Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,572)

Search Parameters:
Keywords = self-recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11683 KB  
Article
A Generative Adversarial Network for Pixel-Scale Lunar DEM Generation from Single High-Resolution Image and Low-Resolution DEM Based on Terrain Self-Similarity Constraint
by Tianhao Chen, Yexin Wang, Jing Nan, Chenxu Zhao, Biao Wang, Bin Xie, Wai-Chung Liu, Kaichang Di, Bin Liu and Shaohua Chen
Remote Sens. 2025, 17(17), 3097; https://doi.org/10.3390/rs17173097 - 5 Sep 2025
Abstract
Lunar digital elevation models (DEMs) are a fundamental data source for lunar research and exploration. However, high-resolution DEM products for the Moon are only available in some local areas, which makes it difficult to meet the needs of scientific research and missions. To [...] Read more.
Lunar digital elevation models (DEMs) are a fundamental data source for lunar research and exploration. However, high-resolution DEM products for the Moon are only available in some local areas, which makes it difficult to meet the needs of scientific research and missions. To this end, we have previously developed a deep learning-based method (LDEMGAN1.0) for single-image lunar DEM reconstruction. To address issues such as loss of detail in LDEMGAN1.0, this study leverages the inherent structural self-similarity of different DEM data from the same lunar terrain and proposes an improved version, named LDEMGAN2.0. During the training process, the model computes the self-similarity graph (SSG) between the outputs of the LDEMGAN2.0 generator and the ground truth, and incorporates the self-similarity loss (SSL) constraint into the network generator loss to guide DEM reconstruction. This improves the network’s capacity to capture both local and global terrain structures. Using the LROC NAC DTM product (2 m/pixel) as the ground truth, experiments were conducted in the Apollo 11 landing area. The proposed LDEMGAN2.0 achieved mean absolute error (MAE) of 1.49 m, root mean square error (RMSE) of 2.01 m, and structural similarity index measure (SSIM) of 0.86, which is 46.0%, 33.4%, and 11.6% higher than that of LDEMGAN1.0. Both qualitative and quantitative evaluations demonstrate that LDEMGAN2.0 enhances detail recovery and reduces reconstruction artifacts. Full article
(This article belongs to the Special Issue Planetary Geologic Mapping and Remote Sensing (Second Edition))
Show Figures

Figure 1

22 pages, 1814 KB  
Article
Life Cycle Assessment of a Cassava-Based Ethanol–Biogas–CHP System: Unlocking Negative Emissions Through WDGS Valorization
by Juntian Xu, Linchi Jiang, Rui Li and Yulong Wu
Sustainability 2025, 17(17), 8007; https://doi.org/10.3390/su17178007 - 5 Sep 2025
Abstract
To address the high fossil energy dependency and the low-value utilization of stillage (WDGS) in conventional cassava-based ethanol production—factors that increase greenhouse gas emissions and limit overall sustainability—this study develops an integrated ethanol–biogas–CHP system that valorizes stillage and enhances energy recovery. Three process [...] Read more.
To address the high fossil energy dependency and the low-value utilization of stillage (WDGS) in conventional cassava-based ethanol production—factors that increase greenhouse gas emissions and limit overall sustainability—this study develops an integrated ethanol–biogas–CHP system that valorizes stillage and enhances energy recovery. Three process scenarios were designed and evaluated through life cycle assessment (LCA) and techno-economic analysis: Case-I (WDGS dried and sold as animal feed), Case-II (stillage anaerobically digested for biogas used for heat), and Case-III (biogas further utilized in a combined heat and power system). Process simulation was conducted in Aspen Plus V11, while environmental impacts were quantified with the CML 2001 methodology under a cradle-to-gate boundary across six categories, including global warming potential (GWP) and abiotic depletion potential (ADP). Results show that Case-III achieves the highest environmental and economic performance, with a net GWP of −1515.05 kg CO2-eq/ton ethanol and the greatest profit of 396.80 USD/ton of ethanol, attributed to internal energy self-sufficiency and surplus electricity generation. Sensitivity analysis further confirms Case-III’s robustness under variations in transportation distance and electricity demand. Overall, valorizing cassava stillage through biogas–CHP integration significantly improves the sustainability of ethanol production, offering a practical pathway toward low-carbon bioenergy with potential for negative emissions. This study fills a gap in previous life cycle research by jointly assessing WDGS utilization pathways with techno-economic evaluation, providing actionable insights for carbon-neutral bioenergy policies in cassava-producing regions. Certain limitations, such as software version and data accessibility, remain to be addressed in future work. Full article
Show Figures

