Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,040)

Search Parameters:
Keywords = signal crosstalk

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1828 KB  
Review
New Insight into Bone Immunity in Marrow Cavity and Cancellous Bone Microenvironments and Their Regulation
by Hongxu Pu, Lanping Ding, Pinhui Jiang, Guanghao Li, Kai Wang, Jiawei Jiang and Xin Gan
Biomedicines 2025, 13(10), 2426; https://doi.org/10.3390/biomedicines13102426 - 3 Oct 2025
Abstract
Bone immunity represents a dynamic interface where skeletal homeostasis intersects with systemic immune regulation. We synthesize emerging paradigms by contrasting two functionally distinct microenvironments: the marrow cavity, a hematopoietic and immune cell reservoir, and cancellous bone, a metabolically active hub orchestrating osteoimmune interactions. [...] Read more.
Bone immunity represents a dynamic interface where skeletal homeostasis intersects with systemic immune regulation. We synthesize emerging paradigms by contrasting two functionally distinct microenvironments: the marrow cavity, a hematopoietic and immune cell reservoir, and cancellous bone, a metabolically active hub orchestrating osteoimmune interactions. The marrow cavity not only generates innate and adaptive immune cells but also preserves long-term immune memory through stromal-derived chemokines and survival factors, while cancellous bone regulates bone remodeling via macrophage-osteoclast crosstalk and cytokine gradients. Breakthroughs in lymphatic vasculature identification challenge traditional views, revealing cortical and lymphatic networks in cancellous bone that mediate immune surveillance and pathological processes such as cancer metastasis. Central to bone immunity is the neuro–immune–endocrine axis, where sympathetic and parasympathetic signaling bidirectionally modulate osteoclastogenesis and macrophage polarization. Gut microbiota-derived metabolites, including short-chain fatty acids and polyamines, reshape bone immunity through epigenetic and receptor-mediated pathways, bridging systemic metabolism with local immune responses. In disease contexts, dysregulated immune dynamics drive osteoporosis via RANKL/IL-17 hyperactivity and promote leukemic evasion through microenvironmental immunosuppression. We further propose the “brain–gut–bone axis” as a systemic regulatory framework, wherein vagus nerve-mediated gut signaling enhances osteogenic pathways, while leptin and adipokine circuits link marrow adiposity to inflammatory bone loss. These insights redefine bone as a multidimensional immunometabolic organ, integrating neural, endocrine, and microbial inputs to maintain homeostasis. By elucidating the mechanisms of immune-driven bone pathologies, this work highlights therapeutic opportunities through biomaterial-mediated immunomodulation and microbiota-targeted interventions, paving the way for next-generation treatments in osteoimmune disorders. Full article
(This article belongs to the Section Immunology and Immunotherapy)
Show Figures

Figure 1

19 pages, 4195 KB  
Article
When Fat Talks: How Adipose-Derived Extracellular Vesicles Fuel Breast Cancer
by Maria Pia Cavaleri, Tommaso Pusceddu, Lucia Sileo, Luna Ardondi, Ilaria Vitali, Ilenia Pia Cappucci, Laura Basile, Giuseppe Pezzotti, Francesco Fiorica, Letizia Ferroni and Barbara Zavan
Int. J. Mol. Sci. 2025, 26(19), 9666; https://doi.org/10.3390/ijms26199666 - 3 Oct 2025
Abstract
Adipose tissue plays a crucial role in the tumor microenvironment (TME), where its secreted extracellular vesicles (EVs) are involved in the complex signaling between tumor cells and surrounding stromal components. This study aims to unravel the mechanisms through which adipocyte-derived EVs influence breast [...] Read more.
Adipose tissue plays a crucial role in the tumor microenvironment (TME), where its secreted extracellular vesicles (EVs) are involved in the complex signaling between tumor cells and surrounding stromal components. This study aims to unravel the mechanisms through which adipocyte-derived EVs influence breast cancer (BC) progression. Human mesenchymal stem cells (hMSCs) were differentiated into adipocytes following a 21-day induction protocol that led to significant accumulation of lipid droplets within the cells. EVs were isolated from the conditioned medium of both hMSC-derived adipocytes and BC cells. Particle size distribution, morphology, and uptake into the recipient cell were investigated via nanoparticle tracking analysis, transmission electron microscopy, and fluorescence microscopy, respectively. Our results show that BC-derived EVs notably impaired cell viability and modulated the expression of key genes involved in apoptosis resistance within stromal cells. On the other hand, stromal-derived EVs significantly altered tumor cell behavior, indicating a dynamic, bidirectional exchange of bioactive signals. These findings underscore the pivotal role of EV-mediated communication in the tumor-stroma interplay, suggesting that adipocyte-cancer cell EV crosstalk contributes to the remodeling of the TME, potentially facilitating tumor progression. Full article
Show Figures

