Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = shallow unconfined aquifers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 5832 KB  
Article
Incorporation of Horizontal Aquifer Flow into a Vertical Vadose Zone Model to Simulate Natural Groundwater Table Fluctuations
by Vipin Kumar Oad, Adam Szymkiewicz, Tomasz Berezowski, Anna Gumuła-Kawęcka, Jirka Šimůnek, Beata Jaworska-Szulc and René Therrien
Water 2025, 17(14), 2046; https://doi.org/10.3390/w17142046 - 8 Jul 2025
Viewed by 1370
Abstract
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or [...] Read more.
The main goal of our work was to evaluate approaches for modeling lateral outflow from shallow unconfined aquifers in a one-dimensional model of vertical variably-saturated flow. The HYDRUS-1D model was modified by implementing formulas representing lateral flow in an aquifer, with linear or quadratic drainage functions describing the relationship between groundwater head and flux. The results obtained by the modified HYDRUS-1D model were compared to the reference simulations with HydroGeoSphere (HGS), with explicit representation of 2D flow in unsaturated and saturated zones in a vertical cross-section of a strip aquifer, including evapotranspiration and plant water uptake. Four series of simulations were conducted for sand and loamy sand soil profiles with deep (6 m) and shallow (2 m) water tables. The results indicate that both linear and quadratic drainage functions can effectively capture groundwater table fluctuations and soil water dynamics. HYDRUS-1D demonstrates notable accuracy in simulating transient fluctuations but shows higher variability near the surface. The study concludes that both quadratic and linear drainage boundary conditions can effectively represent horizontal aquifer flow in 1D models, enhancing the ability of such models to simulate groundwater table fluctuations. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

22 pages, 3780 KB  
Article
Using Salinity, Water Level, CFCs, and CCl4 to Assess Groundwater Flow Dynamics and Potential N2O Flux in the Intertidal Zone of Sanya, Hainan Province: Implications for Evaluating Freshwater Submarine Groundwater Discharge in Coastal Unconfined Aquifers
by Dajun Qin, Jing Geng, Bingnan Ren and Bo Yang
Water 2025, 17(9), 1371; https://doi.org/10.3390/w17091371 - 1 May 2025
Viewed by 556
Abstract
This study combines field and laboratory analyses from seven shallow wells (ZK1 to ZK7) positioned perpendicular to the coastline to investigate groundwater discharge and dynamics in the coastal unconfined aquifer of the intertidal zone at Yazhou Bay, Sanya, Hainan Province. The research highlights [...] Read more.
This study combines field and laboratory analyses from seven shallow wells (ZK1 to ZK7) positioned perpendicular to the coastline to investigate groundwater discharge and dynamics in the coastal unconfined aquifer of the intertidal zone at Yazhou Bay, Sanya, Hainan Province. The research highlights spatial variations in N2O concentration, temperature, electrical conductivity (EC), pH, and the distribution of CFCs and CCl4 in shallow groundwater, utilizing samples from wells ZK1 to ZK7 and seawater collected near ZK1. Key findings indicate that groundwater temperature decreases toward the ocean, while EC exhibits a stepwise increase from land to sea, with a sharp transition near ZK3 marking the freshwater–saltwater mixing zone. pH values are lowest in ZK3 and ZK4, gradually rising both inland and seaward. N2O concentrations in the shallow wells (ZK1–ZK7) are divided into two distinct groups: higher concentrations (9.69–57.77 nmol/kg) in ZK5–ZK7 and lower concentrations (6.63–23.03 nmol/kg) in ZK1–ZK4. Wells ZK3 and ZK4 show minimal variation in CFC-11 and CFC-113 concentrations, suggesting they represent a transition zone that likely delineates groundwater flow paths. In contrast, significant concentration differences in wells ZK5–ZK7 (north) and ZK1–ZK2 (south) reflect the influence of aquifer structure variability, recharge sources, and local hydrogeochemical conditions. CFC-12 concentrations exhibit a clear freshwater–saltwater mixing gradient between ZK3 and ZK1, with higher concentrations in freshwater-dominated areas (ZK3–ZK7) and lower concentrations near seawater (ZK1). CCl4 concentrations at ZK7 and ZK3 differ markedly from other wells, indicating unique hydrogeochemical conditions or localized anthropogenic influences. A model for the formation of upper saline plumes (USP) under tidal forcing at the low tidal line was established previously. Here, we establish a new model that accounts for the absence of USP driven by hydrological processes influenced by artificial sandy beach topography, and a fresh groundwater wedge is identified, which can serve as a significant fast-flow pathway for terrestrial water and nutrients to the ocean. Full article
(This article belongs to the Special Issue Groundwater Flow and Transport Modeling in Aquifer Systems)
Show Figures