Figure 1

15 pages, 8341 KB  
Article
Design, Synthesis, and Characterization of a Novel Tetra-Block Copolymer for High-Performance Self-Healing Batteries
by Işık İpek Avcı Yayla, Omer Suat Taskin and Neslihan Yuca
Polymers 2025, 17(17), 2414; https://doi.org/10.3390/polym17172414 - 5 Sep 2025
Abstract
Lithium-ion batteries (LIBs) have become the dominant energy storage technology due to their versatility and superior performance across diverse applications. Silicon (Si) stands out as a particularly promising high-capacity anode material for next-generation LIBs, offering a theoretical capacity nearly ten times greater than [...] Read more.
Lithium-ion batteries (LIBs) have become the dominant energy storage technology due to their versatility and superior performance across diverse applications. Silicon (Si) stands out as a particularly promising high-capacity anode material for next-generation LIBs, offering a theoretical capacity nearly ten times greater than conventional graphite anodes. However, its practical implementation faces a critical challenge: the material undergoes a ~300% volume expansion during lithiation/delithiation, which causes severe mechanical stress, electrode pulverization, and rapid capacity decay. In addressing these limitations, advanced polymer binders serve as essential components for preserving the structural integrity of Si-based anodes. Notably, self-healing polymeric binders have emerged as a groundbreaking solution, capable of autonomously repairing cycle-induced damage and significantly enhancing electrode durability. The evaluation of self-healing performance is generally based on mechanical characterization methods while morphological observations by scanning electron microscopy provide direct evidence of crack closure; for electrochemically active materials, electrochemical techniques including GCD, EIS, and CV are employed to monitor recovery of functionality. In this study, a novel self-healing copolymer (PHX-23) was synthesized for Si anodes using a combination of octadecyl acrylate (ODA), methacrylic acid (MA), 2-hydroxyethyl methacrylate (HEMA), and polyethylene glycol methyl ether methacrylate (PEGMA). The copolymer was thoroughly characterized using NMR, FTIR, TGA, SEM, and EDX to confirm its chemical structure, thermal stability, and morphology. Electrochemical evaluation revealed that the PHX-23 binder markedly improves cycling stability, sustaining a reversible capacity of 427 mAh g−1 after 1000 cycles at 1C. During long-term cycling, the Coulombic efficiency of the PHX-23 polymer is 99.7%, and similar functional binders in the literature have shown similar results at lower C-rates. Comparative analysis with conventional binders (e.g., PVDF and CMC/SBR) demonstrated PHX-23’s exceptional performance, exhibiting higher capacity retention and improved rate capability. These results position PHX-23 as a transformative binder for silicon anodes in next-generation lithium-ion batteries. Full article
(This article belongs to the Special Issue Smart Polymers and Composites in Multifunctional Systems)
Show Figures