Figure 1

17 pages, 804 KB  
Review
Erythrocytes as a Source of Exerkines
by Francesco Misiti, Lavinia Falese, Alice Iannaccone and Pierluigi Diotaiuti
Int. J. Mol. Sci. 2025, 26(19), 9665; https://doi.org/10.3390/ijms26199665 - 3 Oct 2025
Abstract
Exercise activates many metabolic and signaling pathways in skeletal muscle and other tissues and cells, causing numerous systemic beneficial metabolic effects. Traditionally recognized for their principal role in oxygen (O2) transport, erythrocytes have emerged as dynamic regulators of vascular homeostasis. Beyond [...] Read more.
Exercise activates many metabolic and signaling pathways in skeletal muscle and other tissues and cells, causing numerous systemic beneficial metabolic effects. Traditionally recognized for their principal role in oxygen (O2) transport, erythrocytes have emerged as dynamic regulators of vascular homeostasis. Beyond their respiratory function, erythrocytes modulate vascular tone through crosstalk with other cells and tissues, particularly under hypoxia and physical exercise. This regulatory capacity is primarily mediated through the controlled release in the bloodstream of adenosine triphosphate (ATP) and nitric oxide (NO), two potent vasodilators that contribute significantly to matching oxygen supply with tissue metabolic demand. Emerging evidence suggests that many other erythrocyte-released molecules may act as additional factors involved in tissue-erythrocyte crosstalk. This review highlights erythrocytes as active contributors to exercise-induced adaptations through their exocrine signaling. Full article
(This article belongs to the Special Issue New Advances in Erythrocyte Biology and Functions)
Show Figures

