Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,525)

Search Parameters:
Keywords = shale gas

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3316 KB  
Article
Research on the Mechanism of Reverse Sand Addition in Horizontal Shale Gas Well Fracturing Based on Intergranular Erosion of Proppants in near Wellbore Fractures
by Xuanyu Liu, Faxin Yi, Song Guo, Meijia Zhu and Yujie Bai
Appl. Sci. 2025, 15(17), 9589; https://doi.org/10.3390/app15179589 (registering DOI) - 30 Aug 2025
Abstract
To improve fracturing support efficiency of terrestrial shale oil reservoirs with uneven proppant placement, this study used complex mesh flat-plate simulations and ANSYS FLUENT (2020) simulations to test four sand addition processes. Proppants were 70/140 mesh quartz sand with a density of 2650 [...] Read more.
To improve fracturing support efficiency of terrestrial shale oil reservoirs with uneven proppant placement, this study used complex mesh flat-plate simulations and ANSYS FLUENT (2020) simulations to test four sand addition processes. Proppants were 70/140 mesh quartz sand with a density of 2650 kg/m3 and 40/70 mesh ceramic particles with a density of 2000 kg/m3, and the carrier was hydroxypropyl guar gum fracturing fluid with a viscosity of 4.46–13.4 mPa·s at 25 °C. Alternating sand addition performed best: sand-laying efficiency reached 52 percent, 10 percentage points higher than continuous sand addition and 12 percentage points higher than mixed sand addition; sand embankment void area was 1400 cm2, 18.3 percent lower than continuous sand addition; proppant entry into secondary cracks increased 23.8 percent compared with reverse sand addition; at branch crack Position 2, 1.3 m from the inlet and at a 90-degree angle, its equilibrium height was 210 mm and paving rate 0.131. This study fills gaps of no systematic multi-process comparison and insufficient quantification of crack geometry–sand parameter coupling in existing research; its novelty lies in the unified visualization comparison of four processes, revealing geometry–parameter coupling and integrating experiment simulation; the optimal scheme also improves fracture support efficiency 21.5 percent compared with conventional continuous sand addition. Full article
(This article belongs to the Topic Enhanced Oil Recovery Technologies, 4th Edition)
23 pages, 2965 KB  
Review
Research Progress on the Pyrolysis Characteristics of Oil Shale in Laboratory Experiments
by Xiaolei Liu, Ruiyang Yi, Dandi Zhao, Wanyu Luo, Ling Huang, Jianzheng Su and Jingyi Zhu
Processes 2025, 13(9), 2787; https://doi.org/10.3390/pr13092787 (registering DOI) - 30 Aug 2025
Abstract
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale [...] Read more.
With the progressive depletion of conventional oil and gas resources and the increasing demand for alternative energy, organic-rich sedimentary rock—oil shale—has attracted widespread attention as a key unconventional hydrocarbon resource. Pyrolysis is the essential process for converting the organic matter in oil shale into recoverable hydrocarbons, and a detailed understanding of its behavior is crucial for improving development efficiency. This review systematically summarizes the research progress on the pyrolysis characteristics of oil shale under laboratory conditions. It focuses on the applications of thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) in identifying pyrolysis stages, extracting kinetic parameters, and analyzing thermal effects; the role of coupled spectroscopic techniques (e.g., TG-FTIR, TG-MS) in elucidating the evolution of gaseous products; and the effects of key parameters such as pyrolysis temperature, heating rate, particle size, and reaction atmosphere on product distribution and yield. Furthermore, the mechanisms and effects of three distinct heating strategies—conventional heating, microwave heating, and autothermic pyrolysis—are compared, and the influence of inherent minerals and external catalysts on reaction pathways is discussed. Despite significant advances, challenges remain in quantitatively describing reaction mechanisms, accurately predicting product yields, and generalizing kinetic models. Future research should integrate multiscale experiments, in situ characterization, and molecular simulations to construct pyrolysis mechanism models tailored to various oil shale types, thereby providing theoretical support for the development of efficient and environmentally friendly oil shale conversion technologies. Full article
(This article belongs to the Section Energy Systems)
20 pages, 5108 KB  
Article
Quantitative Evaluation of Hydrocarbon-Generation Intensity of Coal-Measure Mudstones in the Shanxi Formation on the Eastern Margin of the Ordos Basin: A Case Study of the Daning–Jixian Area
by Jinggan Song, Kuaile Zhang, Wei Hou, Yi Du, Futao Qu, Sasa Guo, Chang Xu, Miao Wang and Yijing Zhang
Processes 2025, 13(9), 2786; https://doi.org/10.3390/pr13092786 (registering DOI) - 30 Aug 2025
Abstract
