Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = shutter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 14032 KB  
Article
Preliminary Study on the Activity of the Rupture Zone in the Eastern Segment of the Ba Co Fault in Ngari Prefecture, Tibet
by Yunsheng Yao, Yanxiu Shao and Bo Zhang
Geosciences 2025, 15(10), 377; https://doi.org/10.3390/geosciences15100377 - 1 Oct 2025
Viewed by 222
Abstract
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. [...] Read more.
The lack of research on the slip behavior of the NW-trending faults in the central Tibetan Plateau constrains our understanding of the deformation models for this region. The Ba Co Fault, located in the central Tibetan Plateau, is a NW–SE-trending right-lateral strike-slip fault. Its eastern section has been active in the Holocene and plays an important accommodating role in the northward compression and east–west extension of the Tibetan Plateau. This study presents a detailed analysis of the geomorphic features of the eastern section of the Ba Co Fault in the Ngari Prefecture of Tibet, precisely measuring the newly discovered surface rupture zone on its eastern side and preliminarily discussing the activity of the fault based on the optically stimulated luminescence (OSL) dating results. The results reveal that the eastern segment of the Ba Co Fault displays geomorphic evidence of offset, including displaced Holocene alluvial–fluvial fans at the mountain front and partially offset ridges. A series of pressure ridges, trenches, counter-slope scarps, and shutter ridge ponds have developed along the fault trace. Some gullies exhibit a cumulative dextral displacement of approximately 16–52 m. The newly discovered co-seismic surface rupture zone extends for a total length of ~21 km, with a width ranging from 30 to 102 m. Pressure ridges within the rupture zone reach heights of 0.3–5.5 m, while trenches exhibit depths of 0.6–15 m. Optically stimulated luminescence (OSL) dating constrains the timing of the surface-rupturing earthquake to after 5.73 ± 0.17 ka. The eastern segment of the Ba Co Fault experienced a NW-trending compressional deformation regime during the Holocene, manifesting as a transpressional dextral strike-slip fault. Magnitude estimation indicates that this segment possesses the potential to generate earthquakes of M ≥ 6. The regional tectonic analysis indicates that the activity of the eastern section of the Ba Co Fault is related to the shear model of the conjugate strike-slip fault zone in the central Tibetan Plateau and may play a boundary role between different shear zones. Full article
Show Figures

Figure 1

15 pages, 4371 KB  
Article
Optimization of 4-Cyano-4’-pentylbiphenyl Liquid Crystal Dispersed with Photopolymer: Application Towards Smart Windows and Aerospace Technology
by Govind Pathak, Busayamas Phettong and Nattaporn Chattham
Polymers 2025, 17(16), 2232; https://doi.org/10.3390/polym17162232 - 16 Aug 2025
Viewed by 878
Abstract
The present reported work deals with the preparation of an energy-efficient smart window based on liquid crystal (LC) using a polymer-dispersed liquid crystal (PDLC) technique. The smart window was prepared using an LC–polymer composite by mixing photopolymer NOA-71 into nematic liquid crystal (NLC) [...] Read more.
The present reported work deals with the preparation of an energy-efficient smart window based on liquid crystal (LC) using a polymer-dispersed liquid crystal (PDLC) technique. The smart window was prepared using an LC–polymer composite by mixing photopolymer NOA-71 into nematic liquid crystal (NLC) 4-cyano-4’-pentylbiphenyl (5CB). The liquid crystal cell was prepared, the LC–polymer composite was filled inside the cell, and voltage was applied after the exposure of ultraviolet (UV) light. Textural analysis was carried out, and microscope images were taken out with the variation in voltage. Optical measurements were also performed for the smart window based on the PDLC system. Threshold voltage and saturation voltages were measured to carry out the operating voltage analysis. Transmittance was measured as a function of wavelength at different voltages. An absorbance study was also performed, varying the voltage and wavelength. The change in the power of the laser beam passing through the prepared smart window as a function of voltage was also investigated. The working of a prepared smart window using liquid crystal and a photopolymer composite is also demonstrated in opaque and transparent states in the absence and presence of voltage. The output of the present investigation into a PDLC-based smart window can be useful in the applications of adaptive or light shutter devices and in aerospace technology, as it shows the dual nature of opaque and transparent states in the absence and presence of electric field. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