Figure 1

22 pages, 3617 KB  
Review
Groundwater Vulnerability in the Kou Sub-Basin, Burkina Faso: A Critical Review of Hydrogeological Knowledge
by Tani Fatimata Andréa Coulidiati, Angelbert Chabi Biaou, Moussa Diagne Faye, Roland Yonaba, Elie Serge Gaëtan Sauret, Nestor Fiacre Compaoré and Mahamadou Koïta
Water 2025, 17(9), 1317; https://doi.org/10.3390/w17091317 - 28 Apr 2025
Cited by 1 | Viewed by 1788
Abstract
Groundwater resources in the Kou sub-basin of southwestern Burkina Faso play a critical role in supporting domestic water supply, agriculture, and industry in and around Bobo-Dioulasso, the second-largest city in Burkina Faso. This study synthesizes over three decades of research on groundwater vulnerability, [...] Read more.
Groundwater resources in the Kou sub-basin of southwestern Burkina Faso play a critical role in supporting domestic water supply, agriculture, and industry in and around Bobo-Dioulasso, the second-largest city in Burkina Faso. This study synthesizes over three decades of research on groundwater vulnerability, recharge mechanisms, hydrochemistry, and residence time across the region’s sedimentary aquifers. The Kou basin hosts a complex stratified system of confined and unconfined aquifers, where hydrochemical analyses reveal predominantly Ca–Mg–HCO3 facies, alongside local nitrate (0–860 mg/L), iron (0–2 mg/L) and potassium (<6.5 mg/L–190 mg/L) contamination. Vulnerability assessments—using parametric (DRASTIC, GOD, APSU) and numerical (MODFLOW/MT3D) models—consistently indicate moderate to high vulnerability, especially in alluvial and urban/peri-urban areas. Isotopic results show a deep recharge for a residence time greater than 50 years with deep groundwater dating from 25,000 to 42,000 years. Isotopic data confirm a vertically stratified system, with deep aquifers holding fossil water and shallow units showing recent recharge. Recharge estimates vary significantly (0–354 mm/year) depending on methodology, reflecting uncertainties in climatic, geological, and anthropogenic parameters. This review highlights major methodological limitations, including inconsistent data quality, limited spatial coverage, and insufficient integration of socio-economic drivers. To ensure long-term sustainability, future work must prioritize high-resolution hydrogeological mapping, multi-method recharge modeling, dynamic vulnerability assessments, and strengthened groundwater governance. This synthesis provides a critical foundation for improving water resource management in one of Burkina Faso’s most strategic aquifer systems. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 12669 KB  
Article
An Interdisciplinary Assessment of the Impact of Emerging Contaminants on Groundwater from Wastewater Containing Disodium EDTA
by Laura Ducci, Pietro Rizzo, Riccardo Pinardi and Fulvio Celico
Sustainability 2024, 16(19), 8624; https://doi.org/10.3390/su16198624 - 4 Oct 2024
Cited by 1 | Viewed by 2185
Abstract
In recent years, there has been a surge in interest concerning emerging contaminants, also known as contaminants of emerging concern (CECs), due to their presence in environmental matrices. Despite lacking regulation, these chemicals pose potential health and environmental safety risks. Disodium EDTA, a [...] Read more.
In recent years, there has been a surge in interest concerning emerging contaminants, also known as contaminants of emerging concern (CECs), due to their presence in environmental matrices. Despite lacking regulation, these chemicals pose potential health and environmental safety risks. Disodium EDTA, a widely utilized chelating agent, has raised concerns regarding its environmental impact. The present work aimed to verify the presence of Disodium EDTA at the exit of eight wastewater treatment plants discharging into some losing streams flowing within a large alluvial aquifer. Conducted in the Province of Parma (Northern Italy), the research employs a multidisciplinary approach, incorporating geological, hydrogeological, chemical, and microbial community analyses. Following a territorial analysis to assess industries in the region, through the use of ATECO codes (a classification system for economic activities), the study investigated the concentration of Disodium EDTA in effluents from eight diverse wastewater treatment plants, noting that all discharges originate from an activated sludge treatment plant, released into surface water courses feeding the alluvial aquifer. Results revealed detectable levels of Disodium EDTA in all samples, indicating its persistence post-treatment. Concentrations ranged from 80 to 980 µg/L, highlighting the need for further research on its environmental fate and potential mitigation strategies. Additionally, the microbial communities naturally occurring in shallow groundwater were analyzed from a hydrogeological perspective. The widespread presence of a bacterial community predominantly composed of aerobic bacteria further confirmed that the studied aquifer is diffusely unconfined or semi-confined and/or diffusely fed by surface water sources. Furthermore, the presence of fecal bacteria served as a marker of diffuse leakage from sewage networks, which contain pre-treated wastewater. Although concentrations of Disodium EDTA above the instrumental quantification limit have not been found in groundwater to date, this research highlights the significant vulnerability of aquifers to Disodium EDTA. It reveals the critical link between surface waters, which receive treated wastewaters impacted by Disodium EDTA, and groundwater, emphasizing how this connection can expose aquifers to potential contamination. At this stage of the research, dilution of wastewaters in surface- and groundwater, as well as hydrodynamic dispersion within the alluvial aquifer, seem to be the main factors influencing the decrease in Disodium EDTA concentration in the subsurface below the actual quantification limit. Consequently, there is a pressing need to enhance methodologies to lower the instrumental quantification limit within aqueous matrices. In a broader context, urgent measures are needed to address the risk of diffuse transport of CECs contaminants like Disodium EDTA and safeguard the integrity of surface and groundwater resources, which are essential for sustaining ecosystems and human health. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