Graphical abstract

19 pages, 452 KB  
Review
Comparison of Current International Guidelines for the Management of Alopecia Areata—Comprehensive Review
by Julia Kropidłowska, Alexandra Kvinen, Miłosz Lewandowski, Roman J. Nowicki and Wioletta Barańska-Rybak
Int. J. Mol. Sci. 2025, 26(17), 8632; https://doi.org/10.3390/ijms26178632 - 4 Sep 2025
Abstract
Alopecia areata is a persistent autoimmune-mediated disease with a complicated pathophysiology and a prevalence of approximately 2%. The exact pathogenesis is yet to be identified; nevertheless, environmental factors, autoimmune mechanisms and genetic factors among others all contribute to the multifactorial etiopathogenesis of the [...] Read more.
Alopecia areata is a persistent autoimmune-mediated disease with a complicated pathophysiology and a prevalence of approximately 2%. The exact pathogenesis is yet to be identified; nevertheless, environmental factors, autoimmune mechanisms and genetic factors among others all contribute to the multifactorial etiopathogenesis of the disease. Even though alopecia areata is frequently self-limiting and recovery can occur on its own, it can cause esthetic challenges that might precipitate psychosocial disorders. This article aims to provide a clinical update on alopecia areata comparing the most important international guidelines, with particular emphasis on current treatment options and comorbidities. Full article
(This article belongs to the Special Issue Pathophysiology and New Therapies of Alopecia)
Show Figures

Figure 1

12 pages, 942 KB  
Article
Functional Brain Connectivity During Stress Induction and Recovery: Normal Subjects
by Jaehui Kim and Mi-Hyun Choi
Appl. Sci. 2025, 15(17), 9714; https://doi.org/10.3390/app15179714 - 4 Sep 2025
Viewed by 56
Abstract
This study aimed to compare the changes in brain functional connectivity between states of stress induction and recovery in mentally stable, healthy individuals to investigate the effects of stress on brain networks. We selected a stable group comprising 20 healthy adults with Perceived [...] Read more.
This study aimed to compare the changes in brain functional connectivity between states of stress induction and recovery in mentally stable, healthy individuals to investigate the effects of stress on brain networks. We selected a stable group comprising 20 healthy adults with Perceived Stress Scale scores of 0–13 points and a mean age of 24.4 ± 4.3 years. We used the Montreal Imaging Stress Task to induce stress and captured images of the brain using a 3T magnetic resonance imaging scanner. We analyzed the region of interest (ROI)-to-ROI connectivity and compared the differences in functional connectivity between the stress and recovery phases. In the stress state, we observed increased connectivity between the dorsal attention and sensorimotor networks and between the visual and default mode networks. In the recovery state, the default mode network became reactivated, and connectivity supporting self-referential thinking and stability was observed. The connectivities observed only in the recovery phase were Language.pSTG (R)—DefaultMode.LP (R) and DefaultMode.LP (R)—Visual.Lateral (R). Our findings provide important basic data for the development of stress management and recovery strategies. By assessing healthy individuals, our findings provide new perspectives on stress resilience in the brain. Full article
Show Figures

Figure 1

20 pages, 3199 KB  
Article
When Robust Isn’t Resilient: Quantifying Budget-Driven Trade-Offs in Connectivity Cascades with Concurrent Self-Healing
by Waseem Al Aqqad
Network 2025, 5(3), 35; https://doi.org/10.3390/network5030035 - 3 Sep 2025
Viewed by 104
Abstract
Cascading link failures continue to imperil power grids, transport networks, and cyber-physical systems, yet the relationship between a network’s robustness at the moment of attack and its subsequent resiliency remains poorly understood. We introduce a dynamic framework in which connectivity-based cascades and distributed [...] Read more.
Cascading link failures continue to imperil power grids, transport networks, and cyber-physical systems, yet the relationship between a network’s robustness at the moment of attack and its subsequent resiliency remains poorly understood. We introduce a dynamic framework in which connectivity-based cascades and distributed self-healing act concurrently within each time-step. Failure is triggered when a node’s active-neighbor ratio falls below a threshold φ; healing activates once the global fraction of inactive nodes exceeds trigger T and is limited by budget B. Two real data sets—a 332-node U.S. airport graph and a 1133-node university e-mail graph—serve as testbeds. For each graph we sweep the parameter quartet (φ,B,T,attackmode) and record (i) immediate robustness R, (ii) 90% recovery time T90, and (iii) cumulative average damage. Results show that targeted hub removal is up to three times more damaging than random failure, but that prompt healing with B0.12 can halve T90. Scatter-plot analysis reveals a non-monotonic correlation: high-R states recover quickly only when B and T are favorable, whereas low-R states can rebound rapidly under ample budgets. A multiplicative fit T90Bβg(T)h(R) (with β1) captures these interactions. The findings demonstrate that structural hardening alone cannot guarantee fast recovery; resource-aware, early-triggered self-healing is the decisive factor. The proposed model and data-driven insights provide a quantitative basis for designing infrastructure that is both robust to failure and resilient in restoration. Full article
Show Figures

