Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = shish-kebab structure

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 7445 KiB  
Article
Controlling Poly(3-hexythiophene) Hierarchical Polymer/SWCNT Nanohybrid Shish-Kebab Morphologies in Marginal Solvents
by Kevin Schnittker, Zahra Bahrami and Joseph Andrews
Crystals 2024, 14(12), 1065; https://doi.org/10.3390/cryst14121065 - 10 Dec 2024
Viewed by 768
Abstract
In organic optoelectronic devices, the self-assembly behavior of the conjugated polymer poly(3-hexylthiophene) (P3HT) into structured aggregates significantly influences the device’s performance, with processing conditions playing a key role. Incorporating carbon nanotubes (CNTs) into a P3HT solution can form hierarchical supramolecular structures known as [...] Read more.
In organic optoelectronic devices, the self-assembly behavior of the conjugated polymer poly(3-hexylthiophene) (P3HT) into structured aggregates significantly influences the device’s performance, with processing conditions playing a key role. Incorporating carbon nanotubes (CNTs) into a P3HT solution can form hierarchical supramolecular structures known as nanohybrid shish-kebabs (NHSKs). These structures alter the morphology of polymer aggregates and provide an alternative pathway for improved charge transport in thin film devices. Herein, we investigated the impact of solvent quality using different combinations of chloroform and anisole during the quasi-isothermal crystallization of P3HT:CNTs. We found that NHSKs of different nanowire lengths can be formed through changing solvent quality while maintaining a constant P3HT:SWCNT ratio and a constant SWCNT concentration. Optical absorbance measurements showed that increasing the amount of the good solvent (chloroform) to 10.19% (v/v) reduced the exciton bandwidth by 36.4% compared to the NHSK solution that only contained ~2.37% (v/v). This observation demonstrates the importance of solvent quality and how this processing parameter directly leads to the enhanced crystallization of supramolecular structures. Full article
Show Figures

Figure 1

13 pages, 7537 KiB  
Article
Influence of Strong Shear Field on Structure and Performance of HDPE/PA6 In Situ Microfibril Composites
by Junwen Zhang, Yiwei Zhang, Yanjiang Li, Mengna Luo and Jie Zhang
Polymers 2024, 16(8), 1032; https://doi.org/10.3390/polym16081032 - 10 Apr 2024
Cited by 1 | Viewed by 1395
Abstract
As one of the most widely applied general-purpose plastics, high-density polyethylene (HDPE) exhibits good comprehensive performance. However, mechanical strength limits its wider application. In this work, we introduced the engineering plastic PA6 as a dispersed phase to modify the HDPE matrix and applied [...] Read more.
As one of the most widely applied general-purpose plastics, high-density polyethylene (HDPE) exhibits good comprehensive performance. However, mechanical strength limits its wider application. In this work, we introduced the engineering plastic PA6 as a dispersed phase to modify the HDPE matrix and applied multiple shears generated by vibration to the polymer melt during the packing stage of injection molding. SEM, 2D-WXRD and 2D-SAXS were used to characterize the morphology and structure of the samples. The results show that under the effect of a strong shear field, the dispersed phase in the composites can form in situ microfibers and numerous high-strength shish-kebab and hybrid shish-kebab structures are formed. Additionally, the distribution of fibers and high-strength oriented structures in the composites expands to the core region with the increase in vibration times. As a result, the tensile strength, tensile modulus and surface hardness of VIM-6 can reach a high level of 66.5 MPa, 981.4 MPa and 72, respectively. Therefore, a high-performance HDPE product is successfully prepared in this study, which is of great importance for expanding the application range of HDPE products. Full article
(This article belongs to the Special Issue Injection Molding of Polymers and Polymer Composites)
Show Figures

