Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,584)

Search Parameters:
Keywords = sensing and regulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3737 KiB  
Article
Effect of CTAB on the Morphology of Sn-MOF and the Gas Sensing Performance of SnO2 with Different Crystal Phases for H2 Detection
by Manyi Liu, Liang Wang, Shan Ren, Bofeng Bai, Shouning Chai, Chi He, Chunli Zheng, Xinzhe Li, Xitao Yin and Chunbao Charles Xu
Chemosensors 2025, 13(5), 192; https://doi.org/10.3390/chemosensors13050192 - 21 May 2025
Abstract
Herein, a facile strategy was proposed to enhance the gas sensing performance of SnO2 for H2 by regulating its crystalline phase composition. Sn-based metal–organic framework (Sn-MOF) precursors with different morphologies were synthesized by introducing the surfactant cetyltrimethylammonium bromide (CTAB). Upon calcination, [...] Read more.
Herein, a facile strategy was proposed to enhance the gas sensing performance of SnO2 for H2 by regulating its crystalline phase composition. Sn-based metal–organic framework (Sn-MOF) precursors with different morphologies were synthesized by introducing the surfactant cetyltrimethylammonium bromide (CTAB). Upon calcination, these precursors yielded either mixed-phase (orthorhombic and tetragonal, SnO2-C) or single-phase (pure tetragonal, SnO2-NC) SnO2 nanoparticles. Structural characterization and gas sensing tests revealed that SnO2-C exhibited a high response of 7.73 to 100 ppm H2 at 280 °C, more than twice that of SnO2-NC (3.75). Moreover, SnO2-C demonstrated a faster response/recovery time (10/56 s), high selectivity, a ppb-level detection limit (~79 ppb), and excellent long-term stability. Notably, although the addition of CTAB reduced the specific surface area of SnO2, the resulting lower surface area minimized oxygen exposure during calcination, facilitating the formation of a mixed-phase heterostructure. In addition, the calcination atmosphere of SnO2-C (flowing air or Ar) was adjusted to further investigate the role of the crystal phase in gas sensing performance. The results clearly demonstrated that mixed-phase SnO2 exhibited superior sensing performance, achieving a higher sensitivity and a faster response to H2. These findings underscored the critical role of crystal phase engineering in the design of high-performance gas sensing materials. Full article
(This article belongs to the Special Issue Novel Materials for Gas Sensing)
11 pages, 214 KiB  
Review
Formative Assessment and Educational Benefits
by Rosa Vegliante
Encyclopedia 2025, 5(2), 68; https://doi.org/10.3390/encyclopedia5020068 - 21 May 2025
Abstract
Evaluation in education is a complex and multifaceted process, linked to teaching and planning. It represents a powerful tool for regulating behaviors, refining actions, and adapting educational interventions to the specific context in which they are implemented. In this evaluation framework, the work [...] Read more.
Evaluation in education is a complex and multifaceted process, linked to teaching and planning. It represents a powerful tool for regulating behaviors, refining actions, and adapting educational interventions to the specific context in which they are implemented. In this evaluation framework, the work aims to highlight the educational value of assessment, considered a moment in which both the teacher and the student are involved in the teaching-learning process. In particular, formative assessment allows you to find essential information to understand the progress of the actions implemented, highlighting strengths and weaknesses to intervene in educational planning. In this sense, it becomes a valid support for both teachers and students as it allows them to monitor the progress of the teaching/learning process. The work is divided into two parts: the first is theoretical, in which the transition from the assessment of learning (summative) to the assessment for learning (formative) is presented; the second is focused on formative assessment and feedback practices. From a methodological perspective, the literature review emphasizes the potential of assessment that involves students both as recipients and active participants through peer assessment. The paper highlights potential and challenges aimed at improving and experimenting with ways to enhance evaluation competence, which prepares students for professional life. Full article
(This article belongs to the Collection Encyclopedia of Social Sciences)
23 pages, 13999 KiB  
Article
Integrating Multi-Model Coupling to Assess Habitat Quality Dynamics: Spatiotemporal Evolution and Scenario-Based Projections in the Yangtze River Basin, China
by Yuzhou Zhang, Jianxin Yang, Weilong Wu and Diwei Tang
Sustainability 2025, 17(10), 4699; https://doi.org/10.3390/su17104699 - 20 May 2025
Abstract
As a pivotal ecological–economic nexus in China, the Yangtze River Basin (YRB)’s spatiotemporal evolution of habitat quality (HQ) profoundly influences regional sustainable development. This study establishes a tripartite analytical framework integrating remote sensing big data, socioeconomic datasets, and ecological modeling. By coupling the [...] Read more.
As a pivotal ecological–economic nexus in China, the Yangtze River Basin (YRB)’s spatiotemporal evolution of habitat quality (HQ) profoundly influences regional sustainable development. This study establishes a tripartite analytical framework integrating remote sensing big data, socioeconomic datasets, and ecological modeling. By coupling the InVEST and PLUS models with Theil–Sen median trend analysis and Mann–Kendall tests, we systematically assessed HQ spatial heterogeneity across the basin during 2000–2020 and projected trends under 2030 scenarios (natural development (S1), cropland protection (S2), and ecological conservation (S3)). Key findings reveal that basin-wide HQ remained stable (0.599–0.606) but exhibited marked spatial disparities, demonstrating a “high-middle reach (0.636–0.649), low upper/lower reach” pattern. Urbanized downstream areas recorded the minimum HQ (0.478–0.515), primarily due to landscape fragmentation from peri-urban expansion and transportation infrastructure. Trend analysis showed that coefficient of variation (CV) values ranged from 0.350 to 2.72 (mean = 0.768), indicating relative stability but significant spatial variability. While 76.98% of areas showed no significant HQ changes, 15.83% experienced declines (3.56% with significant degradation, p < 0.05) concentrated in urban agglomerations (e.g., the Wuhan Metropolitan Area, the Yangtze River Delta). Only 7.18% exhibited an HQ improvement, predominantly in snowmelt-affected Qinghai–Tibet Plateau regions, with merely 0.95% showing a significant enhancement. Multi-scenario projections align with Theil–Sen trends, predicting HQ declines across all scenarios. S3 curbs decline to 0.33% (HQ = 0.597), outperforming S1 (1.07%) and S2 (1.15%). Nevertheless, downstream areas remain high-risk (S3 HQ = 0.476). This study elucidated compound drivers of urbanization, agricultural encroachment, and climate change, proposing a synergistic “zoning regulation–corridor restoration–cross-regional compensation” pathway. These findings provide scientific support for balancing ecological protection and high-quality development in the Yangtze Economic Belt, while offering systematic solutions for the sustainable governance of global mega-basins. Full article
Show Figures