21 pages, 16873 KB  
Article
Enhancing Residential Building Safety: A Numerical Study of Attached Safe Rooms for Bushfires
by Sahani Hendawitharana, Anthony Ariyanayagam and Mahen Mahendran
Fire 2025, 8(8), 300; https://doi.org/10.3390/fire8080300 - 29 Jul 2025
Viewed by 736
Abstract
Early evacuation during bushfires remains the safest strategy; however, in many realistic scenarios, timely evacuation is challenging, making safe sheltering a last-resort option to reduce risk compared to late evacuation attempts. However, most Australian homes in bushfire-prone areas are neither designed nor retrofitted [...] Read more.
Early evacuation during bushfires remains the safest strategy; however, in many realistic scenarios, timely evacuation is challenging, making safe sheltering a last-resort option to reduce risk compared to late evacuation attempts. However, most Australian homes in bushfire-prone areas are neither designed nor retrofitted to provide adequate protection against extreme bushfires, raising safety concerns. This study addresses this gap by investigating the concept of retrofitting a part of the residential buildings as attached safe rooms for sheltering and protection of valuables, providing a potential last-resort solution for bushfire-prone communities. Numerical simulations were conducted using the Fire Dynamics Simulator to assess heat transfer and internal temperature conditions in a representative residential building under bushfire exposure conditions. The study investigated the impact of the placement of the safe room relative to the fire front direction, failure of vulnerable building components, and the effectiveness of steel shutters in response to internal temperatures. The results showed that the strategic placement of safe rooms inside the building, along with adequate protective measures for windows, can substantially reduce internal temperatures. The findings emphasised the importance of maintaining the integrity of openings and the external building envelope, demonstrating the potential of retrofitted attached safe rooms as a last-resort solution for existing residential buildings in bushfire-prone areas where the entire building was not constructed to withstand bushfire conditions. Full article
Show Figures

Figure 1

12 pages, 2500 KB  
Article
Deep Learning-Based Optical Camera Communication with a 2D MIMO-OOK Scheme for IoT Networks
by Huy Nguyen and Yeng Min Jang
Electronics 2025, 14(15), 3011; https://doi.org/10.3390/electronics14153011 - 29 Jul 2025
Viewed by 763
Abstract
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as [...] Read more.
Radio frequency (RF)-based wireless systems are broadly used in communication systems such as mobile networks, satellite links, and monitoring applications. These systems offer outstanding advantages over wired systems, particularly in terms of ease of installation. However, researchers are looking for safer alternatives as a result of worries about possible health problems connected to high-frequency radiofrequency transmission. Using the visible light spectrum is one promising approach; three cutting-edge technologies are emerging in this regard: Optical Camera Communication (OCC), Light Fidelity (Li-Fi), and Visible Light Communication (VLC). In this paper, we propose a Multiple-Input Multiple-Output (MIMO) modulation technology for Internet of Things (IoT) applications, utilizing an LED array and time-domain on-off keying (OOK). The proposed system is compatible with both rolling shutter and global shutter cameras, including commercially available models such as CCTV, webcams, and smart cameras, commonly deployed in buildings and industrial environments. Despite the compact size of the LED array, we demonstrate that, by optimizing parameters such as exposure time, camera focal length, and channel coding, our system can achieve up to 20 communication links over a 20 m distance with low bit error rate. Full article
(This article belongs to the Special Issue Advances in Optical Communications and Optical Networks)
Show Figures