17 pages, 13321 KB  
Article
Application of Hydrogeophysical Techniques in Delineating Aquifers to Enhancing Recharge Potential Areas in Groundwater-Dependent Systems, Northern Cape, South Africa
by Lucky Baloyi, Thokozani Kanyerere, Innocent Muchingami and Harrison Pienaar
Water 2024, 16(18), 2652; https://doi.org/10.3390/w16182652 - 18 Sep 2024
Cited by 1 | Viewed by 1944
Abstract
The application of hydrogeophysical techniques to delineating aquifers was conducted in De Aar, the eastern part of the Karoo region, Northern Cape, South Africa. Previously, recharge estimations in this region assumed a uniform aquifer type, overlooking the presence of diverse aquifer systems. This [...] Read more.
The application of hydrogeophysical techniques to delineating aquifers was conducted in De Aar, the eastern part of the Karoo region, Northern Cape, South Africa. Previously, recharge estimations in this region assumed a uniform aquifer type, overlooking the presence of diverse aquifer systems. This study identified both unconfined and confined aquifers to improve recharge potential assessments. Vertical electrical resistivity sounding (VES) and ground telluric methods were applied. Six VES stations and eleven profiles were measured using a 1D Wenner array configuration. The VES data, processed with IPI2win software, generated a 2D subsurface model. In contrast, the telluric data were analyzed using an automated algorithm to create a 2D profile. The electric potential difference curve was interpreted in comparison with lithological cross-sections. The VES results revealed three to four distinct layers of low-resistivity (0.9–8.1 Ωm), moderate-resistivity (22.4–125 Ωm), and high-resistivity (68–177 Ωm) values, indicating three lithological formations. The telluric data suggested that shallow groundwater boreholes were located in areas with groundwater levels above 50 m. These findings, which matched the lithological data, pointed to a double-layer aquifer system, suggesting that recharge estimates should be carried out to different aquifer layers. The study demonstrated how hydrogeophysical methods can effectively delineate aquifer systems and enhance the identification of recharge areas. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 5244 KB  
Article
Groundwater Temperature Stripes: A Simple Method to Communicate Groundwater Temperature Variations Due to Climate Change
by Manuela Lasagna, Elena Egidio and Domenico Antonio De Luca
Water 2024, 16(5), 717; https://doi.org/10.3390/w16050717 - 28 Feb 2024
Cited by 5 | Viewed by 2389
Abstract
As our planet faces the complex challenges of global climate change, understanding and effectively communicating critical environmental indicators have become critical. This study explores the importance of reporting groundwater temperature data as a key component in understanding the broader implications of climate change [...] Read more.
As our planet faces the complex challenges of global climate change, understanding and effectively communicating critical environmental indicators have become critical. This study explores the importance of reporting groundwater temperature data as a key component in understanding the broader implications of climate change with the use of new graphical tools. More specifically, the use of the groundwater temperature (GWT) stripes and bi-plots of GWT anomalies vs. time was proposed. For an in-depth examination of this subject, monitoring wells situated in the Piedmont Po plain (NW Italy) were selected, with available daily groundwater temperature data dating back to 2010. All data refer to the groundwater of the shallow unconfined aquifer within alluvial deposits. From the analyses of both GWT stripes and the bi-plot of GWT anomalies vs. time, it was possible to identify a general increase in the positive anomaly, corresponding to an increase in GWT in time in almost all of the monitoring points of the Piedmont plain. Furthermore, the utilisation of GWT stripes demonstrated the capability to effectively portray the trend of the GWT data relative to a specific point in a readily understandable manner, facilitating easy interpretation, especially when communicating to a non-scientific audience. The findings underline the urgent need to improve GWT data search and communication strategies to disseminate valuable information to policy makers, researchers, and society. By illustrating the intricate interplay between groundwater temperature and climate change, this research aims to facilitate informed decision-making and promote a proactive approach towards climate resilience. Full article
Show Figures