Graphical abstract

15 pages, 2607 KiB  
Article
The Offset of the Ecological Benefits of Decreasing Forest Disturbance Severity in Europe Caused by Climate Change
by Wei Zheng, Yundi Zhang and Xiuzhi Chen
Forests 2025, 16(5), 852; https://doi.org/10.3390/f16050852 - 20 May 2025
Abstract
Forest ecosystems critically regulate land surface temperature (LST) from local to regional scales. Over the last three decades (1986–2016), increasingly frequent and severe disturbances have substantially altered the European forest canopy structure and carbon storage. However, the biophysical interactions between forest disturbance severity [...] Read more.
Forest ecosystems critically regulate land surface temperature (LST) from local to regional scales. Over the last three decades (1986–2016), increasingly frequent and severe disturbances have substantially altered the European forest canopy structure and carbon storage. However, the biophysical interactions between forest disturbance severity (FDS) and LST, particularly their spatiotemporal dynamics, remain insufficiently quantified at regional-to-continental scales. This study integrated multi-source, high-resolution remote sensing data spanning 1986–2016 to systematically investigate European FDS and its biophysical control over LST. We find significant spatiotemporal heterogeneity in FDS, which decreased markedly from 5.92 ± 4.6 in 1986 to 0.35 ± 2.36 in 2016, stabilizing after a sharp decline pre-2000. Concurrently, the mean regional LST exhibited significant warming trends, increasing from −27.04 ± 10.15 K to 16.47 ± 10.67 K, and declining FDS indirectly contributed up to 65% of this temperature rise. Mechanistically, the reduced FDS enhanced the secondary forest leaf area index (LAI), decreasing surface albedo and increasing net radiation absorption, thereby inducing positive radiative feedback that drives surface warming. Our findings demonstrate that the carbon sequestration benefits accrued during forest recovery can be partially offset by associated biophysical warming effects. This evidence is crucial for optimizing European forest management strategies to balance carbon sink enhancement and climate regulation functions. Full article
Show Figures