Figure 1

17 pages, 4504 KB  
Article
A 1000 fps High-Dynamic-Range Global Shutter CMOS Image Sensor with Full Thermometer Code Current-Steering Ramp
by Liqiang Han, Ganlin Cheng, Xu Zhang, Gengyun Wang, Weijun Pan, Yao Yao, Guihai Yu, Ruimeng Zhang, Shuaichen Mu, Songbo Wu, Hongbo Bu, Liqun Dai, Ben Fan, Dan Wang, Wei Fan and Ruiming Chen
Sensors 2025, 25(14), 4483; https://doi.org/10.3390/s25144483 - 18 Jul 2025
Viewed by 840
Abstract
We present a 1024 × 512, 1000 fps, high-dynamic-range global shutter CMOS image sensor. The pixel is based on a voltage domain global shutter architecture, featuring a pitch of 24 μm × 24 μm. Both high-gain and low-gain signals can be captured within [...] Read more.
We present a 1024 × 512, 1000 fps, high-dynamic-range global shutter CMOS image sensor. The pixel is based on a voltage domain global shutter architecture, featuring a pitch of 24 μm × 24 μm. Both high-gain and low-gain signals can be captured within a single frame. The combined dynamic range is 95 dB, and the full well capacity is 620 ke-. In this paper, we analyze the pixel noise performance as well as the non-linearity and image lag that arise from parasitic capacitance in the pixel. The ramp generator is based on a 12-bit full thermometer code current-steering DAC with high driving capability. We discuss the design considerations for the ramp generator, particularly addressing the phenomenon of non-linear response. Finally, the comparator design and the column readout noise are analyzed. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 5418 KB  
Article
TickRS: A High-Speed Gapless Signal Sampling Method for Rolling-Shutter Optical Camera Communication
by Yongfeng Hong, Xiangting Xie and Xingfa Shen
Photonics 2025, 12(7), 720; https://doi.org/10.3390/photonics12070720 - 16 Jul 2025
Viewed by 400
Abstract
Using the rolling-shutter mechanism to enhance the signal sampling frequency of Optical Camera Communication (OCC) is a low-cost solution, but its periodic sampling interruptions may cause signal loss, and existing solutions often compromise communication rate and distance. To address this, this paper proposes [...] Read more.
Using the rolling-shutter mechanism to enhance the signal sampling frequency of Optical Camera Communication (OCC) is a low-cost solution, but its periodic sampling interruptions may cause signal loss, and existing solutions often compromise communication rate and distance. To address this, this paper proposes NoGap-RS, a no-gap sampling method, theoretically addressing the signal loss issue at longer distances from a perspective of CMOS exposure timing. Experiments show that NoGap-OOK, a OCC system based on NoGap-RS and On-Off key modulation, can achieve a communication rate of 6.41 Kbps at a distance of 3 m, with a BER of 105 under indoor artificial light. This paper further proposes TickRS, a time slot division method, innovatively addressing the overlap that occurs during consecutive-row exposures to further enhance communication rate. Experiments show that TickRS-CSK, a OCC system based on TickRS and Color-Shift Key, can achieve a communication rate of 20.09 Kbps at a distance of 3.6 m, with a BER of 102 under indoor natural light. Full article
Show Figures

Figure 1

25 pages, 4232 KB  
Article
Multimodal Fusion Image Stabilization Algorithm for Bio-Inspired Flapping-Wing Aircraft
by Zhikai Wang, Sen Wang, Yiwen Hu, Yangfan Zhou, Na Li and Xiaofeng Zhang
Biomimetics 2025, 10(7), 448; https://doi.org/10.3390/biomimetics10070448 - 7 Jul 2025
Viewed by 761
Abstract
This paper presents FWStab, a specialized video stabilization dataset tailored for flapping-wing platforms. The dataset encompasses five typical flight scenarios, featuring 48 video clips with intense dynamic jitter. The corresponding Inertial Measurement Unit (IMU) sensor data are synchronously collected, which jointly provide reliable [...] Read more.
This paper presents FWStab, a specialized video stabilization dataset tailored for flapping-wing platforms. The dataset encompasses five typical flight scenarios, featuring 48 video clips with intense dynamic jitter. The corresponding Inertial Measurement Unit (IMU) sensor data are synchronously collected, which jointly provide reliable support for multimodal modeling. Based on this, to address the issue of poor image acquisition quality due to severe vibrations in aerial vehicles, this paper proposes a multi-modal signal fusion video stabilization framework. This framework effectively integrates image features and inertial sensor features to predict smooth and stable camera poses. During the video stabilization process, the true camera motion originally estimated based on sensors is warped to the smooth trajectory predicted by the network, thereby optimizing the inter-frame stability. This approach maintains the global rigidity of scene motion, avoids visual artifacts caused by traditional dense optical flow-based spatiotemporal warping, and rectifies rolling shutter-induced distortions. Furthermore, the network is trained in an unsupervised manner by leveraging a joint loss function that integrates camera pose smoothness and optical flow residuals. When coupled with a multi-stage training strategy, this framework demonstrates remarkable stabilization adaptability across a wide range of scenarios. The entire framework employs Long Short-Term Memory (LSTM) to model the temporal characteristics of camera trajectories, enabling high-precision prediction of smooth trajectories. Full article
Show Figures