Figure 1

11 pages, 2257 KB  
Article
Liquid-Exfoliated Antimony Nanosheets Hybridized with Reduced Graphene Oxide for Photoelectrochemical Photodetectors
by Gengcheng Liao, Sichao Yu, Jiebo Zeng, Zongyu Huang, Xiang Qi, Jianxin Zhong and Long Ren
Nanomaterials 2025, 15(17), 1355; https://doi.org/10.3390/nano15171355 - 3 Sep 2025
Viewed by 143
Abstract
In this paper, we design a self-powered photoelectrochemical (PEC)-type photodetector based on a hybridization of two-dimensional (2D) few-layer antimony (Sb) nanosheets (NSs) and reduced graphene oxide (rGO). The few-layer Sb NSs obtained by liquid-phase exfoliation can be anchored on the surface of rGO [...] Read more.
In this paper, we design a self-powered photoelectrochemical (PEC)-type photodetector based on a hybridization of two-dimensional (2D) few-layer antimony (Sb) nanosheets (NSs) and reduced graphene oxide (rGO). The few-layer Sb NSs obtained by liquid-phase exfoliation can be anchored on the surface of rGO through hydrothermal treatment. Specifically, during photoexcitation, the electron–hole pairs photogenerated on the surface of Sb NSs can be well stimulated and transferred by rGO, reducing the photogenerated carriers recombine on Sb NSs. The excellent electrochemical performance is confirmed by PEC tests. The photobehavior performance of the Sb NSs-rGO composite is significantly improved; its photocurrent density reaches 48.830 nA/cm2 at zero potential, approximately twice that of pure Sb NSs. The hybrid exhibits a faster photoresponse speed, with the response time and recovery time being 0.140 s and 0.163 s, respectively. This enhancement arises from the conductive role of rGO as a conductive channel, and as a result, the efficient separation of photoinduced electron–hole pairs is facilitated. This study is a further exploration of hybrid engineering of 2D materials in photochemical photodetectors and demonstrates significant progress in this field. Full article
(This article belongs to the Special Issue Advances in Stimuli-Responsive Nanomaterials: 3rd Edition)
Show Figures

Figure 1

22 pages, 8772 KB  
Article
Compact Turbine Last Stage-Exhaust Hood: Aerodynamic Performance and Structural Optimization Under Coupled Variable Working Conditions
by Yuang Shi, Lei Zhang, Yujin Zhou, Luotao Xie and Zichun Yang
Machines 2025, 13(9), 801; https://doi.org/10.3390/machines13090801 - 3 Sep 2025
Viewed by 151
Abstract
Addressing the insufficient research on the aerodynamic performance of the coupled last stage and exhaust hood structure in compact marine steam turbines under off-design conditions, this paper establishes for the first time a fully three-dimensional coupled model. It systematically analyzes the influence of [...] Read more.
Addressing the insufficient research on the aerodynamic performance of the coupled last stage and exhaust hood structure in compact marine steam turbines under off-design conditions, this paper establishes for the first time a fully three-dimensional coupled model. It systematically analyzes the influence of the last-stage moving blade shrouds and exhaust hood stiffeners on steam flow loss, static pressure recovery, and vibrational excitation. The research methodology includes the following: employing a hybrid structured-unstructured meshing technique, conducting numerical simulations based on the Shear Stress Transport (SST) turbulence model, and utilizing the static pressure recovery coefficient, total pressure loss coefficient, and cross-sectional flow velocity non-uniformity as performance evaluation metrics. The principal findings are as follows: (1) After installing self-locking shrouds on the moving blades, steam flow loss is reduced by 4.7%, and the outlet pressure non-uniformity decreases by 12.3%. (2) Although the addition of cruciform stiffeners in the diffuser section of the exhaust hood enhances structural rigidity, it results in an 8.4% decrease in the static pressure recovery coefficient, necessitating further optimization of geometric parameters. (3) The coupled model exhibits optimal aerodynamic performance at a 50% design flow rate and 100% design exhaust pressure. The results provide a theoretical basis for the structural optimization of low-noise compact steam turbines. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