Figure 1

37 pages, 12210 KiB  
Review
A Review of Environmental Sensing Technologies for Targeted Spraying in Orchards
by Yunfei Wang, Zhengji Zhang, Weidong Jia, Mingxiong Ou, Xiang Dong and Shiqun Dai
Horticulturae 2025, 11(5), 551; https://doi.org/10.3390/horticulturae11050551 - 20 May 2025
Abstract
Precision pesticide application is a key focus in orchard management, with targeted spraying serving as a core technology to optimize pesticide delivery and reduce environmental pollution. However, its accurate implementation relies on high-precision environmental sensing technologies to enable the precise identification of target [...] Read more.
Precision pesticide application is a key focus in orchard management, with targeted spraying serving as a core technology to optimize pesticide delivery and reduce environmental pollution. However, its accurate implementation relies on high-precision environmental sensing technologies to enable the precise identification of target objects and dynamic regulation of spraying strategies. This paper systematically reviews the application of orchard environmental sensing technologies in targeted spraying. It first focuses on key sensors used in environmental sensing, providing an in-depth analysis of their operational mechanisms and advantages in orchard environmental perception. Subsequently, this paper discusses the role of multi-source data fusion and artificial intelligence analysis techniques in improving the accuracy and stability of orchard environmental sensing, supporting crown structure modeling, pest and disease monitoring, and weed recognition. Additionally, this paper reviews the practical paths of environmental sensing-driven targeted spraying technologies, including variable spraying strategies based on canopy structure perception, precise pesticide application methods combined with intelligent pest and disease recognition, and targeted weed control technologies relying on weed and non-target area detection. Finally, this paper summarizes the challenges faced by multi-source sensing and targeted spraying technologies in light of current research progress and industry needs, and explores potential future developments in low-cost sensors, real-time data processing, intelligent decision making, and unmanned agricultural machinery. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

21 pages, 1766 KiB  
Article
MvfR Shapes Pseudomonas aeruginosa Interactions in Polymicrobial Contexts: Implications for Targeted Quorum-Sensing Inhibition
by Kelsey M. Wheeler, Myung Whan Oh, Julianna Fusco, Aishlinn Mershon, Erin Kim, Antonia De Oliveira and Laurence G. Rahme
Cells 2025, 14(10), 744; https://doi.org/10.3390/cells14100744 - 20 May 2025
Abstract
Infections often occur in complex niches consisting of multiple bacteria. Despite the increasing awareness, there is a fundamental gap in understanding which interactions govern microbial community composition. Pseudomonas aeruginosa is frequently isolated from monomicrobial and polymicrobial human infections. This pathogen forms polymicrobial infections [...] Read more.
Infections often occur in complex niches consisting of multiple bacteria. Despite the increasing awareness, there is a fundamental gap in understanding which interactions govern microbial community composition. Pseudomonas aeruginosa is frequently isolated from monomicrobial and polymicrobial human infections. This pathogen forms polymicrobial infections with other ESKAPEE pathogens and defies eradication by conventional therapies. By analyzing the competition within co-cultures of P. aeruginosa and representative secondary pathogens that commonly co-infect patients, we demonstrate the antagonism of P. aeruginosa against other ESKAPEE pathogens and the contribution of this pathogen’s multiple quorum-sensing (QS) systems in these interactions. QS is a highly conserved bacterial cell-to-cell communication mechanism that coordinates collective gene expressions at the population level, and it is also involved in P. aeruginosa virulence. Using a collection of P. aeruginosa QS mutants of the three major systems, LasR/LasI, MvfR/PqsABCDE, and RhlR/RhlI, and mutants of several QS-regulated functions, we reveal that MvfR and, to a lesser extent, LasR and RhlR, control competition between P. aeruginosa and other microbes, possibly through their positive impact on pyoverdine, pyochelin, and phenazine genes. We show that MvfR inhibition alters competitive interspecies interactions and preserves the coexistence of P. aeruginosa with the ESKAPEE pathogens tested while disarming the pathogens’ ability to form biofilm and adhere to lung epithelial cells. Our results highlight the role of MvfR inhibition in modulating microbial competitive interactions across multiple species, while simultaneously attenuating virulence traits. These findings reveal the complexity and importance of QS in interspecies interactions and underscore the impact of the anti-virulence approach in microbial ecology and its importance for treating polymicrobial infections. Full article
Show Figures