Figure 1

23 pages, 7815 KB  
Article
Quantitative Groundwater Modelling under Data Scarcity: The Example of the Wadi El Bey Coastal Aquifer (Tunisia)
by Hatem Baccouche, Manon Lincker, Hanene Akrout, Thuraya Mellah, Yves Armando and Gerhard Schäfer
Water 2024, 16(4), 522; https://doi.org/10.3390/w16040522 - 6 Feb 2024
Cited by 2 | Viewed by 2669
Abstract
The Grombalia aquifer constitutes a complex aquifer system formed by shallow, unconfined, semi-deep, and deep aquifers at different exploitation levels. In this study, we focused on the upper aquifer, the Wadi El Bey coastal aquifer. To assess natural aquifer recharge, we used a [...] Read more.
The Grombalia aquifer constitutes a complex aquifer system formed by shallow, unconfined, semi-deep, and deep aquifers at different exploitation levels. In this study, we focused on the upper aquifer, the Wadi El Bey coastal aquifer. To assess natural aquifer recharge, we used a novel physiography-based method that uses soil texture-dependent potential infiltration coefficients and monthly rainfall data. The developed transient flow model was then applied to compute the temporal variation in the groundwater level in 34 observation wells from 1973 to 2020, taking into account the time series of spatially variable groundwater recharge, artificial groundwater recharge from 5 surface infiltration basins, pumping rates on 740 wells, and internal prescribed head cells to mimic water exchange between the wadis and aquifer. The quantified deviations in the computed hydraulic heads from measured water levels are acceptable because the database used to construct a scientifically sound and reliable groundwater model was limited. Further work is required to collect field data to quantitatively assess the local inflow and outflow rates between surface water and groundwater. The simulation of 12 climate scenarios highlighted a bi-structured north—south behaviour in the hydraulic heads: an increase in the north and a depletion in the south. A further increase in the pumping rate would, thus, be severe for the southern part of the Wadi El Bey aquifer. Full article
(This article belongs to the Topic Advances in Hydrogeological Research)
Show Figures