Hydrocarbon-generation intensity (HGI) is a critical indicator for evaluating shale gas potential in source rocks. This study proposes a practical method to estimate HGI by integrating experimental pyrolysis data, EasyRo-based maturity transformation, kinetic modeling, and geological parameters. Using core samples from the Shanxi [...] Read more.
Hydrocarbon-generation intensity (HGI) is a critical indicator for evaluating shale gas potential in source rocks. This study proposes a practical method to estimate HGI by integrating experimental pyrolysis data, EasyRo-based maturity transformation, kinetic modeling, and geological parameters. Using core samples from the Shanxi Formation in the eastern margin of the Ordos Basin, gold tube pyrolysis experiments were conducted under closed-system conditions to obtain gas yield data. The EasyRo model was applied to transform temperature to maturity, and a kinetic model was constructed to simulate hydrocarbon generation. Total organic carbon (TOC), maturity (Ro), thickness, and true density were used to calculate HGI at different depths. Spatial prediction of HGI was achieved using Kriging interpolation. Results indicate that although carbonaceous mudstones have higher TOC (14.2%) and gas yields (up to 155.84 mg/g TOC), black mudstones exhibit a 24.77% higher HGI due to greater thickness (average 67.2 m). This highlights the dominant role of formation thickness in controlling. Notably, black mudstones in the deeper western subregion exhibit greater gas-generation potential. These findings offer a robust quantitative basis for evaluating deep coal-measure shale gas resources in the Ordos Basin. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 23351 KB  
Article
Integrated Geomechanical Modeling of Multiscale Fracture Networks in the Longmaxi Shale Reservoir, Northern Luzhou Region, Sichuan Basin
by Guoyou Fu, Qun Zhao, Guiwen Wang, Caineng Zou and Qiqiang Ren
Appl. Sci. 2025, 15(17), 9528; https://doi.org/10.3390/app15179528 (registering DOI) - 29 Aug 2025
Abstract
This study presents an integrated geomechanical modeling framework for predicting multi-scale fracture networks and their activity in the Longmaxi Formation shale reservoir, northern Luzhou region, southeastern Sichuan Basin—an area shaped by complex, multi-phase tectonic deformation that poses significant challenges for resource prospecting. The [...] Read more.
This study presents an integrated geomechanical modeling framework for predicting multi-scale fracture networks and their activity in the Longmaxi Formation shale reservoir, northern Luzhou region, southeastern Sichuan Basin—an area shaped by complex, multi-phase tectonic deformation that poses significant challenges for resource prospecting. The workflow begins with quantitative characterization of key mechanical parameters, including uniaxial compressive strength, Young’s modulus, Poisson’s ratio, and tensile strength, obtained from core experiments and log-based inversion. These parameters form the foundation for multi-phase finite element simulations that reconstruct paleo- and present-day stress fields associated with the Indosinian (NW–SE compression), Yanshanian (NWW–SEE compression), and Himalayan (near W–E compression) deformation phases. Optimized Mohr–Coulomb and tensile failure criteria, coupled with a multi-phase stress superposition algorithm, enable quantitative prediction of fracture density, aperture, and orientation through successive tectonic cycles. The results reveal that the Longmaxi Formation’s high brittleness and lithological heterogeneity interact with evolving stress regimes to produce fracture systems that are strongly anisotropic and phase-dependent: initial NE–SW-oriented domains established during the Indosinian phase were intensified during Yanshanian reactivation, while Himalayan uplift induced regional stress attenuation with limited new fracture formation. The cumulative stress effects yield fracture networks concentrated along NE–SW fold axes, fault zones, and intersection zones. By integrating geomechanical predictions with seismic attributes and borehole observations, the study constructs a discrete fracture network that captures both large-scale tectonic fractures and small-scale features beyond seismic resolution. Fracture activity is further assessed using friction coefficient analysis, delineating zones of high activity along fold–fault intersections and stress concentration areas. This principle-driven approach demonstrates how mechanical characterization, stress field evolution, and fracture mechanics can be combined into a unified predictive tool, offering a transferable methodology for structurally complex, multi-deformation reservoirs. Beyond its relevance to shale gas development, the framework exemplifies how advanced geomechanical modeling can enhance resource prospecting efficiency and accuracy in diverse geological settings. Full article
(This article belongs to the Special Issue Recent Advances in Prospecting Geology)
Show Figures