15 pages, 3389 KB  
Article
Preparation, Performance Research and Field Application Practice of Temperature-Sensitive Lost Circulation Material for Shale Oil Wells
by Wenzhe Zhang, Jinsheng Sun, Feng Shen, Wei Li, Xianbin Huang, Kaihe Lv, Meichun Li, Shaofei Xue, Shiyu Wang and Hongmei Li
Polymers 2025, 17(17), 2395; https://doi.org/10.3390/polym17172395 - 2 Sep 2025
Viewed by 190
Abstract
Drilling fluid losses into formation voids are among the major issues that lead to increases in the costs and nonproductive time of operations. Lost circulation materials have been widely used to stop or mitigate losses. In most cases, the size of the loss [...] Read more.
Drilling fluid losses into formation voids are among the major issues that lead to increases in the costs and nonproductive time of operations. Lost circulation materials have been widely used to stop or mitigate losses. In most cases, the size of the loss zone is not known, making conventional lost circulation materials unsuitable for plugging the loss zone. In this study, novel temperature-sensitive LCM (TS-LCM) particles composed of diglycidyl ether of bisphenol A (DGEBA) and 4,4′-diaminodiphenyl methane were prepared. It is a thermal-response shape-memory polymer. The molecular structure was analyzed by Fourier transform infrared spectroscopy. The glass transition temperature (Tg) was tested by Different scanning calorimetry (DSC). The shape-memory properties were evaluated by a bend-recovery test instrument. The expansion and mechanical properties of particles were investigated under high temperature and high pressure. Fracture sealing testing apparatus was used to evaluate sealing performance. The mechanism of sealing fracture was discussed. Research results indicated that the Tg of the TS-LCM was 70.24 °C. The shape fixation ratio was more than 99% at room temperature, and the shape recovery ratio was 100% above the Tg. The particle was flaky before activation. It expanded to a cube shape, and the thickness increased when activated. The rate of particle size increase for D90 was more than 60% under 120 °C and 20 MPa. The activated TS-LCM particles had high crush strength. The expansion of the TS-LCM particles could self-adaptively bridge and seal the fracture without knowing the width. The addition of TS-LCM particles could seal the tapered slot with entrance widths of 2 mm, 3 mm and 4 mm without changing the lost circulation material formulation. The developed TS-LCM has good compatibility with local saltwater-based drilling fluid. In field tests in the Yan’an area of the Ordos Basin, 15 shale oil horizontal wells were plugged with excellent results. The equivalent circulating density of drilling fluid leakage increased by an average of 0.35 g/cm3, and the success rate of plugging malignant leakage increased from 32% to 82.5%. The drilling cycle was shortened by an average of 14.3%, and the effect of enhancing the pressure-bearing capacity of the well wall was significant. The prepared TS-LCM could cure fluid loss in a fractured formation efficiently. It has good prospects for promotion. Full article
Show Figures