Figure 1

25 pages, 8135 KB  
Article
Assessment of Potential Potable Water Reserves in Islamabad, Pakistan Using Vertical Electrical Sounding Technique
by Mehboob ur Rashid, Muhammad Kamran, Muhammad Jawad Zeb, Ihtisham Islam, Hammad Tariq Janjuhah and George Kontakiotis
Hydrology 2023, 10(12), 217; https://doi.org/10.3390/hydrology10120217 - 21 Nov 2023
Cited by 2 | Viewed by 4850
Abstract
This study aimed to investigate the potential reserves of potable water in Islamabad, Pakistan, considering the alarming depletion of water resources. A detailed vertical electrical sounding (VES) survey was conducted in two main localities: Bara Kahu (Area 1) and Aabpara to G-13 (Area [...] Read more.
This study aimed to investigate the potential reserves of potable water in Islamabad, Pakistan, considering the alarming depletion of water resources. A detailed vertical electrical sounding (VES) survey was conducted in two main localities: Bara Kahu (Area 1) and Aabpara to G-13 (Area 2), based on accessibility, time, and budget constraints. A total of 23 VES measurements were performed, with 13 in Area 1 and 10 in Area 2, reaching a maximum depth of 500 m. Geologs and pseudosections were generated to assess lithological variations, aquifer conditions, and resistivity trends with depth. Statistical distribution of resistivity (SDR), hydraulic parameters, true resistivity, macroanisotropy, aquifer depth and thickness, and linear regression (R2) curves were calculated for both areas, providing insights into the aquifer conditions. The results revealed that the study areas predominantly consisted of sandy lithology as the aquifer horizon, encompassing sandstone, sandy clay, and clayey sand formations. Area 2 exhibited a higher presence of clayey horizons, and aquifers were generally deeper compared to Area 1. The aquifer thickness ranged from 10 m to 200 m, with shallow depths ranging from 10 m to 60 m and deeper aquifers exceeding 200 m. Aquifers in Area 1 were mostly semi-confined, while those in Area 2 were predominantly unconfined and susceptible to recharge and potential contamination. The northwest–southeast side of Area 1 exhibited the highest probability for ground resource estimation, while in Area 2, the northeast–southwest side displayed a dominant probability. The study identified a probable shear zone in Area 2, indicating lithological differences between the northeast and southwest sides with a reverse sequence. Based on the findings, it is recommended that the shallow aquifers in Area 1 be considered the best potential reservoir for water supply. In contrast, deeper drilling is advised in Area 2 to ensure a long-lasting, high-quality water supply. These results provide valuable information for water resource management and facilitate sustainable water supply planning and decision making in Islamabad, Pakistan. Full article
Show Figures

Figure 1

18 pages, 8318 KB  
Article
Investigating Multilayer Aquifer Dynamics by Combining Geochemistry, Isotopes and Hydrogeological Context Analysis
by Francis Proteau-Bedard, Paul Baudron, Nicolas Benoit, Miroslav Nastev, Ryan Post and Janie Masse-Dufresne
Hydrology 2023, 10(11), 211; https://doi.org/10.3390/hydrology10110211 - 13 Nov 2023
Cited by 2 | Viewed by 3988
Abstract
Geochemical tracers have the potential to provide valuable insights for constructing conceptual models of groundwater flow, especially in complex geological contexts. Nevertheless, the reliability of tracer interpretation hinges on its integration into a robust geological framework. In our research, we concentrated on delineating [...] Read more.
Geochemical tracers have the potential to provide valuable insights for constructing conceptual models of groundwater flow, especially in complex geological contexts. Nevertheless, the reliability of tracer interpretation hinges on its integration into a robust geological framework. In our research, we concentrated on delineating the groundwater flow dynamics in the Innisfil Creek watershed, located in Ontario, Canada. We amalgamated extensive hydrogeological data derived from a comprehensive 3D geological model with the analysis of 61 groundwater samples, encompassing major ions, stable water isotopes, tritium, and radiocarbon. By seamlessly incorporating regional physiographic characteristics, flow pathways, and confinement attributes, we bolstered the efficiency of these tracers, resulting in several notable findings. Firstly, we identified prominent recharge and discharge zones within the watershed. Secondly, we observed the coexistence of relatively shallow and fast-flowing paths with deeper, slower-flowing channels, responsible for transporting groundwater from ancient glacial events. Thirdly, we determined that cation exchange stands as the predominant mechanism governing the geochemical evolution of contemporary water as it migrates toward confined aquifers situated at the base of the Quaternary sequence. Fourthly, we provided evidence of the mixing of modern, low-mineralized water originating from unconfined aquifer units with deep, highly mineralized water within soil–bedrock interface aquifers. These findings not only contribute significantly to the development a conceptual flow model for the sustainable management of groundwater in the Innisfil watershed, but also offer practical insights that hold relevance for analogous geological complexities encountered in other regions. Full article
Show Figures

