Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = self-adaptive grayscale correlation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 7366 KB  
Article
Histogram of Polarization Gradient for Target Tracking in Infrared DoFP Polarization Thermal Imaging
by Jianguo Yang, Dian Sheng, Weiqi Jin and Li Li
Remote Sens. 2025, 17(5), 907; https://doi.org/10.3390/rs17050907 - 4 Mar 2025
Viewed by 744
Abstract
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram [...] Read more.
Division-of-focal-plane (DoFP) polarization imaging systems have demonstrated considerable promise in target detection and tracking in complex backgrounds. However, existing methods face challenges, including dependence on complex image preprocessing procedures and limited real-time performance. To address these issues, this study presents a novel histogram of polarization gradient (HPG) feature descriptor that enables efficient feature representation of polarization mosaic images. First, a polarization distance calculation model based on normalized cross-correlation (NCC) and local variance is constructed, which enhances the robustness of gradient feature extraction through dynamic weight adjustment. Second, a sparse Laplacian filter is introduced to achieve refined gradient feature representation. Subsequently, adaptive polarization channel correlation weights and the second-order gradient are utilized to reconstruct the degree of linear polarization (DoLP). Finally, the gradient and DoLP sign information are ingeniously integrated to enhance the capability of directional expression, thus providing a new theoretical perspective for polarization mosaic image structure analysis. The experimental results obtained using a self-developed long-wave infrared DoFP polarization thermal imaging system demonstrate that, within the same FBACF tracking framework, the proposed HPG feature descriptor significantly outperforms traditional grayscale {8.22%, 2.93%}, histogram of oriented gradient (HOG) {5.86%, 2.41%}, and mosaic gradient histogram (MGH) {27.19%, 18.11%} feature descriptors in terms of precision and success rate. The processing speed of approximately 20 fps meets the requirements for real-time tracking applications, providing a novel technical solution for polarization imaging applications. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Target Detection)
Show Figures

Figure 1

21 pages, 2659 KB  
Article
Infrared Small Dim Target Detection Using Group Regularized Principle Component Pursuit
by Meihui Li, Yuxing Wei, Bingbing Dan, Dongxu Liu and Jianlin Zhang
Remote Sens. 2024, 16(1), 16; https://doi.org/10.3390/rs16010016 - 20 Dec 2023
Cited by 4 | Viewed by 1591
Abstract
The detection of an infrared small target faces the problems of background interference and non-obvious target features, which have yet to be efficiently solved. By employing the non-local self-correlation characteristic of the infrared images, the principle component pursuit (PCP)-based methods are demonstrated to [...] Read more.
The detection of an infrared small target faces the problems of background interference and non-obvious target features, which have yet to be efficiently solved. By employing the non-local self-correlation characteristic of the infrared images, the principle component pursuit (PCP)-based methods are demonstrated to be applicable to infrared small target detection in a complex scene. However, existing PCP-based methods heavily depend on the uniform distribution of the background pixels and are prone to generating a high number of false alarms under strong clutter situations. In this paper, we propose a group low-rank regularized principle component pursuit model (GPCP) to solve this problem. First, the local image patches are clustered into several groups that correspond to different grayscale distributions. These patch groups are regularized with a group low-rank constraint, enabling an independent recovery of different background regions. Then, GPCP model integrates the group low-rank components with a global sparse component to extract small targets from the background. Different singular value thresholds can be exploited for image groups corresponding to different brightness and grayscale variance, boosting the recovery of background clutters and also enhancing the detection of small targets. Finally, a customized optimization approach based on alternating direction method of multipliers is proposed to solve this model. We set three representative detection scenes, including the ground background, sea background and sky background for experiment analysis and model comparison. The evaluation results show the proposed model has superiority in background suppression and achieves better adaptability for different scenes compared with various state-of-the-art methods. Full article
(This article belongs to the Special Issue Remote Sensing of Target Object Detection and Identification II)
Show Figures

Figure 1

22 pages, 12655 KB  
Article
An Improved Calibration Method for Photonic Mixer Device Solid-State Array Lidars Based on Electrical Analog Delay
by Xuanquan Wang, Ping Song and Wuyang Zhang
Sensors 2020, 20(24), 7329; https://doi.org/10.3390/s20247329 - 20 Dec 2020
Cited by 5 | Viewed by 3969
Abstract
As a typical application of indirect-time-of-flight (ToF) technology, photonic mixer device (PMD) solid-state array Lidar has gained rapid development in recent years. With the advantages of high resolution, frame rate and accuracy, the equipment is widely used in target recognition, simultaneous localization and [...] Read more.
As a typical application of indirect-time-of-flight (ToF) technology, photonic mixer device (PMD) solid-state array Lidar has gained rapid development in recent years. With the advantages of high resolution, frame rate and accuracy, the equipment is widely used in target recognition, simultaneous localization and mapping (SLAM), industrial inspection, etc. The PMD Lidar is vulnerable to several factors such as ambient light, temperature and the target feature. To eliminate the impact of such factors, a proper calibration is needed. However, the conventional calibration methods need to change several distances in large areas, which result in low efficiency and low accuracy. To address the problems, this paper presents an improved calibration method based on electrical analog delay. The method firstly eliminates the lens distortion using a self-adaptive interpolation algorithm, meanwhile it calibrates the grayscale image using an integral time simulating based method. Then, the grayscale image is used to estimate the parameters of ambient light compensation in depth calibration. Finally, by combining four types of compensation, the method effectively improves the performance of depth calibration. Through several experiments, the proposed method is more adaptive to multiscenes with targets of different reflectivities, which significantly improves the ranging accuracy and adaptability of PMD Lidar. Full article
(This article belongs to the Special Issue Solid-State LiDAR Sensors)
Show Figures

Figure 1

Back to TopTop