Figure 1

57 pages, 1833 KiB  
Review
Molecular Insight into the Role of Vitamin D in Immune-Mediated Inflammatory Diseases
by Christiano Argano, Alessandra Torres, Valentina Orlando, Virginia Cangialosi, Dalila Maggio, Chiara Pollicino and Salvatore Corrao
Int. J. Mol. Sci. 2025, 26(10), 4798; https://doi.org/10.3390/ijms26104798 - 16 May 2025
Viewed by 70
Abstract
In the last decades, it has become increasingly evident that the role of vitamin D extends beyond the regulation of calcium homeostasis and the maintenance of bone health. A significant extraskeletal function of vitamin D is its role in modulating the immune system, [...] Read more.
In the last decades, it has become increasingly evident that the role of vitamin D extends beyond the regulation of calcium homeostasis and the maintenance of bone health. A significant extraskeletal function of vitamin D is its role in modulating the immune system, particularly highlighted in the context of immune-mediated inflammatory diseases, where correlations between vitamin D status and genetic variations in the vitamin D receptor have been observed about the incidence and severity of these conditions. Additionally, different studies have reported the existence of immunomodulatory effects of vitamin D, particularly the effects of vitamin D on dendritic cell function, maturation, cytokine production, and antigen presentation, and that its deficiency may be associated with a sub-inflammatory state. In this sense, different clinical trials have been conducted to assess the therapeutic efficacy of vitamin D in different immune-mediated inflammatory disorders, including asthma, atopic dermatitis (AD), rheumatoid arthritis (RA), psoriasis, thyroid diseases, infectious diseases, and systemic lupus erythematosus (SLE). This review will provide a comprehensive overview of the current understanding of the molecular mechanisms underlying vitamin D’s immunomodulatory properties, its role, and innovative therapeutic applications in patients with immune-mediated inflammatory diseases. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