Figure 1

23 pages, 12336 KB  
Article
Anthropogenic Contamination in the Free Aquifer of the San Luis Potosí Valley
by Sonia Torres-Rivera, José Ramón Torres-Hernández, Simón Eduardo Carranco-Lozada, María Elena García-Arreola, Rubén Alfonso López-Doncel and Jesús Anibal Montenegro-Ríos
Int. J. Environ. Res. Public Health 2023, 20(12), 6152; https://doi.org/10.3390/ijerph20126152 - 16 Jun 2023
Cited by 3 | Viewed by 2510
Abstract
The San Luis Potosí valley is an endorheic basin that contains three aquifers: a shallow unconfined aquifer of alluvial material and two deep aquifers, free and confined. The groundwater contamination documented for the shallow aquifer generates contamination of the deep unconfined type aquifer, [...] Read more.
The San Luis Potosí valley is an endorheic basin that contains three aquifers: a shallow unconfined aquifer of alluvial material and two deep aquifers, free and confined. The groundwater contamination documented for the shallow aquifer generates contamination of the deep unconfined type aquifer, from which part of the population’s drinking water needs are met. This study records incipient anthropogenic contamination of two types: biogenic and potentially toxic trace elements. The studied contaminants include fecal coliform bacteria, total coliform, nitrate, and potentially toxic elements such as: manganese (Mn), mercury (Hg), arsenic (As), and cadmium (Cd). This contamination in some locations exceeds the permissible limit for human consumption. Some major consequences to health, including severe illness, may be caused by the trace elements. The present results give a first signal about the contamination of the deep unconfined type aquifer due to anthropogenic activity in the valley. This is a priority issue because this aquifer supplies drinking water, and in the short or medium term it will have an effect on public health. Full article
(This article belongs to the Topic Groundwater Pollution Control and Groundwater Management)
Show Figures

Figure 1

7 pages, 9569 KB  
Proceeding Paper
Groundwater Quality Assessment and Evaluation of Scaling and Corrosiveness Potential of Drinking Water Samples
by Aftab Alam and Saurabh Kumar
Environ. Sci. Proc. 2023, 25(1), 64; https://doi.org/10.3390/ECWS-7-14316 - 3 Apr 2023
Cited by 4 | Viewed by 1522
Abstract
This research was to examine water stability and to evaluate the drinking water quality. Groundwater samples from 16 borewells in Aurangabad, Bihar, were taken from the shallow unconfined aquifer and tested for a wide range of physicochemical characteristics. The pH, temperature, TDS, and [...] Read more.
This research was to examine water stability and to evaluate the drinking water quality. Groundwater samples from 16 borewells in Aurangabad, Bihar, were taken from the shallow unconfined aquifer and tested for a wide range of physicochemical characteristics. The pH, temperature, TDS, and EC were measured at the sites. Ca2+, Mg2+, F, Cl, NO3, SO42−, alkalinity, and hardness concentrations were examined in the laboratory. The groundwater’s stability was measured using Corrosiveness Indices including the Langeliar saturation index (LSI), Ryznar stability index (RSI), Puckorius scaling index (PSI), Larson-Skold index (Ls), and Aggressivity index (AI). The data showed that typical values for LSI, RSI, PSI, and LS and AI were −0.92 (±0.47), 9.09 (±0.67), 9.50 (±0.73), 1.73 (±0.78), and 11.05 (±0.48), respectively. Groundwater WQI calculations revealed that 25% of the samples were excellent, 50% were good, 19% were poor, and 6% were extremely poor. All of the water samples tested positively for corrosiveness according to the LSI and PSI indices. Water samples show a strong corrosive potential (87.50% according to RSI) or a low corrosive tendency (12.50% according to RSI). 75% of the water samples have a strong corrosive tendency, 18.50% have a corrosive tendency, and 6.25% have a scaling tendency, according to Ls. According to AI, 93.75% of the water samples had a moderately corrosive tendency, whereas 6.25% were extremely corrosive. Full article
(This article belongs to the Proceedings of The 7th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