Graphical abstract

20 pages, 1949 KB  
Article
Brassinosteroid Synthesis and Perception Differently Regulate Phytohormone Networks in Arabidopsis thaliana
by Yaroslava Bukhonska, Michael Derevyanchuk, Roberta Filepova, Jan Martinec, Petre Dobrev, Eric Ruelland and Volodymyr Kravets
Int. J. Mol. Sci. 2025, 26(19), 9644; https://doi.org/10.3390/ijms26199644 - 2 Oct 2025
Abstract
Brassinosteroids (BRs) are essential regulators of plant development and stress responses, but the distinct contributions of BR biosynthesis and signaling to hormonal crosstalk remain poorly defined. Here, we investigated the effects of the BR biosynthesis inhibitor brassinazole (BRZ) and the BR-insensitive mutant bri1-6 [...] Read more.
Brassinosteroids (BRs) are essential regulators of plant development and stress responses, but the distinct contributions of BR biosynthesis and signaling to hormonal crosstalk remain poorly defined. Here, we investigated the effects of the BR biosynthesis inhibitor brassinazole (BRZ) and the BR-insensitive mutant bri1-6 on endogenous phytohormone profiles in Arabidopsis thaliana. Using multivariate analysis and targeted hormone quantification, we show that BRZ treatment and BRI1 disruption alter hormone balance through partially overlapping but mechanistically distinct pathways. Principal component analysis (PCA) and hierarchical clustering revealed that BRZ and the bri1-6 mutation do not phenocopy each other and that BRZ still alters hormone profiles even in the bri1-6 mutant, suggesting potential BRI1-independent effects. Both BRZ treatment and the bri1-6 mutation tend to influence cytokinins and auxin conjugates divergently. On the contrary, their effects on stress-related hormones converge: BRZ decreases salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA) in the WT leaves; similarly, bri1-6 mutants show reduced SA, JA, and ABA. These results indicate that BR biosynthesis and BRI1-mediated perception may contribute independently to hormonal reprogramming, with BRZ eliciting additional effects, possibly via metabolic feedback, compensatory signaling, or off-target action. Hormone correlation analyses revealed conserved co-regulation clusters that reflect underlying regulatory modules. Altogether, our findings provide evidence for a partial uncoupling of BR levels and BR signaling and illustrate how BR pathways intersect with broader hormone networks to coordinate growth and stress responses. Full article
(This article belongs to the Special Issue Emerging Insights into Phytohormone Signaling in Plants)
23 pages, 7104 KB  
Article
A Patient-Derived Scaffold-Based 3D Culture Platform for Head and Neck Cancer: Preserving Tumor Heterogeneity for Personalized Drug Testing
by Alinda Anameriç, Emilia Reszczyńska, Tomasz Stankiewicz, Adrian Andrzejczak, Andrzej Stepulak and Matthias Nees
Cells 2025, 14(19), 1543; https://doi.org/10.3390/cells14191543 - 2 Oct 2025
Abstract
Head and neck cancer (HNC) is highly heterogeneous and difficult to treat, underscoring the need for rapid, patient-specific models. Standard three-dimensional (3D) cultures often lose stromal partners that influence therapy response. We developed a patient-derived system maintaining tumor cells, cancer-associated fibroblasts (CAFs), and [...] Read more.
Head and neck cancer (HNC) is highly heterogeneous and difficult to treat, underscoring the need for rapid, patient-specific models. Standard three-dimensional (3D) cultures often lose stromal partners that influence therapy response. We developed a patient-derived system maintaining tumor cells, cancer-associated fibroblasts (CAFs), and cells undergoing partial epithelial–mesenchymal transition (pEMT) for drug sensitivity testing. Biopsies from four HNC patients were enzymatically dissociated. CAFs were directly cultured, and their conditioned medium (CAF-CM) was collected. Cryopreserved primary tumor cell suspensions were later revived, screened in five different growth media under 2D conditions, and the most heterogeneous cultures were re-embedded in 3D hydrogels with varied gel mixtures, media, and seeding geometries. Tumoroid morphology was quantified using a perimeter-based complexity index. Viability after treatment with cisplatin or Notch modulators (RIN-1, recombination signal-binding protein for immunoglobulin κ J region (RBPJ) inhibitor; FLI-06, inhibitor) was assessed by live imaging and the water-soluble tetrazolium-8 (WST-8) assay. Endothelial Cell Growth Medium 2 (ECM-2) medium alone produced compact CAF-free spheroids, whereas ECM-2 supplemented with CAF-CM generated invasive aggregates that deposited endogenous matrix. Matrigel with this medium and single-point seeding gave the highest complexity scores. Two of the three patient tumoroids were cisplatin-sensitive, and all showed significant growth inhibition with the FLI-06 Notch inhibitor, while the RBPJ inhibitor RIN-1 induced minimal change. The optimized scaffold retains tumor–stroma crosstalk and provides patient-specific drug response data within days after operation, supporting personalized treatment selection in HNC. Full article
(This article belongs to the Special Issue 3D Cultures and Organ-on-a-Chip in Cell and Tissue Cultures)
20 pages, 1335 KB  
Review
Advances in Epicardial Biology: Insights from Development, Regeneration, and Human Cardiac Organoids
by Shasha Lyu, Alvin Gea Chen Yao, Yu Xia and Jingli Cao
J. Cardiovasc. Dev. Dis. 2025, 12(10), 389; https://doi.org/10.3390/jcdd12100389 - 2 Oct 2025
Abstract
The epicardium plays a pivotal role in heart development, regeneration, and disease response through its contributions to multiple cardiac lineages and its dynamic paracrine signaling. Recent advances in lineage tracing, single-cell technologies, and, particularly, human pluripotent stem cell (hPSC)-derived cardiac organoid models have [...] Read more.
The epicardium plays a pivotal role in heart development, regeneration, and disease response through its contributions to multiple cardiac lineages and its dynamic paracrine signaling. Recent advances in lineage tracing, single-cell technologies, and, particularly, human pluripotent stem cell (hPSC)-derived cardiac organoid models have illuminated the cellular heterogeneity, developmental plasticity, and intercellular crosstalk of epicardial cells with other cardiac cell types. These models have revealed conserved and divergent mechanisms of epicardial function across species, offering new insights into epicardial–myocardial–endothelial–immune interactions and the regulation of cardiac repair. This review highlights recent key findings from developmental and regenerative studies, integrating them with emerging data from human cardiac organoids to provide an updated framework for understanding epicardial biology and its therapeutic potential. Full article
(This article belongs to the Section Cardiac Development and Regeneration)
Show Figures