Figure 1

19 pages, 2789 KB  
Article
A Proposal for a Deflection-Based Evaluation Method for Barrel Support Brackets in the Extended Application of Fire Shutters in Logistics Facilities
by Jong Won Shon, Heewon Seo, Daehoi Kim, Seungjea Lee, Sungho Hong and Subin Jung
Fire 2025, 8(7), 253; https://doi.org/10.3390/fire8070253 - 27 Jun 2025
Viewed by 582
Abstract
This study proposes a deflection-based criterion for the assessment of barrel support brackets to ensure the structural stability of large fire shutters installed in large-scale buildings such as logistics facilities. While the current extended application method in the BS EN 15269 standard allows [...] Read more.
This study proposes a deflection-based criterion for the assessment of barrel support brackets to ensure the structural stability of large fire shutters installed in large-scale buildings such as logistics facilities. While the current extended application method in the BS EN 15269 standard allows for the evaluation of the structural adequacy of the barrel—primarily based on stress analysis—this research aims to establish a more reliable design guideline by additionally considering the deflection of barrel support brackets, which may become structurally vulnerable under high-temperature conditions. To achieve this, the bracket was modeled as a cantilever beam, and deflection equations were applied. The deflection and stress were analyzed for various rectangular hollow sections. Furthermore, the support capacities at ambient temperature and at 700 °C were compared, and regression analysis was conducted to assess the Accuracy and error rates associated with different deflection limits (L/180 to L/480). The results indicate that setting the deflection limit to L/180 yields the most favorable outcome in terms of structural safety and error minimization across most conditions. It is expected that the adoption of deflection criteria for barrel support brackets in the design of large fire shutters will contribute significantly to preventing the spread of fire and ensuring structural safety. Full article
Show Figures

Figure 1

13 pages, 1142 KB  
Article
Flash 3D Imaging of Far-Field Dynamic Objects: An EMCCD-Based Polarization Modulation System
by Shengjie Wang, Xiaojia Yang, Donglin Su, Weiqi Cao and Xianhao Zhang
Sensors 2025, 25(13), 3852; https://doi.org/10.3390/s25133852 - 20 Jun 2025
Viewed by 450
Abstract
High-resolution 3D visualization of dynamic environments is critical for applications such as remote sensing. Traditional 3D imaging systems, such as lidar, rely on avalanche photodiode (APD) arrays to determine the flight time of light for each scene pixel. In this context, we introduce [...] Read more.
High-resolution 3D visualization of dynamic environments is critical for applications such as remote sensing. Traditional 3D imaging systems, such as lidar, rely on avalanche photodiode (APD) arrays to determine the flight time of light for each scene pixel. In this context, we introduce and demonstrate a high-resolution 3D imaging approach leveraging an Electron Multiplying Charge Coupled Device (EMCCD). This sensor’s low bandwidth properties allow for the use of electro-optic modulators to achieve both temporal resolution and rapid shuttering at sub-nanosecond speeds. This enables range-gated 3D imaging, which significantly enhances the signal-to-noise ratio (SNR) within our proposed framework. By employing a dual EMCCD setup, it is possible to reconstruct both a depth image and a grayscale image from a single raw data frame, thereby improving dynamic imaging capabilities, irrespective of object or platform movement. Additionally, the adaptive gate-opening range technology can further refine the range resolution of specific scene objects to as low as 10 cm. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