Figure 1

15 pages, 3088 KiB  
Article
A New Approach to Estimating the Parameters of Structural Formations in HDPE Reactor Powder
by Artem Borisov, Yuri Boiko, Svetlana Gureva, Ksenia Danilova, Victor Egorov, Elena Ivan’kova, Vyacheslav Marikhin, Liubov Myasnikova, Ludmila Novokshonova, Elena Radovanova, Elena Starchak, Tatiana Ushakova and Maria Yagovkina
Polymers 2023, 15(18), 3742; https://doi.org/10.3390/polym15183742 - 13 Sep 2023
Cited by 1 | Viewed by 1289
Abstract
The morphology of virgin reactor powder (RP) of high-density polyethylene (HDPE) with MW = 160,000 g/mol was investigated using DSC, SEM, SAXS, and WAXS methods. The morphological SEM analysis showed that the main morphological units of RP are macro- and micro-shish-kebab structures [...] Read more.
The morphology of virgin reactor powder (RP) of high-density polyethylene (HDPE) with MW = 160,000 g/mol was investigated using DSC, SEM, SAXS, and WAXS methods. The morphological SEM analysis showed that the main morphological units of RP are macro- and micro-shish-kebab structures with significantly different geometric dimensions, as well as individual lamellae of folded chain crystals. A quantitative analysis of an asymmetric SAXS reflection made it possible to reveal the presence of several periodic morphoses in the RP with long periods ranging from 20 nm to 60 nm, and to correlate them with the observed powder morphology. According to the DSC crystallinity data, the thickness of the lamellae in each long period was estimated. Their surface energy was calculated in the framework of the Gibbs—Thompson theory. The presence of regular and irregular folds on the surface of different shish-kebab lamellae was discussed. The percentage of identified morphoses in the RP was calculated. It has been suggested that the specific structure of HDPE RP is due to the peculiarity of polymer crystallization during suspension synthesis in a quasi-stationary regime, in which local overheating and inhomogeneous distribution of shear stresses in a chemical reactor are possible. Full article
Show Figures

Graphical abstract

15 pages, 21941 KiB  
Article
Effects of Orientation and Dispersion on Electrical Conductivity and Mechanical Properties of Carbon Nanotube/Polypropylene Composite
by Dashan Mi, Zhongguo Zhao and Haiqing Bai
Polymers 2023, 15(10), 2370; https://doi.org/10.3390/polym15102370 - 19 May 2023
Cited by 15 | Viewed by 2762
Abstract
The orientation and dispersion of nanoparticles can greatly influence the conductivity and mechanical properties of nanocomposites. In this study, the Polypropylene/ Carbon Nanotubes (PP/CNTs) nanocomposites were produced using three different molding methods, i.e., compression molding (CM), conventional injection molding (IM), and interval injection [...] Read more.
The orientation and dispersion of nanoparticles can greatly influence the conductivity and mechanical properties of nanocomposites. In this study, the Polypropylene/ Carbon Nanotubes (PP/CNTs) nanocomposites were produced using three different molding methods, i.e., compression molding (CM), conventional injection molding (IM), and interval injection molding (IntM). Various CNTs content and shear conditions give CNTs different dispersion and orientation states. Then, three electrical percolation thresholds (4 wt.% CM, 6 wt.% IM, and 9 wt.% IntM) were obtained by various CNTs dispersion and orientations. Agglomerate dispersion (Adis), agglomerate orientation (Aori), and molecular orientation (Mori) are used to quantify the CNTs dispersion and orientation degree. IntM uses high shear to break the agglomerates and promote the Aori, Mori, and Adis. Large Aori and Mori can create a path along the flow direction, which lead to an electrical anisotropy of nearly six orders of magnitude in the flow and transverse direction. On the other hand, when CM and IM samples already build the conductive network, IntM can triple the Adis and destroy the network. Moreover, mechanical properties are also been discussed, such as the increase in tensile strength with Aori and Mori but showing independence with Adis. This paper proves that the high dispersion of CNTs agglomerate goes against forming a conductivity network. At the same time, the increased orientation of CNTs causes the electric current to flow only in the orientation direction. It helps to prepare PP/CNTs nanocomposites on demand by understanding the influence of CNTs dispersion and orientation on mechanical and electrical properties. Full article
Show Figures