35 pages, 20819 KiB  
Article
Exploring the Gobi Wall: Archaeology of a Large-Scale Medieval Frontier System in the Mongolian Desert
by Dan Golan, Gideon Shelach-Lavi, Chunag Amartuvshin, Zhidong Zhang, Ido Wachtel, Jingchao Chen, Gantumur Angaragdulguun, Itay Lubel, Dor Heimberg, Mark Cavanagh, Micka Ullman and William Honeychurch
Land 2025, 14(5), 1087; https://doi.org/10.3390/land14051087 - 16 May 2025
Viewed by 105
Abstract
The Gobi Wall is a 321 km-long structure made of earth, stone, and wood, located in the Gobi highland desert of Mongolia. It is the least understood section of the medieval wall system that extends from China into Mongolia. This study aims to [...] Read more.
The Gobi Wall is a 321 km-long structure made of earth, stone, and wood, located in the Gobi highland desert of Mongolia. It is the least understood section of the medieval wall system that extends from China into Mongolia. This study aims to determine its builders, purpose, and chronology. Additionally, we seek to better understand the ecological implications of constructing such an extensive system of walls, trenches, garrisons, and fortresses in the remote and harsh environment of the Gobi Desert. Our field expedition combined remote sensing, pedestrian surveys, and targeted excavations at key sites. The results indicate that the garrison walls and main long wall were primarily constructed using rammed earth, with wood and stone reinforcements. Excavations of garrisons uncovered evidence of long-term occupation, including artifacts spanning from 2nd c. BCE to 19th c. CE. According to our findings, the main construction and usage phase of the wall and its associated structures occurred throughout the Xi Xia dynasty (1038–1227 CE), a period characterized by advanced frontier defense systems and significant geopolitical shifts. This study challenges the perception of such structures as being purely defensive, revealing the Gobi Wall’s multifunctional role as an imperial tool for demarcating boundaries, managing populations and resources, and consolidating territorial control. Furthermore, our spatial and ecological analysis demonstrates that the distribution of local resources, such as water and wood, was critical in determining the route of the wall and the placement of associated garrisons and forts. Other geographic factors, including the location of mountain passes and the spread of sand dunes, were strategically utilized to enhance the effectiveness of the wall system. The results of this study reshape our understanding of medieval Inner Asian imperial infrastructure and its lasting impact on geopolitical landscapes. By integrating historical and archeological evidence with geographical analysis of the locations of garrisons and fortifications, we underscore the Xi Xia kingdom’s strategic emphasis on regulating trade, securing transportation routes, and monitoring frontier movement. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

18 pages, 2419 KiB  
Article
Characterization and Specific Detection of Lactobacillus paracasei-Derived Extracellular Vesicles Using Anti-p40-Modified Au Thin Film
by Kyeongmin Lee, Eun-Gyung Cho, Youngbo Choi, Yunsik Kim, Jin Hee Lee and Surin Hong
Pharmaceutics 2025, 17(5), 654; https://doi.org/10.3390/pharmaceutics17050654 - 16 May 2025
Viewed by 49
Abstract
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic [...] Read more.
Background/Objectives: Extracellular vesicles (EVs) are nanoscale, membrane-enclosed structures that play key roles in intercellular communication and biological regulation. Among them, Lactobacillus paracasei-derived EVs (Lp-EVs) have attracted attention for their anti-inflammatory and anti-aging properties, making them promising candidates for therapeutic and cosmetic use. However, methods for specific detection and quantitative evaluation of Lp-EVs are still limited. This study aims to develop a surface plasmon resonance (SPR)-based sensor system for the precise and selective detection of Lp-EVs. Methods: Anti-p40 antibodies were immobilized on gold thin films to construct an SPR sensing platform. The overexpression of the p40 protein on Lp-EVs was confirmed using flow cytometry and Western blotting. For functional evaluation, Lp-EVs were applied to an artificial skin membrane mounted on a Franz diffusion cell, followed by SPR-based quantification and fluorescence imaging to assess their skin penetration behavior. Results: The developed SPR sensor demonstrated high specificity and a detection limit of 0.12 µg/mL, with a linear response range from 0.1 to 0.375 µg/mL. It successfully discriminated Lp-EVs from other bacterial EVs. In the skin diffusion assay, Lp-EVs accumulated predominantly in the epidermal layer without penetrating into the dermis, likely due to their negative surface charge and interaction with the hydrophobic epidermal lipid matrix. Fluorescence imaging confirmed this epidermal confinement, which increased over 24 h. Conclusions: This study presents a sensitive and selective SPR-based platform for detecting Lp-EVs and demonstrates their potential for targeted epidermal delivery. These findings support the use of Lp-EVs in skin-focused therapeutic and cosmetic applications. Future studies will explore strategies such as microneedle-assisted delivery to enhance transdermal penetration and efficacy. Full article
(This article belongs to the Special Issue Extracellular Vesicle for Drug Delivery)
Show Figures

