis(3-mercaptopropionate) (PTMP), and 4,4′-methylenebis(N,N-diallylaniline) (ACA4). This unique combination enables the simultaneous activation of four polymerization mechanisms: radical photopolymerization, thiol-ene coupling, thiol-Michael addition, and anionic ring-opening, within a single resin matrix. A key innovation lies in the exothermic nature of DADS photopolymerization, which initiates and sustains ETES curing at room temperature, enabling 3D printing without thermal assistance. This represents a significant advancement over conventional systems that require elevated temperatures or post-curing steps. The resulting hybrid poly(acrylate–co-ether–co-thioether) network exhibits enhanced mechanical integrity, shape memory behavior, and intrinsic self-healing capabilities. Dynamic Mechanical Analysis revealed a shape fixity and recovery of 93%, while self-healing tests demonstrated a 94% recovery of viscoelastic properties, as evidenced by near-overlapping storage modulus curves compared to a reference sample. This integrated approach broadens the design space for multifunctional photopolymers and establishes a versatile platform for advanced applications in soft robotics, biomedical devices, and sustainable manufacturing. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

Back to TopTop