Figure 1

12 pages, 3828 KiB  
Article
Performance Enhancement of PLA-Based Blend Microneedle Arrays through Shish-Kebab Structuring Strategy in Microinjection Molding
by Lifan Zhang, Yinghong Chen, Jiayu Tan, Shuo Feng, Yeping Xie and Li Li
Polymers 2023, 15(10), 2234; https://doi.org/10.3390/polym15102234 - 9 May 2023
Cited by 11 | Viewed by 2635
Abstract
Poly(lactic acid) (PLA) microneedles have been explored extensively, but the current regular fabrication strategy, such as thermoforming, is inefficient and poorly conformable. In addition, PLA needs to be modified as the application of microneedle arrays made of pure PLA is limited because of [...] Read more.
Poly(lactic acid) (PLA) microneedles have been explored extensively, but the current regular fabrication strategy, such as thermoforming, is inefficient and poorly conformable. In addition, PLA needs to be modified as the application of microneedle arrays made of pure PLA is limited because of their easy tip fracture and poor skin adhesion. For this purpose, in this article, we reported a facile and scalable strategy to fabricate the microneedle arrays of the blend of PLA matrix and poly(p-dioxanone) (PPDO) dispersed phase with complementary mechanical properties through microinjection molding technology. The results showed that the PPDO dispersed phase could be in situ fibrillated under the effect of the strong shear stress field generated in micro-injection molding. These in situ fibrillated PPDO dispersed phases could hence induce the formation of the shish-kebab structures in the PLA matrix. Particularly for PLA/PPDO (90/10) blend, there are the densest and most perfect shish-kebab structures formed. The above microscopic structure evolution could be also advantageous to the enhancement in the mechanical properties of microparts of PLA/PPDO blend (tensile microparts and microneedle arrays), e.g., the elongation at break of the blend is almost double that of pure PLA while still maintaining the high stiffness (Young’s modulus of 2.7 GPa) and the high strength (tensile strength of 68.3 MPa) in the tensile test, and relative to pure PLA, there is 100% or more increase in the load and displacement of microneedle in the compression test. This could open up new spaces for expanding the industrial application of the fabricated microneedle arrays. Full article
Show Figures

Figure 1

11 pages, 2686 KiB  
Article
Flow-Induced Crystallization in Polyethylene: Effect of Flow Time on Development of Shish-Kebab
by Ruijun Zhao, Zhaozhe Chu and Zhe Ma
Polymers 2020, 12(11), 2571; https://doi.org/10.3390/polym12112571 - 2 Nov 2020
Cited by 9 | Viewed by 3574
Abstract
The flow-induced formation and relaxation of the representative oriented shish-kebab structure were studied with synchrotron small-angle X-ray scattering (SAXS) method. The flow duration was varied from 2 to 6 s at an identical strain rate to reveal the effect of flow time on [...] Read more.
The flow-induced formation and relaxation of the representative oriented shish-kebab structure were studied with synchrotron small-angle X-ray scattering (SAXS) method. The flow duration was varied from 2 to 6 s at an identical strain rate to reveal the effect of flow time on stability and dimension of formed shish. It was found that the short flow time of 2 s was able to generate shish during flow, which, however, relaxed during the isothermal process after cessation of flow. An increase in flow time can improve the shish stability and the long flow time of 6 s can generate the stable shish that nucleate the growth of kebab lamellae. In addition, the quantitative analysis of SAXS results showed that with increasing flow time from 2 to 6 s, the shish length increased from 242 to 574 nm, while the shish diameter remained around 34 nm. This detailed information of the formed shish-kebab structure can be used to shed light on their evolution that occurred during flow from 2 to 6 s, where shish grew at a longitudinal speed of around 80 nm/s, and there was an improvement in the stability and nucleation capability for kebab lamellae. Full article
Show Figures