Figure 1

16 pages, 897 KiB  
Article
Regulation of Metabolic Aging Through Adenosine Mono Phosphate-Activated Protein Kinase and Mammalian Target of Rapamycin: A Comparative Study of Intermittent Fasting Variations in Obese Young Women
by Sheeny Priska Purnomo, Purwo Sri Rejeki, Raden Argarini, Shariff Halim, Dian Aristia Rachmayanti, Chy’as Diuranil Astrid Permataputri and Ivan Kristianto Singgih
Nutrients 2025, 17(10), 1695; https://doi.org/10.3390/nu17101695 - 16 May 2025
Viewed by 111
Abstract
Background/Objectives: Obesity accelerates metabolic aging through oxidative stress, inflammation, and mitochondrial dysfunction. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are nutrient-sensing pathways regulating metabolism. AMPK promotes energy metabolism and autophagy, while excessive mTOR activity contributes to aging. Intermittent fasting (IF), [...] Read more.
Background/Objectives: Obesity accelerates metabolic aging through oxidative stress, inflammation, and mitochondrial dysfunction. AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are nutrient-sensing pathways regulating metabolism. AMPK promotes energy metabolism and autophagy, while excessive mTOR activity contributes to aging. Intermittent fasting (IF), including time-restricted feeding (TRF)—limiting food intake to a 6 h window (18:6)—and alternate-day modified fasting (ADMF)—alternating 24 h fasting (≤25% daily caloric intake) with unrestricted feeding—may improve metabolic regulation. However, their effects on AMPK, mTOR, and metabolic age remain unclear. Methods: This quasi-experimental pre-test–post-test control group study compared the TRF and ADMF on metabolic age, AMPK, and mTOR in young obese women. Twenty-four participants (mean age: 21.29 ± 1.76 years; body fat: 36.92 ± 3.18%; BMI: 29.68 ± 3.70 kg/m2) were initially matched by BMI and assigned to Control, TRF, and ADMF groups. A total of 4 participants (1 Control, 3 ADMF) were excluded due to outlier values, yielding final group sizes: Control (n = 7), TRF (n = 8), and ADMF (n = 5). The intervention lasted 20 days. Results: A significant decrease in AMPK levels was observed in the ADMF group (p = 0.043), while changes in the TRF and Control groups were not significant. mTOR levels showed a decreasing trend but were not statistically significant. No significant changes were found in metabolic age. Conclusions: Twenty days of intermittent fasting intervention did not significantly affect AMPK, mTOR, or metabolic age in young obese women. TRF may more effectively enhance AMPK and reduce mTOR, while ADMF may better reduce metabolic age. Full article
(This article belongs to the Section Nutrition in Women)
Show Figures

Graphical abstract

28 pages, 1617 KiB  
Review
Non-Canonical Inter-Protein Interactions of Key Proteins Belonging to Cytokinin Signaling Pathways
by Ekaterina M. Savelieva, Dmitry V. Arkhipov, Anna V. Kozinova, Georgy A. Romanov and Sergey N. Lomin
Plants 2025, 14(10), 1485; https://doi.org/10.3390/plants14101485 - 15 May 2025
Viewed by 126
Abstract
The multistep phosphorelay (MSP) is a conserved signaling system that allows plants to sense and respond to a variety of cues under rapidly changing environmental conditions. The MSP system comprises three main protein types: sensor histidine kinases, phosphotransmitters, and response regulators. There are [...] Read more.
The multistep phosphorelay (MSP) is a conserved signaling system that allows plants to sense and respond to a variety of cues under rapidly changing environmental conditions. The MSP system comprises three main protein types: sensor histidine kinases, phosphotransmitters, and response regulators. There are numerous signaling pathways that use, in whole or in part, this set of proteins to transduce diverse signals. Among them, the cytokinin signal transduction system is the best-studied pathway, which utilizes the entire MSP cascade. Focusing on this system, we review here protein–protein interaction of MSP components that are not directly related to cytokinin signaling. These interactions are likely to play an essential role in hormonal crosstalk and may be promising targets for fine-tuning plant development. In addition, in light of recent advances in the study of cytokinin signaling, we discuss new insights into the putative molecular mechanisms that mediate the pleiotropic action of cytokinins and provide specificity for distinct MSP signals. A detailed network of known non-canonical protein–protein interactions related to cytokinin signaling was demonstrated. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

