Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = self-assembled ribbon-like structures (SRLS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6352 KB  
Article
Albumin Binds Doxorubicin via Self–Assembling Dyes as Specific Polymolecular Ligands
by Anna Jagusiak, Katarzyna Chłopaś, Grzegorz Zemanek, Izabela Kościk, Paweł Skorek and Barbara Stopa
Int. J. Mol. Sci. 2022, 23(9), 5033; https://doi.org/10.3390/ijms23095033 - 1 May 2022
Cited by 5 | Viewed by 4027
Abstract
Congo red (CR) type self–assembled ribbon–like structures (SRLS) were previously shown to interact with some proteins, including albumin. SRLS also complex with some drugs with a flat, ring–shaped structure with aromatic characteristics, intercalating them into their ribbon structure. The combination of interaction with [...] Read more.
Congo red (CR) type self–assembled ribbon–like structures (SRLS) were previously shown to interact with some proteins, including albumin. SRLS also complex with some drugs with a flat, ring–shaped structure with aromatic characteristics, intercalating them into their ribbon structure. The combination of interaction with proteins and drug binding by SRLS enables the use of such systems for immunotargeting. It is especially interesting in the case of chemotherapeutic agents. The present experiments aimed to show that the model carrier system composed of supramolecular albumin and Congo red efficiently binds doxorubicin (Dox) and that the drug can be released at reduced pH. The presented results come from the studies on such complexes differing in the molar ratio of CR to Dox. The following methods were used for the analysis: electrophoresis, dialysis, gel filtration, spectral analysis, and analysis of the size of the hydrodynamic radius using the dynamic light scattering method (DLS). The applied methods confirmed the formation of the CR–Dox complex, with large dimensions and changed properties compared with free CR. The presented results show that albumin binds both CR and its complex with Dox. Various CR–Dox molar ratios, 5:1, 2:1, and 1:1, were analyzed. The confirmation of the possibility of releasing the drug from the carriers thus formed was also obtained. The presented research is important due to the search for optimal solutions for the use of SRLS in drug immunotargeting, with particular emphasis on chemotherapeutic agents. Full article
Show Figures

Figure 1

16 pages, 3371 KB  
Article
Interaction of Supramolecular Congo Red and Congo Red-Doxorubicin Complexes with Proteins for Drug Carrier Design
by Anna Jagusiak, Katarzyna Chłopaś, Grzegorz Zemanek, Izabela Kościk and Irena Roterman
Pharmaceutics 2021, 13(12), 2027; https://doi.org/10.3390/pharmaceutics13122027 - 28 Nov 2021
Cited by 11 | Viewed by 3142
Abstract
Targeted immunotherapy has expanded to simultaneous delivery of drugs, including chemotherapeutics. The aim of the presented research is to design a new drug carrier system. Systems based on the use of proteins as natural components of the body offer the chance to boost [...] Read more.
Targeted immunotherapy has expanded to simultaneous delivery of drugs, including chemotherapeutics. The aim of the presented research is to design a new drug carrier system. Systems based on the use of proteins as natural components of the body offer the chance to boost safety and efficacy of targeted drug delivery and excess drug removal. Congo red (CR) type supramolecular, self-assembled ribbon-like structures (SRLS) were previously shown to interact with some proteins, including albumin and antibodies complexed with antigen. CR can intercalate some chemotherapeutics including doxorubicin (Dox). The goal of this work was to describe the CR-Dox complexes, to analyze their interaction with some proteins, and to explain the mechanism of this interaction. In the present experiments, a model system composed of heated immunoglobulin light chain Lλ capable of CR binding was used. Heat aggregated immunoglobulins (HAI) and albumin were chosen as another model system. The results of experiments employing methods such as gel filtration chromatography and dynamic light scattering confirmed the formation of the CR-Dox complex of large size and properties different from the free CR structures. Electrophoresis and chromatography experiments have shown the binding of free CR to heated Lλ while CR-Dox mixed structures were not capable of forming such complexes. HAI was able to bind both free CR and CR-Dox complexes. Albumin also bound both CR and its complex with Dox. Additionally, we observed that albumin-bound CR-Dox complexes were transferred from albumin to HAI upon addition of HAI. DLS analyses showed that interaction of CR with Dox distinctly increased the hydrodynamic diameter of CR-Dox compared with a free CR supramolecular structure. To our knowledge, individual small proteins such as Lλ may bind upon heating a few molecules of Congo red tape penetrating protein body due to the relatively low cohesion of the dye micelle. If, however, the compactness is high (in the case of, e.g., CR-Dox) large ribbon-like, micellar structures appear. They do not divide easily into smaller portions and cannot attach to proteins where there is no room for binding large ligands. Such binding is, however, possible by albumin which is biologically adapted to form complexes with different large ligands and by tightly packed immune complexes and heat aggregated immunoglobulin-specific protein complex structures of even higher affinity for Congo red than albumin. The CR clouds formed around them also bind the CR-Dox complexes. The presented research is essential in the search for optimum solutions for SRLS application in immuno-targeting therapeutic strategies, especially with the use of chemotherapeutics. Full article
(This article belongs to the Special Issue Supramolecular Systems for Gene and Drug Delivery)
Show Figures