Figure 1

14 pages, 5293 KiB  
Article
Deformation-Induced Crystallization Behavior of Isotactic Polypropylene Sheets Containing a β-Nucleating Agent under Solid-State Stretching
by Huajian Ji, Xulin Zhou, Xin Chen, Haili Zhao, Yu Wang, Huihao Zhu, Yulu Ma and Linsheng Xie
Polymers 2020, 12(6), 1258; https://doi.org/10.3390/polym12061258 - 30 May 2020
Cited by 9 | Viewed by 4152
Abstract
The deformation-induced crystallization of an isotactic polypropylene (iPP) sheet containing a β-nucleating agent was evaluated. The phase transformation of the β-modifications was investigated and the crystal morphology was observed at room temperature after stretching at different temperatures. The results showed that the crystallinity [...] Read more.
The deformation-induced crystallization of an isotactic polypropylene (iPP) sheet containing a β-nucleating agent was evaluated. The phase transformation of the β-modifications was investigated and the crystal morphology was observed at room temperature after stretching at different temperatures. The results showed that the crystallinity increased after solid-state stretching. When the stretching temperature was below the initial crystallization temperature, stretching deformation promoted the orientation of amorphous molecular chains. When the deformation temperature exceeded the crystallization temperature, part of the β-modifications underwent a phase transformation process and was stretched into a shish-kebab structure. However, once the stretching temperature was close to the melting point, the β-modifications melted and recrystallized, and the shish-kebab structure underwent stress relaxation due to poor thermal stability, transforming into α-modifications. It was revealed that the crystal phase transformation mechanism of the β-modifications was based on the orientation of the molecular chains between the adjacent lamellae. In addition, the shish-kebab cylindrite structure played an important role in modifying the tensile and impact properties of the iPP sheet. The tensile and impact strengths increased by as much as 34% and 126%, respectively. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

11 pages, 3006 KiB  
Article
The Effect of Solvent Vapor Annealing on Drug-Loaded Electrospun Polymer Fibers
by Yu-Jing Chiu, Ziwei Zhang, Karolina Dziemidowicz, Christos-Georgios Nikoletopoulos, Ukrit Angkawinitwong, Jiun-Tai Chen and Gareth R. Williams
Pharmaceutics 2020, 12(2), 139; https://doi.org/10.3390/pharmaceutics12020139 - 6 Feb 2020
Cited by 18 | Viewed by 3965
Abstract
Electrospinning has emerged as a powerful strategy to develop controlled release drug delivery systems but the effects of post-fabrication solvent vapor annealing on drug-loaded electrospun fibers have not been explored to date. In this work, electrospun poly(ε-caprolactone) (PCL) fibers loaded with the hydrophobic [...] Read more.
Electrospinning has emerged as a powerful strategy to develop controlled release drug delivery systems but the effects of post-fabrication solvent vapor annealing on drug-loaded electrospun fibers have not been explored to date. In this work, electrospun poly(ε-caprolactone) (PCL) fibers loaded with the hydrophobic small-molecule spironolactone (SPL) were explored. Immediately after fabrication, the fibers are smooth and cylindrical. However, during storage the PCL crystallinity in the fibers is observed to increase, demonstrating a lack of stability. When freshly-prepared fibers are annealed with acetone vapor, the amorphous PCL chains recrystallize, resulting in the fiber surfaces becoming wrinkled and yielding shish-kebab like structures. This effect does not arise after the fibers have been aged. SPL is found to be amorphously dispersed in the PCL matrix both immediately after electrospinning and after annealing. In vitro dissolution studies revealed that while the fresh fibers show a rapid burst of SPL release, after annealing more extended release profiles are observed. Both the rate and extent of release can be varied through changing the annealing time. Further, the annealed formulations are shown to be stable upon storage. Full article
(This article belongs to the Special Issue Recent Development of Electrospinning for Drug Delivery Volume II)
Show Figures