Figure 1

24 pages, 4241 KB  
Article
Numerical Study of Self-Heating Maintenance Performance of an Integrated Regenerative Catalytic Reactor
by Fangdong Zhu, Mingming Mao, Youtang Wang and Qiang Chen
Energies 2025, 18(17), 4654; https://doi.org/10.3390/en18174654 - 2 Sep 2025
Viewed by 236
Abstract
Efficient utilization of low-calorific-value gases reduces emissions but remains challenging. Self-heat-maintained combustion uses fuel’s exothermic heat to sustain stability without external heat, yet the feed gas typically requires preheating (typically 573–673 K). This study innovatively proposes a compact regenerative catalytic reactor featuring an [...] Read more.
Efficient utilization of low-calorific-value gases reduces emissions but remains challenging. Self-heat-maintained combustion uses fuel’s exothermic heat to sustain stability without external heat, yet the feed gas typically requires preheating (typically 573–673 K). This study innovatively proposes a compact regenerative catalytic reactor featuring an integrated helical heat-recovery structure and replaces empirical preheating with a user-defined function (UDF) programmed heat transfer efficiency model. This dual innovation enables self-sustained combustion at 0.16 vol.% methane, the lowest reported concentration for autonomous operation. Numerical results confirm stable operation under ultra-lean conditions, with significantly reduced preheating energy demand and accelerated thermal response. Transient analysis shows lower space velocities enable self-maintained combustion across a broader range of methane concentrations. However, higher methane concentrations require higher inlet temperatures for self-heat maintenance. This study provides significant insights for recovering energy from low-calorific-value gases and alleviating global energy pressures. Full article
Show Figures

Figure 1

49 pages, 1459 KB  
Article
A Deep Learning Approach for Real-Time Intrusion Mitigation in Automotive Controller Area Networks
by Anila Kousar, Saeed Ahmed and Zafar A. Khan
World Electr. Veh. J. 2025, 16(9), 492; https://doi.org/10.3390/wevj16090492 - 1 Sep 2025
Viewed by 270
Abstract
The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as the de [...] Read more.
The digital revolution has profoundly influenced the automotive industry, shifting the paradigm from conventional vehicles to smart cars (SCs). The SCs rely on in-vehicle communication among electronic control units (ECUs) enabled by assorted protocols. The Controller Area Network (CAN) serves as the de facto standard for interconnecting these units, enabling critical functionalities. However, inherited non-delineation in SCs— transmits messages without explicit destination addressing—poses significant security risks, necessitating the evolution of an astute and resilient self-defense mechanism (SDM) to neutralize cyber threats. To this end, this study introduces a lightweight intrusion mitigation mechanism based on an adaptive momentum-based deep denoising autoencoder (AM-DDAE). Employing real-time CAN bus data from renowned smart vehicles, the proposed framework effectively reconstructs original data compromised by adversarial activities. Simulation results illustrate the efficacy of the AM-DDAE-based SDM, achieving a reconstruction error (RE) of less than 1% and an average execution time of 0.145532 s for data recovery. When validated on a new unseen attack, and on an Adversarial Machine Learning attack, the proposed model demonstrated equally strong performance with RE < 1%. Furthermore, the model’s decision-making capabilities were analysed using Explainable AI techinques such as SHAP and LIME. Additionally, the scheme offers applicable deployment flexibility: it can either be (a) embedded directly into individual ECU firmware or (b) implemented as a centralized hardware component interfacing between the CAN bus and ECUs, preloaded with the proposed mitigation algorithm. Full article
(This article belongs to the Special Issue Vehicular Communications for Cooperative and Automated Mobility)
Show Figures