28 pages, 1079 KiB  
Article
Accessing Geological Heritage in Slovakia: Between Politics and Law
by Marián Lukáč and Ľubomír Štrba
Sustainability 2025, 17(10), 4525; https://doi.org/10.3390/su17104525 - 15 May 2025
Viewed by 112
Abstract
The results of geotourism development in Slovakia do not correspond much to the idea of geotourism as a social priority, nor to the declared increased interest in all forms of responsible tourism. The development of geotourism, in the strict sense of the word, [...] Read more.
The results of geotourism development in Slovakia do not correspond much to the idea of geotourism as a social priority, nor to the declared increased interest in all forms of responsible tourism. The development of geotourism, in the strict sense of the word, is a political phenomenon; here, it exists outside the legal framework. This paper examines the question of whether, to what extent, and in what manner the promotion of leading principles (such as the idea of sustainability and its manifestation in various forms of regulated tourism) should be enshrined in positive law, and what specific benefits this might bring for the development of geotourism in Slovakia. Given the questions posed are of a kind that jurisprudence may answer, the methods chosen are drawn from legal science, though also intersecting with several other social sciences. Accordingly, the approach is one of doctrinal interpretation, based on the scientific study of valid law. Slovak law as a whole, specifically as it relates to the implementation of sustainable development and regulated forms of tourism, thus sets the outer limits of the application of these interpretative methods (including linguistic, historical, and logical interpretation of law, among others). The article answers the question in the affirmative way and outlines prospects for positive change should current approaches be changed. Full article
(This article belongs to the Special Issue Geoheritage and Sustainable Development of Geotourism)
Show Figures

Figure 1

21 pages, 5993 KiB  
Article
Microgrid Frequency Regulation Based on Precise Matching Between Power Commands and Load Consumption Using Shallow Neural Networks
by Zhen Liu and Yinghao Shan
Appl. Syst. Innov. 2025, 8(3), 67; https://doi.org/10.3390/asi8030067 - 15 May 2025
Viewed by 91
Abstract
Islanded microgrids commonly use droop control methods for autonomous power distribution; however, this approach causes system frequency deviation when common loads change. This deviation can be eliminated using secondary control methods, but the core of this approach is to generate compensation values equal [...] Read more.
Islanded microgrids commonly use droop control methods for autonomous power distribution; however, this approach causes system frequency deviation when common loads change. This deviation can be eliminated using secondary control methods, but the core of this approach is to generate compensation values equal to the offset amount to add to the controller, thereby eliminating deviations from rated values. Such a mechanism can actually achieve the same effect by setting power reference values within the droop control method. The power references within the controller need to be adjusted dynamically, and they are associated with common load variations. Therefore, establishing a fitting relationship between the adjustment of power reference and changes in common loads can achieve better frequency regulation, keeping the system frequency operating within rated frequency ranges. These two types of data are correlated, however, due to physical parameters, the fitting between them is not strictly fixed in a mathematical sense. Thus, to find their interconnected relationships, using intelligent methods becomes crucial. This paper proposes a shallow neural network-based method to achieve fitting relationships. Moreover, to address power inputs with zero values, an input enhancement method is proposed to prevent potential gradient vanishing and ineffective learning problems. Thus, through precise matching between power commands and load consumption, the system frequency can be maintained near rated values. Various simulation scenarios demonstrate the feasibility and effectiveness of the proposed method. Full article
Show Figures