16 pages, 2629 KB  
Article
Effect of Climate Change on the Quality of Soil, Groundwater, and Pomegranate Fruit Production in Al-Baha Region, Saudi Arabia: A Modeling Study Using SALTMED
by Abdulaziz G. Alghamdi, Anwar A. Aly and Hesham M. Ibrahim
Sustainability 2022, 14(20), 13275; https://doi.org/10.3390/su142013275 - 15 Oct 2022
Cited by 17 | Viewed by 3043
Abstract
Groundwater depletion coupled with climate change, increasing temperature, and decreasing precipitation, has led to groundwater quality deterioration and diminishing groundwater quantity, subsequently affecting agricultural productivity in arid environments. The groundwater of the Al-Baha region, Saudi Arabia is located in unconfined shallow aquifers and [...] Read more.
Groundwater depletion coupled with climate change, increasing temperature, and decreasing precipitation, has led to groundwater quality deterioration and diminishing groundwater quantity, subsequently affecting agricultural productivity in arid environments. The groundwater of the Al-Baha region, Saudi Arabia is located in unconfined shallow aquifers and responds quickly to climate change. The Al-Baha region is facing an increase in temperature and a substantial decrease in precipitation. Over the 24-year period from 1995 to 2019, average temperatures increased by 1.1 °C–1.6 °C, while rainfall decreased by 24–41%. Consequently, this study aimed at investigating the influence of climate change on soil salinity and pomegranate productivity. To achieve this goal, a hundred and fifteen samples of soil and groundwater were collected from different locations in the Al-Baha region. Furthermore, the SALTMED model was calibrated using the salinities of 50 groundwater samples, which are used as irrigation water, and climatic data from the year 2020. The model was then validated using 65 irrigation water salinities and climatic data from the year 2020. Pomegranate fruit yield was used as the main variable for calibration and validation. After successful calibration and validation, the SALTMED model was run using ‘what if’ scenarios for the years 2044, 2068, and 2092. It is assumed that the temperature will increase, while the annual rainfall will decrease in upcoming decades. Consequently, the groundwater salinities will reach 1.44, 2.59, and 4.67 dS m−1 for the years 2044, 2068, and 2092, respectively. The results revealed that the soil salinities will increase by 113%, 300%, and 675%, respectively, compared with the average soil salinity of the year 2020 (2.22 dS m−1). Furthermore, the pomegranate tree productivity in the Al-Baha region will decrease significantly (24.0%, 36.6%, and 41.6%) in the predicted three years due to deterioration of groundwater quality and increasing temperatures. Interventions by the regional authorities to minimize the impact of climate change on crop and fruit productivity and groundwater deterioration in the Al-Baha region should be planned and carried out as soon as possible. The method used in this investigation can be utilized in similar ecosystems worldwide. Full article
Show Figures

Figure 1

20 pages, 10682 KB  
Article
Assessment of a Coastal Aquifer in the Framework of Conjunctive Use of Surface Water and Groundwater—The Case of the River Nestos Western Delta, NE Greece
by George Kampas, Ioannis Gkiougkis, Andreas Panagopoulos, Fotios-Konstantinos Pliakas and Ioannis Diamantis
Hydrology 2022, 9(10), 172; https://doi.org/10.3390/hydrology9100172 - 30 Sep 2022
Cited by 1 | Viewed by 2023
Abstract
This paper presents research regarding the assessment of the hydrogeological system of the River Nestos Western Delta, NE Greece, during the period of 2019. The procedure included the collection and analysis of relevant hydrological and hydrogeological data concerning the aquifer system of the [...] Read more.
This paper presents research regarding the assessment of the hydrogeological system of the River Nestos Western Delta, NE Greece, during the period of 2019. The procedure included the collection and analysis of relevant hydrological and hydrogeological data concerning the aquifer system of the study area. Specifically, groundwater level measurements and sampling were carried out in a monitoring well network in the shallow unconfined and the deep confined aquifers of the study area, respectively; and surface water sampling was conducted from the River Nestos at selected locations in each of the main drainage canals, as well as in lagoons of the study area; followed by analysis and processing of the relevant chemical analyses results. Finally, piezometric, hydrochemical maps and diagrams were constructed to augment the evaluation of results and the assessment of the system. The present study contributes to the development and management of water resources in the River Nestos Delta area by providing insight into the hydrodynamic and hydrochemical status of the system based on comprehensive contemporary data that can support and justify the compilation of realistic measurements. The conjunctive management of the surface and groundwater in the study area can improve the quantitative and qualitative characteristics of the water. The water level in piezometric maps varies from −4 m up to 16 m for both time periods (May 2019 and October 2019). Moreover, the maximum values of EC are 2700 μS/cm and 2390 μS/cm for the confined and unconfined aquifer systems, respectively. The maximum values of Cl concentrations are 573.89 mg/L for the confined aquifer system and 514.73 mg/L for the unconfined aquifer system for both time periods (May 2019 and October 2019). Full article
Show Figures