Graphical abstract

34 pages, 5186 KB  
Article
Techno-Economic and Life Cycle Assessments of Aqueous Phase Reforming for the Energetic Valorization of Winery Wastewaters
by Giulia Farnocchia, Carlos E. Gómez-Camacho, Giuseppe Pipitone, Roland Hischier, Raffaele Pirone and Samir Bensaid
Sustainability 2025, 17(17), 7856; https://doi.org/10.3390/su17177856 - 31 Aug 2025
Viewed by 448
Abstract
Globally, winery wastewaters (WWWs) are estimated to account for about 62.5 billion L annually (2021), with COD levels up to 300,000 mg O2/L primarily attributed to residual ethanol, posing serious environmental concerns. Conventional treatments are effective in COD removal, but they [...] Read more.
Globally, winery wastewaters (WWWs) are estimated to account for about 62.5 billion L annually (2021), with COD levels up to 300,000 mg O2/L primarily attributed to residual ethanol, posing serious environmental concerns. Conventional treatments are effective in COD removal, but they often miss opportunities for energy recovery and resource valorization. This study investigates the aqueous phase reforming (APR) of ethanol-rich wastewater as an alternative treatment for both COD reduction and energy generation. Two scenarios were assessed: electricity and heat cogeneration (S1) and hydrogen production (S2). Process simulations in Aspen Plus® V14, based on lab-scale APR data, provided upscaled material and energy flows for techno-economic analysis, life cycle assessment, and energy sustainability analysis of a 2.5 m3/h plant. At 75% ethanol conversion, the minimum selling price (MSP) was USD0.80/kWh with a carbon footprint of 0.08 kg CO2-eq/kWh for S1 and USD7.00/kg with 2.57 kg CO2-eq/kg H2 for S2. Interestingly, S1 revealed a non-linear trade-off between APR performance and energy integration, with higher ethanol conversion leading to a higher electricity selling price because of the increased heat reactor duty. In both cases, the main contributors to global warming potential (GWP) were platinum extraction/recovery and residual COD treatment. Both scenarios achieved a positive energy balance, with an energy return on investment (EROI) of 1.57 for S1 and 2.71 for S2. This study demonstrates the potential of APR as a strategy for self-sufficient energy valorization and additional revenue generation in wine-producing regions. Full article
Show Figures

Figure 1

22 pages, 3342 KB  
Article
Interpenetrating Nanofibrous Composite Membranes for Removal and Reutilization of P (V) Ions from Wastewater
by Guibin You, Hongyang Ma and Benjamin S. Hsiao
Membranes 2025, 15(9), 262; https://doi.org/10.3390/membranes15090262 - 31 Aug 2025
Viewed by 314
Abstract
Elevated phosphorus levels in wastewater created significant environmental concerns, including the degradation of surrounding soil structure, inhibition of plant growth, and potential threats to human health. To address this issue, a self-standing nanofibrous composite membrane based on PA-66/PVA-15%La(OH)3 was fabricated via electrospinning, [...] Read more.
Elevated phosphorus levels in wastewater created significant environmental concerns, including the degradation of surrounding soil structure, inhibition of plant growth, and potential threats to human health. To address this issue, a self-standing nanofibrous composite membrane based on PA-66/PVA-15%La(OH)3 was fabricated via electrospinning, followed by glutaraldehyde (GA) crosslinking and alkali hydrolysis to create an interpenetrating structure, where PA-66 provided the overall mechanical strength of the membrane, while La served as a functional component for the adsorption of phosphate. The chemical composition, surface morphology, thermal stability, and mechanical properties of the resulting membranes were characterized using ATR-FTIR, SEM, TGA, and tensile testing, respectively. Furthermore, the adsorption performance of the membranes was evaluated systematically through static and dynamic adsorption. The Langmuir isotherm model yielded a theoretical maximum adsorption capacity of 21.39 mg/g for phosphate ions. Notably, over 96% of this capacity was retained even in the presence of interfering ions. Moreover, dynamic adsorption experiments demonstrated that the membrane can deal with 1.74 L of phosphate-containing wastewater at a low flow rate of 1.0 mL/min and 1.46 L at a high flow rate of 2.0 mL/min, respectively, while consistently maintaining a phosphate removal efficiency exceeding 90%. A controlled release of phosphate ions from a phosphate-adsorbed membrane was successfully demonstrated using Mougeotia cultivation, implying the potential for phosphorus resource recovery. Full article
(This article belongs to the Special Issue Membrane Separation and Water Treatment: Modeling and Application)
Show Figures