Graphical abstract

17 pages, 1269 KB  
Review
Ethylene-Triggered Rice Root System Architecture Adaptation Response to Soil Compaction
by Yuxiang Li, Bingkun Ge, Chunxia Yan, Zhi Qi, Rongfeng Huang and Hua Qin
Agriculture 2025, 15(19), 2071; https://doi.org/10.3390/agriculture15192071 - 2 Oct 2025
Abstract
Soil compaction is a major constraint on global agriculture productivity. It disrupts soil structure, reduces soil porosity and fertility, and increases mechanical impedance, thereby restricting root growth and crop yield. Recent studies on rice (Oryza sativa) reveal that the phytohormone ethylene [...] Read more.
Soil compaction is a major constraint on global agriculture productivity. It disrupts soil structure, reduces soil porosity and fertility, and increases mechanical impedance, thereby restricting root growth and crop yield. Recent studies on rice (Oryza sativa) reveal that the phytohormone ethylene serves as a primary signal and functions as a hub in orchestrating root response to soil compaction. Mechanical impedance promotes ethylene biosynthesis and compacted soil impedes ethylene diffusion, resulting in ethylene accumulation in root tissues and triggering a complex hormonal crosstalk network to orchestrate root system architectural modification to facilitate plant adaptation to compacted soil. This review summarizes the recent advances on rice root adaptation response to compacted soil and emphasizes the regulatory network triggered by ethylene, which will improve our understanding of the role of ethylene in root growth and development and provide a pathway for breeders to optimize crop performance under specific agronomic conditions. Full article
27 pages, 2302 KB  
Review
Crossroads of Iron Metabolism and Inflammation in Colorectal Carcinogenesis: Molecular Mechanisms and Therapeutic Perspectives
by Nahid Ahmadi, Gihani Vidanapathirana and Vinod Gopalan
Genes 2025, 16(10), 1166; https://doi.org/10.3390/genes16101166 - 1 Oct 2025
Abstract
Background/Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Iron metabolism and chronic inflammation are two interrelated processes that significantly influence the initiation and progression of CRC. Iron is essential for cell proliferation, but its excess promotes oxidative stress and [...] Read more.
Background/Objectives: Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide. Iron metabolism and chronic inflammation are two interrelated processes that significantly influence the initiation and progression of CRC. Iron is essential for cell proliferation, but its excess promotes oxidative stress and DNA damage, while inflammation driven by cytokine-regulated pathways accelerates tumourigenesis. We therefore conducted this narrative review to collate the available evidence on the link between iron homeostasis and inflammatory signalling in CRC and highlight potential diagnostic and therapeutic applications. Methods: This narrative review of preclinical and clinical studies explores the molecular and cellular pathways that connect iron regulation and inflammation to CRC. Key regulatory molecules, such as the transferrin receptor (TFRC), ferroportin (SLC40A1), ferritin (FTH/FTL), hepcidin, and IL-6, were reviewed. Additionally, we summarised the findings of transcriptomic, epigenomic, and proteomic studies. Relevant therapeutic approaches, including iron chelation, ferroptosis induction, and anti-inflammatory strategies, were also discussed. Results: Evidence suggests that CRC cells exhibit altered iron metabolism, marked by the upregulation of transferrin receptor (TFRC), downregulation of ferroportin, and dysregulated expression of ferritin. Inflammatory mediators such as IL-6 activate hepcidin and STAT3 signalling, which reinforce intracellular iron retention and oxidative stress. Increased immune evasion, epithelial proliferation, and genomic instability appear to be linked to the interaction between inflammation and iron metabolism. Other promising biomarkers include ferritin, hepcidin, and composite gene expression signatures; however, their clinical application remains limited. Although several preclinical studies support the use of targeted iron therapies and combination approaches with anti-inflammatory agents or immunotherapy, there is a lack of comprehensive clinical validation confirming their efficacy and safety in humans. Conclusion: Although preclinical studies suggest that iron metabolism and inflammatory signalling form an interconnected axis closely linked to CRC, translating this pathway into reliable clinical biomarkers and effective therapeutic strategies remains a significant challenge. Future biomarker-guided clinical trials are essential to determine the clinical relevance and to establish precision medicine strategies targeting the iron–inflammation crosstalk in CRC. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