Figure 1

24 pages, 16565 KB  
Article
Dynamic Characteristics of the Pore Heterogeneity of Longmaxi Shale Based on High-Pressure Triaxial Creep Testing
by Yan Dai, Hanyu Zhang, Yanming Zhu, Haoran Chen, Yao Ge, Qian Wang and Yiming Zhao
Fractal Fract. 2025, 9(9), 564; https://doi.org/10.3390/fractalfract9090564 - 28 Aug 2025
Viewed by 185
Abstract
The dynamic changes in shale pore structure due to tectonic uplift are crucial for understanding the processes of shale gas enrichment and accumulation, particularly in complex tectonic regions. To explore the heterogeneous changes in pore structure and their influencing factors during the last [...] Read more.
The dynamic changes in shale pore structure due to tectonic uplift are crucial for understanding the processes of shale gas enrichment and accumulation, particularly in complex tectonic regions. To explore the heterogeneous changes in pore structure and their influencing factors during the last tectonic uplift of Longmaxi shale, triaxial creep experiments were performed under varying confining pressure conditions. In addition, FE-SEM, MIP, LN2GA, and LCO2GA experiments were employed to both qualitatively and quantitatively characterize the pore structure of three distinct groups of Longmaxi shale samples. To further investigate pore heterogeneity, the multifractal dimension was applied to examine the evolution of the shale pore structure under the influence of the last tectonic uplift. The results revealed that the primary pore types in Longmaxi shale include organic matter pores, microfractures, intergranular pores, and intragranular pores. The shale’s mechanical properties and mineral content have a significant impact on the heterogeneity of these pores. Notably, the shale pores exhibit distinct multifractal characteristics, highlighting the complex nature of pore heterogeneity. The singular index (α0) and ten other multifractal dimension parameters provide valuable insights into the heterogeneity characteristics of shale pores from various perspectives. Additionally, dynamic changes in pore heterogeneity are primarily controlled by the mineral composition. Under identical creep pressure variation conditions, significant differences are observed in the pore rebound behavior of Longmaxi shale with different mineral compositions. Under high-pressure conditions, the content of TOC and quartz plays a dominant role in controlling pore heterogeneity, with their influence initially decreasing and then increasing as pressure decreases. The reduction in creep pressure emphasizes the controlling effect of TOC, quartz, and feldspar content on pore connectivity. This study introduces high-pressure triaxial creep experiments to simulate the stress response behavior of pore structures during tectonic uplift, offering a more comprehensive reflection of pore evolution in organic-rich shale under realistic geological conditions. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