Graphical abstract

19 pages, 2823 KiB  
Article
Nanoscale Heat Conduction in CNT-POLYMER Nanocomposites at Fast Thermal Perturbations
by Alexander A. Minakov and Christoph Schick
Molecules 2019, 24(15), 2794; https://doi.org/10.3390/molecules24152794 - 31 Jul 2019
Cited by 12 | Viewed by 3405
Abstract
Nanometer scale heat conduction in a polymer/carbon nanotube (CNT) composite under fast thermal perturbations is described by linear integrodifferential equations with dynamic heat capacity. The heat transfer problem for local fast thermal perturbations around CNT is considered. An analytical solution for the nonequilibrium [...] Read more.
Nanometer scale heat conduction in a polymer/carbon nanotube (CNT) composite under fast thermal perturbations is described by linear integrodifferential equations with dynamic heat capacity. The heat transfer problem for local fast thermal perturbations around CNT is considered. An analytical solution for the nonequilibrium thermal response of the polymer matrix around CNT under local pulse heating is obtained. The dynamics of the temperature distribution around CNT depends significantly on the CNT parameters and the thermal contact conductance of the polymer/CNT interface. The effect of dynamic heat capacity on the local overheating of the polymer matrix around CNT is considered. This local overheating can be enhanced by very fast (about 1 ns) components of the dynamic heat capacity of the polymer matrix. The results can be used to analyze the heat transfer process at the early stages of “shish-kebab” crystal structure formation in CNT/polymer composites. Full article
(This article belongs to the Special Issue Thermodynamics and Thermal Transport Properties in Nanomaterials)
Show Figures

Graphical abstract

15 pages, 4801 KiB  
Article
Effects of Phase Morphology on Mechanical Properties: Oriented/Unoriented PP Crystal Combination with Spherical/Microfibrillar PET Phase
by Dashan Mi, Yingxiong Wang, Maja Kuzmanovic, Laurens Delva, Yixin Jiang, Ludwig Cardon, Jie Zhang and Kim Ragaert
Polymers 2019, 11(2), 248; https://doi.org/10.3390/polym11020248 - 2 Feb 2019
Cited by 23 | Viewed by 4837
Abstract
In situ microfibrillation and multiflow vibrate injection molding (MFVIM) technologies were combined to control the phase morphology of blended polypropylene (PP) and poly(ethylene terephthalate) (PET), wherein PP is the majority phase. Four kinds of phase structures were formed using different processing methods. As [...] Read more.
In situ microfibrillation and multiflow vibrate injection molding (MFVIM) technologies were combined to control the phase morphology of blended polypropylene (PP) and poly(ethylene terephthalate) (PET), wherein PP is the majority phase. Four kinds of phase structures were formed using different processing methods. As the PET content changes, the best choice of phase structure also changes. When the PP matrix is unoriented, oriented microfibrillar PET can increase the mechanical properties at an appropriate PET content. However, if the PP matrix is an oriented structure (shish-kebab), only the use of unoriented spherical PET can significantly improve the impact strength. Besides this, the compatibilizer polyolefin grafted maleic anhydride (POE-g-MA) can cover the PET in either spherical or microfibrillar shape to form a core–shell structure, which tends to improve both the yield and impact strength. We focused on the influence of all composing aspects—fibrillation of the dispersed PET, PP matrix crystalline morphology, and compatibilized interface—on the mechanical properties of PP/PET blends as well as potential synergies between these components. Overall, we provided a theoretical basis for the mechanical recycling of immiscible blends. Full article
(This article belongs to the Special Issue Connecting the Fields of Polymer Reaction Engineering and Processing)
Show Figures

Graphical abstract

16 pages, 5282 KiB  
Article
Hierarchical Structure of iPP During Injection Molding Process with Fast Mold Temperature Evolution
by Vito Speranza, Sara Liparoti, Roberto Pantani and Giuseppe Titomanlio
Materials 2019, 12(3), 424; https://doi.org/10.3390/ma12030424 - 30 Jan 2019
Cited by 37 | Viewed by 3849 | Correction
Abstract
Mold surface temperature strongly influences the molecular orientation and morphology developed in injection molded samples. In this work, an isotactic polypropylene was injected into a rectangular mold, in which the cavity surface temperature was properly modulated during the process by an electrical heating [...] Read more.
Mold surface temperature strongly influences the molecular orientation and morphology developed in injection molded samples. In this work, an isotactic polypropylene was injected into a rectangular mold, in which the cavity surface temperature was properly modulated during the process by an electrical heating device. The induced thermo-mechanical histories strongly influenced the morphology developed in the injection molded parts. Polarized optical microscope and atomic force microscope were adopted for morphological investigations. The combination of flow field and cooling rate experienced by the polymer determined the hierarchical structure. Under strong flow fields and high temperatures, a tightly packed structure, called shish-kebab, aligned along the flow direction, was observed. Under weak flow fields, the formation of β-phase, as cylindrites form, was observed. The formation of each morphological structure was analyzed and discussed on the bases of the flow and temperature fields, experienced by the polymer during each stage of the injection molding process. Full article
Show Figures