Figure 1

21 pages, 6173 KB  
Article
Controlled Release of Doxorubicin from the Drug Delivery Formulation Composed of Single-Walled Carbon Nanotubes and Congo Red: A Molecular Dynamics Study and Dynamic Light Scattering Analysis
by Anna Jagusiak, Katarzyna Chlopas, Grzegorz Zemanek, Pawel Wolski and Tomasz Panczyk
Pharmaceutics 2020, 12(7), 622; https://doi.org/10.3390/pharmaceutics12070622 - 3 Jul 2020
Cited by 19 | Viewed by 3612
Abstract
The controlled delivery and release of drug molecules at specific targets increases the therapeutic efficacy of treatment. This paper presents a triple complex which is a new potential drug delivery system. Triple complex contains single-walled carbon nanotubes, Congo red, and doxorubicin. Nanotubes are [...] Read more.
The controlled delivery and release of drug molecules at specific targets increases the therapeutic efficacy of treatment. This paper presents a triple complex which is a new potential drug delivery system. Triple complex contains single-walled carbon nanotubes, Congo red, and doxorubicin. Nanotubes are built of a folded graphene layer providing a large surface for binding Congo red via “face-to-face” stacking which markedly increases the binding capacity of the carrier. Congo red is a compound that self-associates to form supramolecular ribbon-like structures, which are able to bind some drugs by intercalation. The nanotube–Congo red complex can bind the model drug doxorubicin. Thus, a new triple carrier system was obtained. The aim of this paper is to present studies on the controlled release of a model anticancer drug from a triple carrier system through pH changes. The specific aim of the study was to model the structure of the obtained experimental systems and to compare the changes in the average energy of interaction between its components induced by pH changes. The studies also aimed to compare the intensity of pH-dependent changes in hydrodynamic diameters of individual components of the triple carrier system. The effect of pH changes on the stability of the analyzed systems was examined using the molecular modeling method and dynamic light scattering. The decrease in pH influenced the structure and stability of the analyzed triple systems and ensured efficient drug release. The changes in hydrodynamic diameters of the obtained fractions were examined with the use of dynamic light scattering and were confirmed by computer simulation methods. The formulation presented in this paper shows potential for a therapeutic application owing to its high drug binding capacity and pH-dependent release. This ensures prolonged local action of the drug. The results reveal that the studied complex fulfills the basic requirements for its potential use as drug carrier, thus reducing side effects and enhancing pharmacological efficacy of drugs. Full article
(This article belongs to the Special Issue Controlled Delivery Formulations)
Show Figures

Graphical abstract

19 pages, 4216 KB  
Article
Self-Assembled Supramolecular Ribbon-Like Structures Complexed to Single Walled Carbon Nanotubes as Possible Anticancer Drug Delivery Systems
by Anna Jagusiak, Katarzyna Chłopaś, Grzegorz Zemanek, Małgorzata Jemioła-Rzemińska, Barbara Piekarska, Barbara Stopa and Tomasz Pańczyk
Int. J. Mol. Sci. 2019, 20(9), 2064; https://doi.org/10.3390/ijms20092064 - 26 Apr 2019
Cited by 16 | Viewed by 3768
Abstract
Designing an effective targeted anticancer drug delivery method is still a big challenge, since chemotherapeutics often cause a variety of undesirable side effects affecting normal tissues. This work presents the research on a novel system consisting of single walled carbon nanotubes (SWNT), dispersed [...] Read more.
Designing an effective targeted anticancer drug delivery method is still a big challenge, since chemotherapeutics often cause a variety of undesirable side effects affecting normal tissues. This work presents the research on a novel system consisting of single walled carbon nanotubes (SWNT), dispersed with Congo Red (CR), a compound that forms self-assembled ribbon-like structures (SRLS) and anticancer drug doxorubicin (DOX). SWNT provide a large surface for binding of planar aromatic compounds, including drugs, while CR supramolecular ribbon-like assemblies can be intercalated by drugs, like anthracycline rings containing DOX. The mechanism of interactions in SWNT–CR–DOX triple system was proposed based on electrophoretic, spectral, Dynamic Light Scattering and scanning electron microscopy analyzes. The profile of drug release from the investigated system was evaluated using dialysis and Differential Scanning Calorimetry. The results indicate that ribbon-like supramolecular structures of CR bind to SWNT surface forming SWNT–CR complexes which finally bind DOX. The high amount of nanotube-bound CR greatly increases the capacity of the carrier for the drug. The high capacity for drug binding and possible control of its release (through pH changes) in the analyzed system may result in prolonged and localized drug action. The proposed SWNT–CR–DOX triple system meets the basic criteria that justifies its further research as a potential drug carrier. Full article
(This article belongs to the Special Issue Carbon Nanotube-Based Materials: Experiments and Modelling)
Show Figures

Graphical abstract

Back to TopTop