23 pages, 20735 KB  
Article
Study on the Evolution Law of Four-Dimensional Dynamic Stress Fields in Fracturing of Deep Shale Gas Platform Wells
by Yongchao Wu, Zhaopeng Zhu, Yinghao Shen, Xuemeng Yu, Guangyu Liu and Pengyu Liu
Processes 2025, 13(9), 2709; https://doi.org/10.3390/pr13092709 - 25 Aug 2025
Viewed by 632
Abstract
Compared with conventional gas reservoirs, deep shale gas reservoirs are characterized by developed faults and fractures, strong heterogeneity, high stress sensitivity, and complex in situ stress distribution. To address traditional 3D static models’ inability to predict in situ stress changes in strongly heterogeneous [...] Read more.
Compared with conventional gas reservoirs, deep shale gas reservoirs are characterized by developed faults and fractures, strong heterogeneity, high stress sensitivity, and complex in situ stress distribution. To address traditional 3D static models’ inability to predict in situ stress changes in strongly heterogeneous reservoirs during fracturing, this study takes the deep shale gas in the Zigong block of the Sichuan Basin as an example. By comprehensively considering the heterogeneity and anisotropy of geomechanical parameters and natural fractures in shale gas reservoirs, a 4D in situ stress multi-physics coupling model for shale gas reservoirs based on geology–engineering integration is established. Through coupling geomechanical parameters with fracturing operation data, the dynamic evolution laws of multi-scale stress fields from single-stage to platform-scale during large-scale fracturing of horizontal wells in deep shale gas reservoirs are systematically studied. The research results show the following: (1) The fracturing process has a significant impact on the magnitude and direction of the stress field. With the injection of fracturing fluid, both the minimum and maximum horizontal principal stresses increase, with the minimum horizontal principal stress rising by 1.8–6.4 MPa and the maximum horizontal principal stress by 1.1–3.2 MPa; near the wellbore, there is an obvious deflection in the direction of in situ stress. (2) As the number of fracturing stages increases, the minimum horizontal principal stress shows an obvious cumulative growth trend, with a more significant increase in the later stages, and there is a phenomenon of stress accumulation along the wellbore, with the stress difference decreasing from 15 MPa to 11 MPa. (3) The on-site adoption of the fracturing operation method featuring overall flush advancement and inter-well staggered fracture placement has achieved good stress balance; comparative analysis shows that the stress communication degree of the 400 m well spacing is weaker than that of the 300 m well spacing. This study provides a more reasonable simulation method for large-scale fracturing development of deep shale gas, which can more accurately predict and evaluate the dynamic stress field changes during fracturing, thereby guiding fracturing operations in actual production. Full article
(This article belongs to the Special Issue Advanced Fracturing Technology for Oil and Gas Reservoir Stimulation)
Show Figures

Figure 1

14 pages, 3029 KB  
Article
Enrichment and Exploration Potential of Shale Gas in the Permian Wujiaping Formation, Northeastern Sichuan Basin
by Long Wen, Lurui Dang, Jirong Xie, Benjian Zhang, Jungang Lu, Haofei Sun, Ying Ming, Hualing Ma, Xiao Chen, Chang Xu, Liang Xu and Lexin Yuan
Energies 2025, 18(17), 4506; https://doi.org/10.3390/en18174506 - 25 Aug 2025
Viewed by 345
Abstract
The high-yield industrial gas from Sichuan Basin’s Wujiaping (P3w) shale reveals a new unconventional exploration play. Due to the strong heterogeneity of shale gas, its enrichment and exploration potential remain unclear. Geochemical and other experiments conducted on this layer have [...] Read more.
The high-yield industrial gas from Sichuan Basin’s Wujiaping (P3w) shale reveals a new unconventional exploration play. Due to the strong heterogeneity of shale gas, its enrichment and exploration potential remain unclear. Geochemical and other experiments conducted on this layer have shown that: (1) The third member of the P3w (P3w3) shale has optimal quality, with large thickness and wide distribution. The average TOC value is 6.09%, and the organic matter type is II1~II2. (2) Shale gas in the P3w is supplied by organic-rich shale; enrichment is promoted by siliceous/clay shale interbedding, with storage in organic matter pores and fractures. (3) Comparative analyses with the Wufeng–Longmaxi shales (O3w-S1l) show that P3w3 is the layer with the greatest potential for shale gas exploration. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