21 pages, 3262 KB  
Perspective
Embryonic Signaling Pathways Shape Colorectal Cancer Subtypes: Linking Gut Development to Tumor Biology
by Kitty P. Toews, Finn Morgan Auld and Terence N. Moyana
Pathophysiology 2025, 32(4), 52; https://doi.org/10.3390/pathophysiology32040052 - 1 Oct 2025
Abstract
The morphogenesis of the primordial gut relies on signaling pathways such as Wnt, FGF, Notch, Hedgehog, and Hippo. Reciprocal crosstalk between the endoderm and mesoderm is integrated into the signaling pathways, resulting in craniocaudal patterning. These pathways are also involved in adult intestinal [...] Read more.
The morphogenesis of the primordial gut relies on signaling pathways such as Wnt, FGF, Notch, Hedgehog, and Hippo. Reciprocal crosstalk between the endoderm and mesoderm is integrated into the signaling pathways, resulting in craniocaudal patterning. These pathways are also involved in adult intestinal homeostasis including cell proliferation and specification of cell fate. Perturbations in this process can cause growth disturbances manifesting as adenomas, serrated lesions, and cancer. Significant differences have been observed between right and left colon cancers in the hindgut, and between the jejunoileum, appendix, and right colon in the midgut. The question is to what extent the embryology of the mid- and hindgut contributes to differences in the underlying tumor biology. This review examines the precursor lesions and consensus molecular subtypes (CMS) of colorectal cancer (CRC) to highlight the significance of embryology and tumor microenvironment (TME) in CRC. The three main precursor lesions, i.e., adenomas, serrated lesions, and inflammatory bowel disease-associated dysplasia, are linked to the CMS classification, which is based on transcriptomic profiling and clinical features. Both embryologic and micro-environmental underpinnings of the mid- and hindgut contribute to the differences in the tumors arising from them, and they may do so by recapitulating embryonic signaling cascades. This manifests in the range of CRC CMS and histologic cancer subtypes and in tumors that show multidirectional differentiation, the so-called stem cell carcinomas. Emerging evidence shows the limitations of CMS particularly in patients on systemic therapy who develop drug resistance. The focus is thus transitioning from CMS to specific components of the TME. Full article
(This article belongs to the Section Systemic Pathophysiology)
Show Figures

Figure 1

21 pages, 5504 KB  
Article
Propolis Modulates the Gut Microbiota–Gut Hormone–Liver AMPK Axis to Ameliorate High-Fat Diet-Induced Metabolic Disorders in Rats
by Yanru Sun, Wanwan Huang, Yingying Shang, Mohamed G. Sharaf El-Din, Hua Hang, Peng Wang, Cuiping Zhang, Yuan Huang and Kai Wang
Nutrients 2025, 17(19), 3114; https://doi.org/10.3390/nu17193114 - 30 Sep 2025
Abstract
Objectives: Emerging evidence suggests that propolis possesses significant anti-obesity properties. While gut hormones and microbiota are known to play crucial roles in obesity development, the specific mechanisms through which propolis exerts its effects via the gut hormone axis remain poorly characterized. Methods [...] Read more.
Objectives: Emerging evidence suggests that propolis possesses significant anti-obesity properties. While gut hormones and microbiota are known to play crucial roles in obesity development, the specific mechanisms through which propolis exerts its effects via the gut hormone axis remain poorly characterized. Methods: A high-fat diet (HFD) rat model was established to investigate the regulatory effects of propolis. After 10 weeks of intervention, blood serum, liver, colon tissues, and luminal contents were analyzed for metabolic parameters, gene expression of gut hormones and AMPK pathway markers, microbial community structure, and short-chain fatty acid production. Results: Propolis effectively mitigated HFD-induced metabolic disturbances, including excessive weight gain, adipose tissue accumulation, hyperlipidemia, and hepatic dysfunction. These improvements were associated with significant upregulation of the AMPK pathway. Importantly, propolis enhanced intestinal barrier integrity and differentially modulated gut hormone expression by increasing the mRNA levels of Cck, Gip, and Ghrl, and decreasing Lep and Gcg levels. 16S rRNA sequencing analysis revealed that propolis administration selectively enriched butyrate- and propionate-producing bacterial species. Correlation analysis further identified the Eubacterium brachy group as a pivotal microbial mediator in the propolis-modulated gut microbiota–gut hormone–liver AMPK axis. Conclusions: Our findings establish that propolis ameliorates obesity-related metabolic disorders by orchestrating crosstalk among gut microbiota, enteroendocrine hormones, and hepatic AMPK signaling. These results elucidate a novel mechanistic pathway in rodents; however, their direct translatability to humans requires further clinical investigation. This tripartite axis offers a mechanistic foundation for developing microbiota-targeted anti-obesity therapies. Full article
(This article belongs to the Special Issue Effect of Dietary Components on Gut Homeostasis and Microbiota)
Show Figures