14 pages, 3205 KB  
Article
A 209 ps Shutter-Time CMOS Image Sensor for Ultra-Fast Diagnosis
by Houzhi Cai, Zhaoyang Xie, Youlin Ma and Lijuan Xiang
Sensors 2025, 25(12), 3835; https://doi.org/10.3390/s25123835 - 19 Jun 2025
Cited by 1 | Viewed by 772
Abstract
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image [...] Read more.
A conventional microchannel plate framing camera is typically utilized for inertial confinement fusion diagnosis. However, as a vacuum electronic device, it has inherent limitations, such as a complex structure and the inability to achieve single-line-of-sight imaging. To address these challenges, a CMOS image sensor that can be seamlessly integrated with an electronic pulse broadening system can provide a viable alternative to the microchannel plate detector. This paper introduces the design of an 8 × 8 pixel-array ultrashort shutter-time single-framing CMOS image sensor, which leverages silicon epitaxial processing and a 0.18 μm standard CMOS process. The focus of this study is on the photodiode and the readout pixel-array circuit. The photodiode, designed using the silicon epitaxial process, achieves a quantum efficiency exceeding 30% in the visible light band at a bias voltage of 1.8 V, with a temporal resolution greater than 200 ps for visible light. The readout pixel-array circuit, which is based on the 0.18 μm standard CMOS process, incorporates 5T structure pixel units, voltage-controlled delayers, clock trees, and row-column decoding and scanning circuits. Simulations of the pixel circuit demonstrate an optimal temporal resolution of 60 ps. Under the shutter condition with the best temporal resolution, the maximum output swing of the pixel circuit is 448 mV, and the output noise is 77.47 μV, resulting in a dynamic range of 75.2 dB for the pixel circuit; the small-signal responsivity is 1.93 × 10−7 V/e, and the full-well capacity is 2.3 Me. The maximum power consumption of the 8 × 8 pixel-array and its control circuits is 0.35 mW. Considering both the photodiode and the pixel circuit, the proposed CMOS image sensor achieves a temporal resolution better than 209 ps. Full article
(This article belongs to the Special Issue Ultrafast Optoelectronic Sensing and Imaging)
Show Figures

Figure 1

29 pages, 7409 KB  
Article
Quality Assessment of High-Speed Motion Blur Images for Mobile Automated Tunnel Inspection
by Chulhee Lee, Donggyou Kim and Dongku Kim
Sensors 2025, 25(12), 3804; https://doi.org/10.3390/s25123804 - 18 Jun 2025
Cited by 2 | Viewed by 1169
Abstract
This study quantitatively evaluates the impact of motion blur—caused by high-speed movement—on image quality in a mobile tunnel scanning system (MTSS). To simulate movement at speeds of up to 70 km/h, a high-speed translational motion panel was developed. Images were captured under conditions [...] Read more.
This study quantitatively evaluates the impact of motion blur—caused by high-speed movement—on image quality in a mobile tunnel scanning system (MTSS). To simulate movement at speeds of up to 70 km/h, a high-speed translational motion panel was developed. Images were captured under conditions compliant with the ISO 12233 international standard, and image quality was assessed using two metrics: blurred edge width (BEW) and the spatial frequency response at 50% contrast (MTF50). Experiments were conducted under varying shutter speeds, lighting conditions (15,000 lx and 40,000 lx), and motion speeds. The results demonstrated that increased motion speed increased BEW and decreased MTF50, indicating greater blur intensity and reduced image sharpness. Two-way analysis of variance and t-tests confirmed that shutter and motion speed significantly affected image quality. Although higher illumination levels partially improved, they also occasionally led to reduced sharpness. Field validation using MTSS in actual tunnel environments demonstrated that BEW and MTF50 effectively captured blur variations by scanning direction. This study proposes BEW and MTF50 as reliable indicators for quantitatively evaluating motion blur in tunnel inspection imagery and suggests their potential to optimize MTSS operation and improve the accuracy of automated defect detection. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

23 pages, 5923 KB  
Article
Sustainable Increase in Thermal Resistance of Window Construction: Experimental Verification and CFD Modelling of the Air Cavity Created by a Shutter
by Borys Basok, Volodymyr Novikov, Anatoliy Pavlenko, Hanna Koshlak, Svitlana Goncharuk, Oleksii Shmatok and Dmytro Davydenko
Materials 2025, 18(12), 2702; https://doi.org/10.3390/ma18122702 - 9 Jun 2025
Viewed by 906
Abstract
This study investigates, both experimentally and theoretically, the impact of incorporating window shutters on the thermal resistance of double-glazed window units, employing computational fluid dynamics (CFD) modelling. The integration of shutters, whether installed internally or externally, introduces an additional air layer that significantly [...] Read more.
This study investigates, both experimentally and theoretically, the impact of incorporating window shutters on the thermal resistance of double-glazed window units, employing computational fluid dynamics (CFD) modelling. The integration of shutters, whether installed internally or externally, introduces an additional air layer that significantly influences heat transfer between indoor and outdoor environments. This effect on the thermal performance of the transparent structure was analysed through experimental measurements under real operating conditions and numerical simulations involving fluid dynamics and energy equations for the air gaps, alongside heat conduction equations for the solid components. Fourth-kind boundary conditions, considering both radiative and conductive components of the total heat flux emanating from the building’s interior, were applied at the solid–gas interfaces. The simulation results, comparing heat transfer through double-glazed windows with and without shutters, demonstrate a substantial increase in thermal resistance, ranging from 2 to 2.5 times, upon shutter implementation. These findings underscore the effectiveness of employing shutters as a strategy to enhance the energy efficiency of windows and, consequently, the overall energy performance of buildings. This research contributes to the advancement of sustainable materials for engineering applications by providing insights into the optimisation of thermal performance in building envelopes. Full article
Show Figures