21 pages, 5880 KB  
Article
Petrographic and Geochemical Insights from Fibrous Calcite Veins: Unraveling Overpressure and Fracture Evolution in the Upper Permian Dalong Formation, South China
by An Liu, Lin Chen, Shu Jiang, Hai Li, Baomin Zhang, Yingxiong Cai, Jingyu Zhang, Wei Wei and Feiyong Xia
Minerals 2025, 15(9), 896; https://doi.org/10.3390/min15090896 - 24 Aug 2025
Viewed by 256
Abstract
The characteristics and evolution of fibrous calcite veins in organic-rich shales have gained significant attention due to the recent advancements in shale oil and gas exploration. However, the fibrous calcite veins in the Upper Permian Dalong Formation remain lacking in awareness. To investigate [...] Read more.
The characteristics and evolution of fibrous calcite veins in organic-rich shales have gained significant attention due to the recent advancements in shale oil and gas exploration. However, the fibrous calcite veins in the Upper Permian Dalong Formation remain lacking in awareness. To investigate the formation and significance of bedding-parallel fibrous calcite veins in the Dalong Formation, we conducted an extensive study utilizing petrography, geochemistry, isotopic analysis, and fluid inclusion studies on outcrops of the Dalong Formation in South China. Our findings reveal that fibrous calcite veins predominantly develop in the middle section of the Dalong Formation, specifically within the transitional interval between siliceous and calcareous shales, characterized by symmetric, antitaxial fibrous calcite veins. The δ13C values of these veins exhibit a broad range (−4.53‰ to +3.39‰) and display a decreasing trend in the directions of fiber growth from the central part, indicating an increased contribution of organic carbon to the calcite veins. Additionally, a consistent increase in trace element concentrations from the central part toward the fiber growth directions suggests a singular fluid source in a relatively closed environment, while other samples exhibit no distinct pattern, possibly due to the mixing of fluids from multiple layers resulting from repeated opening and closing of bedding-parallel fractures in the shales. The notable difference in δEu between the fibers on either side of the median zone indicates that previously formed veins acted as barriers, impeding the mixing of fluids, with the variation in δEu reflecting the differing sedimentary properties of the surrounding rocks. The in situ U-Pb dating of fibrous calcite veins yields an absolute age of 211 ± 23 Ma, signifying formation during the Late Triassic, which correlates with a shale maturity of 1.0‰ to 1.25‰. This integrated study suggests that the geochemical records of fibrous calcite veins document the processes related to overpressure generation and the opening and healing of bedding-parallel fractures within the Dalong Formation. Full article
(This article belongs to the Special Issue Organic Petrology and Geochemistry: Exploring the Organic-Rich Facies)
Show Figures

Figure 1

15 pages, 3992 KB  
Article
Characteristics of Organisms and Origin of Organic Matter in Permian Shale in Western Hubei Province, South China
by Yuying Zhang, Baojian Shen, Dongjun Feng, Bo Gao, Pengwei Wang, Min Li, Yifei Li and Yang Liu
Processes 2025, 13(9), 2673; https://doi.org/10.3390/pr13092673 - 22 Aug 2025
Viewed by 305
Abstract
Permian shale gas is a kind of energy resource with commercial development potential. The characteristics of its organic source and enrichment have received extensive attention in recent years. This study systematically analyzed the variations in types and assemblages of hydrocarbon-forming organisms across different [...] Read more.
Permian shale gas is a kind of energy resource with commercial development potential. The characteristics of its organic source and enrichment have received extensive attention in recent years. This study systematically analyzed the variations in types and assemblages of hydrocarbon-forming organisms across different stratigraphic layers of Permian shale in western Hubei through scanning electron microscopy (SEM) and microscopic observations. Moreover, the source characteristics and enrichment mechanisms of organic matter in Permian shale were identified. Hydrocarbon generation in Permian shale is primarily attributed to planktonic algae-derived acritarchs, supplemented by higher plants and green algae, based on the observation under the SEM and microscope. The hydrocarbon-forming microorganisms in the Gufeng Formation are predominantly characterized by acritarchs. A notable decrease in acritarch content is observed at the bottom of the Wujiaping Formation, accompanied by a significant increase in higher plant constituents and a slight rise in green algae abundance. Subsequently, from the middle-upper members of the Wujiaping Formation through the Dalong Formation, acritarch concentrations rebound while higher plants and green algae contributions diminish. The organic matter in the studied layer is predominantly generated from planktonic algae (acritarchs and green algae), with subordinate contributions from terrestrial higher plants. During the sedimentary stage of the Gufeng Formation, rising sea levels sustained a deep siliceous shelf environment in the E’xi Trough, where organic matter was primarily sourced from acritarchs, with limited terrigenous input. The regressive phase at the bottom of the Wujiaping Formation resulted in coastal marsh throughout the E’xi Trough, creating a mixed organic matter assemblage of aquatic planktonic algae and enhanced terrestrial higher plant material. As sedimentation progressed into the middle-upper Wujiaping Formation and Dalong Formation, the E’xi Trough evolved into a deep siliceous shelf and platform-margin slope environment. During this stage, organic matter was again predominantly supplied by planktonic algae (mainly acritarchs), with reduced terrestrial organic input. These findings provide valuable theoretical insights for guiding Permian shale gas exploration and development strategies. Full article
Show Figures