Figure 1

34 pages, 790 KiB  
Article
Collaborative Consumption and Its Implication for Sustainable Consumption of Generation Z in Ukraine
by Bożena Gajdzik, Magdalena Jaciow, Larysa Mosora, Agata Stolecka-Makowska, Radosław Wolniak and Robert Wolny
Sustainability 2025, 17(10), 4456; https://doi.org/10.3390/su17104456 - 14 May 2025
Viewed by 189
Abstract
This paper examines the phenomenon of collaborative consumption among Generation Z in Ukraine, focusing on its significance for sustainable consumption and the factors driving its popularity. In the context of increasing digitalization and environmental challenges, the authors analyze the extent to which young [...] Read more.
This paper examines the phenomenon of collaborative consumption among Generation Z in Ukraine, focusing on its significance for sustainable consumption and the factors driving its popularity. In the context of increasing digitalization and environmental challenges, the authors analyze the extent to which young Ukrainians engage in the sharing economy and the motivations behind their choices. Special attention is given to the unique characteristics of Generation Z in Ukraine, who, unlike their Western peers, are marked by a strong sense of patriotism, greater social responsibility, and a desire for economic stability—factors influenced by the country’s challenging geopolitical situation. The study was conducted using an online survey (CAWI) with a sample of 292 respondents in 2024. The results indicate that 54.8% of the respondents show a propensity for collaborative consumption (PCC), with key motivators being convenience (90%), the need for social connections (70%), and environmental awareness (68%). Individuals inclined toward resource sharing tend to exhibit greater openness, loyalty, and innovativeness. However, the lack of significant differences in their broader sustainable consumption behaviors suggests that collaborative consumption is perceived primarily as a practical solution rather than a consciously pro-environmental strategy. These findings have important practical implications—companies should focus on building trust in sharing platforms, offering flexible pricing models, and emphasizing both financial savings and environmental benefits. Meanwhile, policymakers can support the growth of the sharing economy through regulations that foster innovation and educational campaigns promoting sustainable consumer behavior. Full article
(This article belongs to the Section Economic and Business Aspects of Sustainability)
Show Figures

Figure 1

26 pages, 3148 KiB  
Article
Transcriptional Regulatory Systems in Pseudomonas: A Comparative Analysis of Helix-Turn-Helix Domains and Two-Component Signal Transduction Networks
by Zulema Udaondo, Kelsey Aguirre Schilder, Ana Rosa Márquez Blesa, Mireia Tena-Garitaonaindia, José Canto Mangana and Abdelali Daddaoua
Int. J. Mol. Sci. 2025, 26(10), 4677; https://doi.org/10.3390/ijms26104677 - 14 May 2025
Viewed by 128
Abstract
Bacterial communities in diverse environmental niches respond to various external stimuli for survival. A primary means of communication between bacterial cells involves one-component (OC) and two-component signal transduction systems (TCSs). These systems are key for sensing environmental changes and regulating bacterial physiology. TCSs, [...] Read more.
Bacterial communities in diverse environmental niches respond to various external stimuli for survival. A primary means of communication between bacterial cells involves one-component (OC) and two-component signal transduction systems (TCSs). These systems are key for sensing environmental changes and regulating bacterial physiology. TCSs, which are the more complex of the two, consist of a sensor histidine kinase for receiving an external input and a response regulator to convey changes in bacterial cell physiology. For numerous reasons, TCSs have emerged as significant targets for antibacterial drug design due to their role in regulating expression level, bacterial viability, growth, and virulence. Diverse studies have shown the molecular mechanisms by which TCSs regulate virulence and antibiotic resistance in pathogenic bacteria. In this study, we performed a thorough analysis of the data from multiple public databases to assemble a comprehensive catalog of the principal detection systems present in both the non-pathogenic Pseudomonas putida KT2440 and the pathogenic Pseudomonas aeruginosa PAO1 strains. Additionally, we conducted a sequence analysis of regulatory elements associated with transcriptional proteins. These were classified into regulatory families based on Helix-turn-Helix (HTH) protein domain information, a common structural motif for DNA-binding proteins. Moreover, we highlight the function of bacterial TCSs and their involvement in functions essential for bacterial survival and virulence. This comparison aims to identify novel targets that can be exploited for the development of advanced biotherapeutic strategies, potentially leading to new treatments for bacterial infections. Full article
Show Figures

Figure 1

Back to TopTop