Figure 1

13 pages, 2180 KB  
Article
Wide Field-of-View Air-to-Water Rolling Shutter-Based Optical Camera Communication (OCC) Using CUDA Deep-Neural-Network Long-Short-Term-Memory (CuDNNLSTM)
by Yung-Jie Chen, Yu-Han Lin, Guo-Liang Shih, Chi-Wai Chow and Chien-Hung Yeh
Appl. Sci. 2025, 15(11), 5971; https://doi.org/10.3390/app15115971 - 26 May 2025
Cited by 1 | Viewed by 735
Abstract
Nowadays, underwater activities are becoming more and more important. As the number of underwater sensing devices grows rapidly, the amount of bandwidth needed also increases very quickly. Apart from underwater communication, direct communication across the water–air interface is also highly desirable. Air-to-water wireless [...] Read more.
Nowadays, underwater activities are becoming more and more important. As the number of underwater sensing devices grows rapidly, the amount of bandwidth needed also increases very quickly. Apart from underwater communication, direct communication across the water–air interface is also highly desirable. Air-to-water wireless transmission is crucial for sending control information or instructions from unmanned aerial vehicles (UAVs) or ground stations above the sea surface to autonomous underwater vehicles (AUVs). On the other hand, water-to-air wireless transmission is also required to transmit real-time information from AUVs or underwater sensor nodes to UAVs above the water surface. Previously, we successfully demonstrated a water-to-air optical camera-based OWC system, which is also known as optical camera communication (OCC). However, the reverse transmission (i.e., air-to-water) using OCC has not been analyzed. It is worth noting that in the water-to-air OCC system, since the camera is located in the air, the image of the light source is magnified due to diffraction. Hence, the pixel-per-symbol (PPS) decoding of the OCC pattern is easier. In the proposed air-to-water OCC system reported here, since the camera is located in the water, the image of the light source in the air will be diminished in size due to diffraction. Hence, the PPS decoding of the OCC pattern becomes more difficult. In this work, we propose and experimentally demonstrate a wide field-of-view (FOV) air-to-water OCC system using CUDA Deep-Neural-Network Long-Short-Term-Memory (CuDNNLSTM). Due to water turbulence and air turbulence affecting the AUV and UAV, a precise line-of-sight (LOS) between the AUV and the UAV is difficult to achieve. OCC can provide wide FOV without the need for precise optical alignment. Results revealed that the proposed air-to-water OCC system can support a transmission rate of 7.2 kbit/s through a still water surface, and 6.6 kbit/s through a wavy water surface; this satisfies the hard-decision forward error correction (HD-FEC) bit-error-rate (BER). Full article
(This article belongs to the Special Issue Screen-Based Visible Light Communication)
Show Figures