Figure 1

17 pages, 3601 KB  
Article
Relationship Between the Strength Parameters of Tectonic Soft Coal and the Fractal Dimension Number Based on Particle Size Grading
by Ying Han, Feifan Shan, Feiyan Zhang and Qingchao Li
Processes 2025, 13(8), 2663; https://doi.org/10.3390/pr13082663 - 21 Aug 2025
Viewed by 246
Abstract
Based on mechanical experiments conducted on bulk raw coal and coal of different types in order to explore the correlations between the fractal dimension and the grain size gradation and strength parameters of coal samples, the fractal statistics method was used to statistically [...] Read more.
Based on mechanical experiments conducted on bulk raw coal and coal of different types in order to explore the correlations between the fractal dimension and the grain size gradation and strength parameters of coal samples, the fractal statistics method was used to statistically analyze the grain size distribution characteristics of tectonic soft coal, while fractal theory was applied to study the grain size fractal characteristics of tectonic soft coals of categories III–V. The results of this study show that coal types III–V have increasing fractal dimension numbers, and the content of coarse particles decreases with an increasing fractal dimension number. Within this sampling range, the Class V coal is better graded, and the fractal dimension number decreases as the distance of the sampling point from the fault zone increases. In the direct shear experiments, the internal friction angle of the bulk raw coal decreased linearly with an increasing fractal dimension number, and the regularity of the cohesive force and the fractal dimension number was not strong, but the adhesion cohesion of the types of coal exhibited a positive exponential relationship with the fractal dimension, and the relationship between the internal friction angle and the fractal dimension was not strong. There was a positive exponential relationship, and the internal friction angle was relatively stable. The uniaxial compressive strength of the types of coal exhibited a good correlation with the coefficient of firmness of the coal samples and the fractal dimension, and the coefficient of firmness of the coal samples was the main factor influencing the uniaxial compressive strength of the types of coal compared with the particle size gradation. Full article
Show Figures

Figure 1

23 pages, 15481 KB  
Article
Wellhead Choke Performance for Multiphase Flowback: A Data-Driven Investigation on Shale Gas Wells
by Kundai Huang, Yingkun Fu and Yufei Guo
Energies 2025, 18(16), 4381; https://doi.org/10.3390/en18164381 - 17 Aug 2025
Viewed by 304
Abstract
Wellhead choke performance is critical for flowback choke-size managements in unconventional gas wells. Most existing empirical correlations were originally developed for oil and gas flow, and their accuracy for gas/water multiphase flowback remains uncertain. This study presents a data-driven approach to examine the [...] Read more.
Wellhead choke performance is critical for flowback choke-size managements in unconventional gas wells. Most existing empirical correlations were originally developed for oil and gas flow, and their accuracy for gas/water multiphase flowback remains uncertain. This study presents a data-driven approach to examine the choke–performance relationship during multiphase flowback. We compiled a flowback dataset containing 18,660 surface measurements from 37 shale gas wells in the Horn River Basin. Using machine learning, we modeled choke performance based on flowback features including water rate, gas/water ratio, wellhead and separator pressures and temperatures, and choke size. The models achieved strong predictive accuracy. Based on the machine learning results, we developed a new choke–performance correlation tailored to multiphase flowback. This model was validated against field data and showed reliable performance. The findings provide a useful tool for optimizing choke-size strategies during flowback in hydraulically fractured gas wells, especially in unconventional reservoirs. Full article
Show Figures