Figure 1

24 pages, 4998 KB  
Article
Simulation of Heat Flow in a Synthetic Watershed: Lags and Dampening across Multiple Pathways under a Climate-Forcing Scenario
by Daniel T. Feinstein, Randall J. Hunt and Eric D. Morway
Water 2022, 14(18), 2810; https://doi.org/10.3390/w14182810 - 9 Sep 2022
Cited by 3 | Viewed by 2566
Abstract
Although there is widespread agreement that future climates tend toward warming, the response of aquatic ecosystems to that warming is not well understood. This work, a continuation of companion research, explores the role of distinct watershed pathways in lagging and dampening climate-change signals. [...] Read more.
Although there is widespread agreement that future climates tend toward warming, the response of aquatic ecosystems to that warming is not well understood. This work, a continuation of companion research, explores the role of distinct watershed pathways in lagging and dampening climate-change signals. It subjects a synthetic flow and transport model to a 30-year warming signal based on climate projections, quantifying the heat breakthrough on a monthly time step along connected pathways. The system corresponds to a temperate watershed roughly 27 km on a side and consists of (a) land-surface processes of overland flow, (b) infiltration through an unsaturated zone (UZ) above an unconfined sandy aquifer overlying impermeable bedrock, and (c) groundwater flow along shallow and deep pathlines that converge as discharge to a surface-water network. Numerical simulations show that about 40% of the warming applied to watershed infiltration arrives at the water table and that the UZ stores a large fraction of the upward-trending heat signal. Additionally, once groundwater reaches the surface-water network after traveling through the saturated zone, only about 10% of the original warm-up signal is returned to streams by discharge. However, increases in the simulated streamflow temperatures are of similar magnitude to increases at the water table, due to the addition of heat by storm runoff, which bypasses UZ and groundwater storage and counteracts subsurface dampening. The synthetic modeling method and tentative findings reported here provide a potential workflow for real-world applications of climate-change modeling at the full watershed scale. Full article
(This article belongs to the Special Issue Groundwater Hydrological Model Simulation)
Show Figures

Figure 1

26 pages, 9725 KB  
Article
A Coupled SWAT-AEM Modelling Framework for a Comprehensive Hydrologic Assessment
by K. Sangeetha, Balaji Narasimhan and R. Srinivasan
Water 2022, 14(17), 2753; https://doi.org/10.3390/w14172753 - 4 Sep 2022
Cited by 4 | Viewed by 5076
Abstract
This study attempts to integrate a Surface Water (SW) model Soil and Water Assessment Tool (SWAT) with an existing steady-state, single layer, unconfined heterogeneous aquifer Analytic Element Method (AEM) based Ground Water (GW) model, named Bluebird AEM engine, for a comprehensive assessment of [...] Read more.
This study attempts to integrate a Surface Water (SW) model Soil and Water Assessment Tool (SWAT) with an existing steady-state, single layer, unconfined heterogeneous aquifer Analytic Element Method (AEM) based Ground Water (GW) model, named Bluebird AEM engine, for a comprehensive assessment of SW and GW resources and its management. The main reason for integrating SWAT with the GW model is that the SWAT model does not simulate the distribution and dynamics of GW levels and recharge rates. To overcome this issue, often the SWAT model is coupled with the numerical GW model (either using MODFLOW or FEFLOW), wherein the spatial and temporal patterns of the interactions are better captured and assessed. However, the major drawback in integrating the two models (SWAT with—MODFLOW/FEM) is its conversion from Hydrological Response Unit’s (HRU)/sub-basins to grid/elements. To couple them, a spatial translation system is necessary to move the inputs and outputs back and forth between the two models due to the difference in discretization. Hence, for effective coupling of SW and GW models, it may be desirable to have both models with a similar spatial discretization and reduce the need for rigorous numerical techniques for solving the PDEs. The objective of this paper is to test the proof of concept of integrating a distributed hydrologic model with an AEM model at the same spatial units, primarily focused on surface water and groundwater interaction with a shallow unconfined aquifer. Analytic Element Method (AEM) based GW models seem to be ideal for coupling with SWAT due to their innate character to consider the HRU, sub-basin, River, and lake boundaries as individual analytic elements directly without the need for any further discretization or modeling units. This study explores the spatio-temporal patterns of groundwater (GW) discharge rates to a river system in a moist-sub humid region with SWAT-AEM applied to the San Jacinto River basin (SJRB) in Texas. The SW-GW interactions are explored throughout the watershed from 2000–2017 using the integrated SWAT-AEM model, which is tested against stream flow and GW levels. The integrated SWAT-AEM model results show good improvement in predicting the stream flow (R2 = 0.65–0.80) and GW levels as compared to the standalone SWAT model. Further, the integrated model predicted the low flows better compared to the standalone SWAT model, thus accounting for the SW-GW interactions. Almost 80% of the stream network experiences an increase in groundwater discharge rate between 2000 and 2017 with an annual average GW discharge rate of 1853 Mm3/year. The result from the study seems promising for potential applications of SWAT-AEM coupling in regions with considerable SW-GW interactions. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

Back to TopTop