Figure 1

25 pages, 4496 KB  
Article
Assessment of Photogrammetric Performance Test on Large Areas by Using a Rolling Shutter Camera Equipped in a Multi-Rotor UAV
by Alba Nely Arévalo-Verjel, José Luis Lerma, Juan Pedro Carbonell-Rivera, Juan F. Prieto and José Fernández
Appl. Sci. 2025, 15(9), 5035; https://doi.org/10.3390/app15095035 - 1 May 2025
Viewed by 1722
Abstract
The generation of digital aerial photogrammetry products using unmanned aerial vehicle-digital aerial photogrammetry (UAV-DAP) has become an essential task due to the increasing use of UAVs in the world of geomatics, thanks to their low cost and spatial resolution. Therefore, it is relevant [...] Read more.
The generation of digital aerial photogrammetry products using unmanned aerial vehicle-digital aerial photogrammetry (UAV-DAP) has become an essential task due to the increasing use of UAVs in the world of geomatics, thanks to their low cost and spatial resolution. Therefore, it is relevant to explore the performance of new digital cameras equipped in UAVs using electronic rolling shutters instead of ideal mechanical or global shutter cameras to achieve accurate and reliable photogrammetric products, if possible, while minimizing workload, especially for their application in projects that require a high level of detail. In this paper, we analyse performance using oblique images along the perimeter (3D perimeter) on a flat area, i.e., with slopes of less than 3%. The area was photogrammetrically surveyed with a DJI (Dà-Jiāng Innovations) Inspire 2 multirotor UAV equipped with a Zenmuse X5S rolling shutter camera. The photogrammetric survey was accompanied by a Global Navigation Satellite System (GNSS) survey, in which dual frequency receivers were used to determine the ground control points (GCPs) and checkpoints (CPs). The study analysed different scenarios, including the combination of forward and transversal strips and oblique images. After examining the ideal scenario with the least root mean square error (RMSE), six different combinations were analysed to find the best location for the GCPs. The most significant results indicate that the optimal calibration of the camera is obtained in scenarios including oblique images, which outperform the rest of the scenarios for achieving the lowest RMSE (2.5x the GSD in Z and 3.0x the GSD in XYZ) with optimum GCPs layout; with non-ideal GCPs layout, unacceptable errors can be achieved (11.4x the GSD in XYZ), even with ideal block geometry. The UAV-DAP rolling shutter effect can only be minimised in the scenario that uses oblique images and GCPs at the edges of the overlapping zones and the perimeter. Full article
(This article belongs to the Special Issue Technical Advances in UAV Photogrammetry and Remote Sensing)
Show Figures

Figure 1

26 pages, 7266 KB  
Article
Simulation of Fire Smoke Diffusion and Personnel Evacuation in Large-Scale Complex Medical Buildings
by Jian Wang, Geng Chen, Yuyan Chen, Mingzhan Zhu, Jingyuan Zheng and Na Luo
Buildings 2025, 15(8), 1329; https://doi.org/10.3390/buildings15081329 - 17 Apr 2025
Cited by 1 | Viewed by 1053
Abstract
To address the significant problems of high fire risk and low evacuation efficiency in large and complex medical buildings, this study uses Ezhou Hospital as the empirical object to construct a multi-dimensional threat and risk assessment and fire evacuation dynamic coupling model and [...] Read more.
To address the significant problems of high fire risk and low evacuation efficiency in large and complex medical buildings, this study uses Ezhou Hospital as the empirical object to construct a multi-dimensional threat and risk assessment and fire evacuation dynamic coupling model and proposes a systematic optimization scheme to improve personnel evacuation safety. This study proposes an innovative full-chain analysis framework of “threat and risk assessment-dynamic coupling-multi-strategy optimization”. The specific methods employed include the following: (1) Using the probabilistic threat and risk assessment (PRA) method and the risk index (RII) method to identify the most unfavorable scenarios where the fire source is located in the outpatient hall (risk value C2 = 9.86). (2) Combining PyroSim and Pathfinder to construct a dynamic coupling model of fire smoke diffusion and personnel evacuation. Multiple groups, such as patients with mobility problems and rescue personnel, are added to address the limitations of traditional single-factor simulations. (3) Considering the failure of fire shutters, a two-stage optimization strategy is proposed for when the number of personnel is at its peak: the evacuation time is shortened by 23% by using internal intelligent guidance to shunt the congestion node crowd, and the addition of external fire ladders forms a multi-channel coordinated evacuation that further reduces the total evacuation time from 1780 s to 1266 s and improves the efficiency by 29%. The results show that the coupled multi-path coordination strategy and three-dimensional rescue facilities can significantly reduce the bottleneck associated with a single channel. This study provides a multi-dimensional dynamic evaluation framework and comprehensive optimization paradigm for the design of the evacuation of high-rise medical buildings and has important theoretical and technical reference values for improving the fire safety performance of public buildings and the intelligence of emergency management. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

Back to TopTop