Figure 1

11 pages, 1199 KB  
Article
Metabolic Determinants of Systemic Inflammation Dynamics During Hemodialysis: Insights from the Systemic Immune–Inflammation Index in a Single-Center Observational Study
by Martina Mancinelli, Federica Moscucci, Vincenza Cofini, Anna Luisa De Nino, Raffaella Bocale, Carmine Savoia, Francesco Baratta and Giovambattista Desideri
Metabolites 2025, 15(10), 651; https://doi.org/10.3390/metabo15100651 - 30 Sep 2025
Abstract
Background/Objective: Systemic inflammation is a hallmark of end-stage renal disease (ESRD) and contributes to the high burden of cardiovascular morbidity and mortality in hemodialysis (HD) patients. The systemic immune–inflammation index (SII), derived from peripheral neutrophil, lymphocyte, and platelet counts, has emerged as a [...] Read more.
Background/Objective: Systemic inflammation is a hallmark of end-stage renal disease (ESRD) and contributes to the high burden of cardiovascular morbidity and mortality in hemodialysis (HD) patients. The systemic immune–inflammation index (SII), derived from peripheral neutrophil, lymphocyte, and platelet counts, has emerged as a promising biomarker of immune–inflammatory status. This study aimed to assess the acute effect of a single HD session on systemic inflammation and to identify metabolic predictors associated with this response. Methods: In this single-center observational before–after study, 44 chronic HD patients were enrolled. Blood samples were collected immediately before and after a single HD session. SII was calculated as platelet count × neutrophil count/lymphocyte count. Subgroup analyses were conducted based on renal disease etiology and diabetic status. Multivariable linear regression models identified baseline predictors of SII variation. Results: Median SII significantly decreased post-HD in the overall cohort (from 553.4 [342.6–847.5] to 449.1 [342.6–866.6], p = 0.001), with a more pronounced reduction in patients with cardiometabolic etiologies (from 643.4 [353.3–1360.0] to 539.1 [324.8–1083.4], p = 0.007) and diabetes (from 671.1 [408.7–1469.1] to 458.3 [285.7–1184.4], p = 0.028), but not in those with nephroangiosclerosis (p = 0.182). Baseline total cholesterol (p = 0.001) and gamma-glutamyl transferase (p = 0.034) were positively associated with smaller reductions in SII, while higher baseline glycaemia predicted a greater decrease in post-dialysis SII (p = 0.021). Conclusions: HD acutely modulates systemic inflammation, as reflected by reduction in SII. The magnitude of this response is significantly influenced by individual metabolic profiles. These findings highlight the relevance of metabolic–immune crosstalk in ESRD and suggest that SII may serve as a dynamic biomarker integrating inflammatory and metabolic signals, deserving further validation in larger, outcome-driven studies. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

