As 6G networks become increasingly complex and heterogeneous, effective classification of network slicing is essential for optimizing resources and managing quality of service. While recent advances demonstrate high accuracy under controlled laboratory conditions, a critical gap exists between algorithm performance evaluation under idealized
[...] Read more.
As 6G networks become increasingly complex and heterogeneous, effective classification of network slicing is essential for optimizing resources and managing quality of service. While recent advances demonstrate high accuracy under controlled laboratory conditions, a critical gap exists between algorithm performance evaluation under idealized conditions and their actual effectiveness in realistic deployment scenarios. This study presents a comprehensive comparative analysis of two distinct preprocessing methodologies for 6G network slicing classification: Pure Raw Data Analysis (PRDA) and Literature-Validated Realistic Transformations (LVRTs). We evaluate the impact of these strategies on algorithm performance, resilience characteristics, and practical deployment feasibility to bridge the laboratory–reality gap in 6G network optimization. Our experimental methodology involved testing eleven machine learning algorithms—including traditional ML, ensemble methods, and deep learning approaches—on a dataset comprising 10,000 network slicing samples (expanded to 21,033 through realistic transformations) across five network slice types. The LVRT methodology incorporates realistic operational impairments including market-driven class imbalance (9:1 ratio), multi-layer interference patterns, and systematic missing data reflecting authentic 6G deployment challenges. The experimental results revealed significant differences in algorithm behavior between the two preprocessing approaches. Under PRDA conditions, deep learning models achieved perfect accuracy (100% for CNN and FNN), while traditional algorithms ranged from 60.9% to 89.0%. However, LVRT results exposed dramatic performance variations, with accuracies spanning from 58.0% to 81.2%. Most significantly, we discovered that algorithms achieving excellent laboratory performance experience substantial degradation under realistic conditions, with CNNs showing an 18.8% accuracy loss (dropping from 100% to 81.2%), FNNs experiencing an 18.9% loss (declining from 100% to 81.1%), and Naive Bayes models suffering a 34.8% loss (falling from 89% to 58%). Conversely, SVM (RBF) and Logistic Regression demonstrated counter-intuitive resilience, improving by 14.1 and 10.3 percentage points, respectively, under operational stress, demonstrating superior adaptability to realistic network conditions. This study establishes a resilience-based classification framework enabling informed algorithm selection for diverse 6G deployment scenarios. Additionally, we introduce a comprehensive explainable artificial intelligence (XAI) framework using SHAP analysis to provide interpretable insights into algorithm decision-making processes. The XAI analysis reveals that Packet Loss Budget emerges as the dominant feature across all algorithms, while Slice Jitter and Slice Latency constitute secondary importance features. Cross-scenario interpretability consistency analysis demonstrates that CNN, LSTM, and Naive Bayes achieve perfect or near-perfect consistency scores (0.998–1.000), while SVM and Logistic Regression maintain high consistency (0.988–0.997), making them suitable for regulatory compliance scenarios. In contrast, XGBoost shows low consistency (0.106) despite high accuracy, requiring intensive monitoring for deployment. This research contributes essential insights for bridging the critical gap between algorithm development and deployment success in next-generation wireless networks, providing evidence-based guidelines for algorithm selection based on accuracy, resilience, and interpretability requirements. Our findings establish quantitative resilience boundaries: algorithms achieving >99% laboratory accuracy exhibit 58–81% performance under realistic conditions, with CNN and FNN maintaining the highest absolute accuracy (81.2% and 81.1%, respectively) despite experiencing significant degradation from laboratory conditions.
Full article