Figure 1

18 pages, 6368 KB  
Article
Research on the Genesis Mechanism of Hot Springs in the Middle Reaches of the Wenhe River
by Cheng Xue, Nan Xing, Zongjun Gao, Yiru Niu and Dongdong Yang
Water 2025, 17(16), 2431; https://doi.org/10.3390/w17162431 - 17 Aug 2025
Viewed by 410
Abstract
This study investigates geothermal clusters in the middle reaches of the Dawen River Basin, focusing on the developmental characteristics and genetic mechanisms of typical geothermal water exposures at key sites, including Daidaoan (Taishan), Qiaogou (Culai Town), and Anjiazhuang (Feicheng). Utilizing hydrogeochemical and environmental [...] Read more.
This study investigates geothermal clusters in the middle reaches of the Dawen River Basin, focusing on the developmental characteristics and genetic mechanisms of typical geothermal water exposures at key sites, including Daidaoan (Taishan), Qiaogou (Culai Town), and Anjiazhuang (Feicheng). Utilizing hydrogeochemical and environmental isotope analyses, we identify a dual groundwater recharge mechanism: (1) rapid infiltration via preferential flow through fissure media and (2) slow seepage with evaporative loss along gas-bearing zones. Ion sources are influenced by water–rock interactions and positive cation exchange. The hydrochemical types of surface water and geothermal water can be divided into five categories, with little difference within the same geothermal area. The thermal reservoir temperatures range from 53.54 to 101.49 °C, with the Anjiazhuang and Qiaogou geothermal areas displaying higher temperatures than the Daidaoan area. Isotope calculations indicate that the recharge elevation ranges from 2865.76 to 4126.69 m. The proportion of cold water mixed in the shallow part is relatively large. A comparative analysis of the genetic models of the three geothermal water groups shows that they share the common feature of being controlled by fault zones. However, they differ in that the Daidao’an geothermal area in Mount Tai is of the karst spring type with a relatively low geothermal water temperature, whereas the Qiaogou geothermal area in Culai Town and the Anjiazhuang geothermal area in Feicheng are of the gravel or sandy shale spring types with a relatively high geothermal water temperature. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

17 pages, 1041 KB  
Review
Research Progress and Prospects of Methods for Estimating Methane Reserves in Closed Coal Mines in China
by Ying Han, Chenxiang Wang, Feiyan Zhang and Qingchao Li
Processes 2025, 13(8), 2586; https://doi.org/10.3390/pr13082586 - 15 Aug 2025
Viewed by 282
Abstract
The accurate estimation of methane reserves in closed coal mines is crucial for supporting clean energy recovery and reducing greenhouse gas emissions. This study addresses the technical challenges associated with complex geological conditions and limited post-closure data in China’s closed mines. Three mainstream [...] Read more.
The accurate estimation of methane reserves in closed coal mines is crucial for supporting clean energy recovery and reducing greenhouse gas emissions. This study addresses the technical challenges associated with complex geological conditions and limited post-closure data in China’s closed mines. Three mainstream estimation methods—the material balance, resource composition, and decline curve—are systematically reviewed and applied to a case study in the Huoxi Coalfield. Results indicate that the material balance method provides upper-bound estimates but is highly sensitive to incomplete historical data, whereas the resource composition method yields more conservative and geologically realistic values. Although the decline curve method is not applied in this case, it offers potential for forecasting when long-term monitoring data are available. A multi-method integration approach, supported by enhanced data archiving and uncertainty assessments, is recommended to improve the accuracy and reliability of methane reserve evaluations in post-mining environments. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