Figure 1

12 pages, 1618 KB  
Article
Fast Quantification of Lithium Concentration in Non-Compliant Materials Using Laser-Induced Breakdown Spectroscopy
by Simona Raneri, Vincenzo Palleschi, Francesco Poggialini, Beatrice Campanella, Giulia Lorenzetti, Pilario Costagliola, Valentina Rimondi, Guia Morelli and Stefano Legnaioli
Appl. Sci. 2025, 15(17), 9583; https://doi.org/10.3390/app15179583 - 30 Aug 2025
Viewed by 261
Abstract
Although approximately half of global lithium consumption is used in the rechargeable battery industry, lithium is also in demand for other specialized applications, such as high-temperature lubricants, ceramics, glass, and pharmaceuticals. The growing need for efficient lithium recovery and recycling underscores the importance [...] Read more.
Although approximately half of global lithium consumption is used in the rechargeable battery industry, lithium is also in demand for other specialized applications, such as high-temperature lubricants, ceramics, glass, and pharmaceuticals. The growing need for efficient lithium recovery and recycling underscores the importance of fast and accurate analytical tools for determining lithium concentrations in non-compliant and waste materials generated by industrial processes. In this paper, we present a machine learning-based procedure utilizing Laser-Induced Breakdown Spectroscopy (LIBS) to accurately quantify lithium concentrations in lithium-rich non-compliant materials derived from the industrial production of enamels used for coating metallic surfaces. This procedure addresses challenges such as strong self-absorption and matrix effects, which limit the effectiveness of conventional univariate calibration methods. By employing a multivariate approach, we developed a single model capable of quantifying lithium content across a wide concentration range. A comparison of the LIBS results with those obtained using conventional laboratory analysis (Inductively Coupled Plasma–Optical Emission Spectrometry, ICP-OES) confirms that LIBS can deliver the speed, precision, and reliability required for potential routine applications in the lithium recovery and recycling industry. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

15 pages, 1718 KB  
Article
Impact of Therapeutic Alcohol Administration on Perioperative Quality of Life (QoL) and Fracture Healing in Patients with Alcohol Use Disorder Undergoing Surgery for Maxillofacial Trauma—A Randomized Pilot Trial
by Elavenil Panneerselvam, Rajkumar Krishnan and Jaikumar Velayudham
Craniomaxillofac. Trauma Reconstr. 2025, 18(3), 37; https://doi.org/10.3390/cmtr18030037 - 30 Aug 2025
Viewed by 201
Abstract
Alcohol Use Disorder (AUD) is common among patients with maxillofacial trauma. Conventional perioperative care recommends complete abstinence. However, abrupt cessation can lead to Alcohol Withdrawal Syndrome (AWS), negatively impacting psychological well-being and compliance. This randomized controlled pilot study evaluated the effectiveness of Monitored [...] Read more.
Alcohol Use Disorder (AUD) is common among patients with maxillofacial trauma. Conventional perioperative care recommends complete abstinence. However, abrupt cessation can lead to Alcohol Withdrawal Syndrome (AWS), negatively impacting psychological well-being and compliance. This randomized controlled pilot study evaluated the effectiveness of Monitored Therapeutic Alcohol Administration (MTAA) in reducing perioperative stress and enhancing quality of life without impairing fracture healing. Twenty-four adult male patients with AUD and isolated facial fractures requiring surgery were enrolled. They were assigned to either an intervention group (n = 12) receiving MTAA—oral alcohol at 0.5 g/kg/day for two weeks—or a control group (n = 12) undergoing complete abstinence. Outcomes were assessed over six weeks, including stress (Zung Self-Rating Depression Scale), quality of life (Oral Health Impact Profile-14), soft tissue healing (Landry’s Index), and hard tissue healing (Moed’s Scale, serum osteocalcin). The MTAA group showed significantly reduced stress and improved quality of life (p < 0.001). Healing outcomes were comparable between groups, with no significant differences in soft tissue indices, osteocalcin levels, or radiographic scores. MTAA appears to be a safe and effective strategy to manage AWS-related distress and improve postoperative recovery, offering a practical alternative to strict abstinence in the surgical management of patients with AUD. Full article
Show Figures

Figure 1

Back to TopTop