Graphical abstract

16 pages, 4715 KiB  
Article
New Approach to Optimize Mechanical Properties of the Immiscible Polypropylene/Poly (Ethylene Terephthalate) Blend: Effect of Shish-Kebab and Core-Shell Structure
by Yingxiong Wang, Dashan Mi, Laurens Delva, Ludwig Cardon, Jie Zhang and Kim Ragaert
Polymers 2018, 10(10), 1094; https://doi.org/10.3390/polym10101094 - 2 Oct 2018
Cited by 13 | Viewed by 4757
Abstract
Improving the mechanical properties of immiscible PP/PET blend is of practical significance especially in the recycling process of multi-layered plastic solid waste. In this work, a multi-flow vibration injection molding technology (MFVIM) was hired to convert the crystalline morphology of the PP matrix [...] Read more.
Improving the mechanical properties of immiscible PP/PET blend is of practical significance especially in the recycling process of multi-layered plastic solid waste. In this work, a multi-flow vibration injection molding technology (MFVIM) was hired to convert the crystalline morphology of the PP matrix from spherulite into shish-kebab. POE–g–MA was added as compatibilizer, and results showed that the compatibilization effect consisted in the formation of a core-shell structure by dispersing the POE–g–MA into the PP matrix to encapsulate the PET. It was found that the joint action of shish-kebab crystals and spherical core-shell structure enabled excellent mechanical performance with a balance of strength and toughness for samples containing 10 wt % PET and 4 wt % POE–g–MA, of which the yield strength and impact strengths were 50.87 MPa and 13.71 kJ/m2, respectively. This work demonstrates a new approach to optimize mechanical properties of immiscible PP/PET blends, which is very meaningful for the effective recycling of challenging plastic wastes. Full article
(This article belongs to the Special Issue Connecting the Fields of Polymer Reaction Engineering and Processing)
Show Figures

Graphical abstract

18 pages, 58492 KiB  
Article
“Skin-Core-Skin” Structure of Polymer Crystallization Investigated by Multiscale Simulation
by Chunlei Ruan
Materials 2018, 11(4), 610; https://doi.org/10.3390/ma11040610 - 16 Apr 2018
Cited by 10 | Viewed by 5590
Abstract
“Skin-core-skin” structure is a typical crystal morphology in injection products. Previous numerical works have rarely focused on crystal evolution; rather, they have mostly been based on the prediction of temperature distribution or crystallization kinetics. The aim of this work was to achieve the [...] Read more.
“Skin-core-skin” structure is a typical crystal morphology in injection products. Previous numerical works have rarely focused on crystal evolution; rather, they have mostly been based on the prediction of temperature distribution or crystallization kinetics. The aim of this work was to achieve the “skin-core-skin” structure and investigate the role of external flow and temperature fields on crystal morphology. Therefore, the multiscale algorithm was extended to the simulation of polymer crystallization in a pipe flow. The multiscale algorithm contains two parts: a collocated finite volume method at the macroscopic level and a morphological Monte Carlo method at the microscopic level. The SIMPLE (semi-implicit method for pressure linked equations) algorithm was used to calculate the polymeric model at the macroscopic level, while the Monte Carlo method with stochastic birth-growth process of spherulites and shish-kebabs was used at the microscopic level. Results show that our algorithm is valid to predict “skin-core-skin” structure, and the initial melt temperature and the maximum velocity of melt at the inlet mainly affects the morphology of shish-kebabs. Full article
Show Figures

Graphical abstract

Back to TopTop