14 pages, 2659 KB  
Article
Evaluation of Marine Shale Gas Reservoir in Wufeng–Longmaxi Formation, Jiaoshiba Area, Eastern Sichuan Basin
by Qiang Yan, Aiwei Zheng, Li Liu, Jin Wang, Xiaohong Zhan and Zhiheng Shu
Energies 2025, 18(16), 4350; https://doi.org/10.3390/en18164350 - 15 Aug 2025
Viewed by 298
Abstract
The Jiaoshiba area, as an important production capacity contribution block for the Fuling shale gas field, is of great significance for its long-term stable production. This study is based on continuous coring, and uses methods such as whole-rock mineral analysis, porosity and permeability [...] Read more.
The Jiaoshiba area, as an important production capacity contribution block for the Fuling shale gas field, is of great significance for its long-term stable production. This study is based on continuous coring, and uses methods such as whole-rock mineral analysis, porosity and permeability analysis, gas content analysis, and organic geochemistry to systematically analyze the influencing factors of reservoir properties and gas content in the studied interval. Combined with the variation law of TOC and other parameters with depth, the target reservoir is comprehensively evaluated, and the evaluation results are verified based on actual production data. The results show that the influence of minerals on permeability is very weak, and cracks can greatly improve permeability, but their contribution to porosity is not significant. Porosity has a certain impact on gas content, but it is not the main controlling factor. The pores related to quartz (organic silicon) are mostly organic pores, which host a large amount of shale gas, while clay minerals are not conducive to the occurrence of shale gas. Organic matter (OM) maturity contributes more to porosity than OM abundance, but OM abundance has a stronger impact on gas content than its maturity. The research intervals can be divided into four categories: Class I (①–③) is the best, followed by Class II (⑦–⑨); Class III (④–⑥) is poor, and Class IV (top, non-gas-bearing layer) is the worst. Full article
Show Figures

Figure 1

30 pages, 1226 KB  
Review
Advances in Evaluation Methods for Artificial Fracture Networks in Shale Gas Horizontal Wells
by Hang Yuan, Yuping Sun, Wei Xiong, Wente Niu, Zejun Tang and Yong Li
Appl. Sci. 2025, 15(16), 9008; https://doi.org/10.3390/app15169008 - 15 Aug 2025
Viewed by 334
Abstract
In recent years, the accurate evaluation of artificial fracture networks has become a key challenge in enhancing the effectiveness of reservoir stimulation in shale gas development. This paper systematically reviews the research progress on evaluation methods for artificial fracture networks in shale gas [...] Read more.
In recent years, the accurate evaluation of artificial fracture networks has become a key challenge in enhancing the effectiveness of reservoir stimulation in shale gas development. This paper systematically reviews the research progress on evaluation methods for artificial fracture networks in shale gas horizontal wells, covering two major technical systems: direct monitoring and dynamic inversion. Direct monitoring methods focus on technologies such as microseismic monitoring, tracers, wide-field electromagnetic methods, and distributed fiber optics. Dynamic inversion methods utilize data from fracturing construction curves, shut-in water hammer effects, and flowback production, and combine numerical simulations with artificial intelligence algorithms to infer fracture network parameters, although the issue of non-uniqueness in solutions remains to be addressed. Research shows that no single technology can comprehensively characterize fracture network features. Future directions should involve the integration of multi-source data (geophysical, chemical, fiber-optic, and dynamic production data) to construct intelligent evaluation frameworks, validated by field experiments and dynamic data simulations. The introduction of artificial intelligence and big data technologies provides new ideas for fracture network parameter inversion, but their effectiveness still requires support from more case studies. This paper provides theoretical guidance and practical reference for the optimization and integration of fracture network evaluation technologies in efficient shale gas development. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

Back to TopTop