27 pages, 5020 KB  
Article
The S1P/S1P1 Signaling Axis Plays Regulatory Functions in the Crosstalk Between Brain-Metastasizing Melanoma Cells and Microglia
by Orit Adir, Orit Sagi-Assif, Shlomit Ben-Menachem, Isaac P. Witz and Sivan Izraely
Cancers 2025, 17(19), 3175; https://doi.org/10.3390/cancers17193175 - 29 Sep 2025
Abstract
Background/Objectives: The interaction between brain-metastasizing melanoma cells and surrounding microglia shapes the immune tumor microenvironment and influences tumor progression. Gene expression analysis revealed that sphingosine-1-phosphate receptor 1 (S1PR1), encoding the S1P1 receptor, is upregulated in microglia upon interaction with melanoma cells. [...] Read more.
Background/Objectives: The interaction between brain-metastasizing melanoma cells and surrounding microglia shapes the immune tumor microenvironment and influences tumor progression. Gene expression analysis revealed that sphingosine-1-phosphate receptor 1 (S1PR1), encoding the S1P1 receptor, is upregulated in microglia upon interaction with melanoma cells. Here, we investigated the functions of S1P1 in microglia and its contribution to melanoma–microglia crosstalk. Methods: We examined the effects of S1P1 inhibition on microglia and four brain-metastasizing human melanoma cell lines in monocultures and co-cultures using the selective S1P1 antagonist NIBR0213 and S1PR1 gene knockdown. Results: We found that melanoma-secreted IL-6 upregulated S1PR1 expression in microglia. S1P1 inhibition increased expression of CD32, CD150, and CD163 in microglia; however, CD150 and CD163 upregulation was abolished in the presence of melanoma cells. S1P1 inhibition downregulated immunosuppressive and anti-inflammatory factors in microglia, including CD274, SOCS3, TGFBR1, TGFBR2, and JunB, promoting a pro-inflammatory phenotype. It also reduced viability of both melanoma and microglia cells, inducing apoptosis in melanoma-associated microglia, possibly via downregulation of CH25H, an upstream regulator of SREBPs. In co-cultures, melanoma cells were more sensitive than microglia to NIBR0213-induced growth arrest. In 3D spheroid cultures, NIBR0213 delayed melanoma–microglia aggregation. Combined treatment with the BRAF inhibitor Vemurafenib and NIBR0213 enhanced Vemurafenib efficacy in three of four melanoma lines. Conclusions: S1P1 contributes to the immunosuppressive phenotype of microglia. Inhibiting the S1P/S1P1 axis impairs viability and crosstalk between melanoma cells and tumor-activated microglia, offering a potential therapeutic strategy for melanoma brain metastases. Full article
Show Figures

Graphical abstract

17 pages, 2330 KB  
Article
MyD88 Contributes to TLR3-Mediated NF-κB Activation and Cytokine Production in Macrophages
by Zhuodong Chai, Yuqi Zhou, Ling Yang, Yan Zhang, Sukria Hossain, Sahelosadat Hajimirzaei, Jiaqian Qi, Guoying Zhang, Yinan Wei and Zhenyu Li
Cells 2025, 14(19), 1507; https://doi.org/10.3390/cells14191507 - 27 Sep 2025
Abstract
Toll-like receptor 3 (TLR3) initiates antiviral and inflammatory responses exclusively through the adaptor protein TRIF (TIR-domain-containing adapter-inducing interferon-β). In contrast, MyD88 (myeloid differentiation primary response 88), a central adaptor for most other TLRs, is traditionally considered dispensable for TLR3 signaling. Here, we demonstrate [...] Read more.
Toll-like receptor 3 (TLR3) initiates antiviral and inflammatory responses exclusively through the adaptor protein TRIF (TIR-domain-containing adapter-inducing interferon-β). In contrast, MyD88 (myeloid differentiation primary response 88), a central adaptor for most other TLRs, is traditionally considered dispensable for TLR3 signaling. Here, we demonstrate that MyD88 directly contributes to TLR3-mediated NF-κB activation and cytokine production in macrophages. Bone marrow-derived macrophages (BMDMs) from MyD88 deficient mice exhibited significantly attenuated NF-κB activation in response to the TLR3 agonist polyinosinic–polycytidylic acid (poly(I:C)) compared to wild-type cells, as evidenced by the reduced phosphorylation of NF-κB p65 and IκBα, as well as IκBα degradation. Consistently, pro-inflammatory cytokine production, including IL-6, TNF-α, and IFN-β, was attenuated in MyD88-deficient BMDMs in vitro following stimulation by poly(I:C) or poly(A:U), another TLR3 agonist. Blood concentrations of IL-6, TNF-α, and IFN-β were significantly reduced in both TRIF-deficient mice and MyD88-deficient mice challenged by the i.p. injection of poly(I:C). Mechanistic analyses revealed that MyD88 physically associates with activated TLR3 upon poly(I:C) stimulation, and that TLR3 engagement triggered MyD88 oligomerization, which was absent in TLR3 or TRIF deficient macrophages. Our findings highlight a previously unrecognized dual-adaptor mechanism for TLR3, wherein MyD88 recruitment amplifies NF-κB signaling dynamics by bridging TLR3 to the canonical NF-κB activation cascade and robust cytokine induction. This study expands the paradigm of TLR3 signaling by establishing MyD88 as a direct contributor to TLR3-driven innate immune responses, offering new insight into cross-talk between MyD88-dependent and -independent pathways. Full article
Show Figures

Figure 1

44 pages, 9564 KB  
Review
Oxidative Stress, Inflammation, and Cellular Senescence in Neuropathic Pain: Mechanistic Crosstalk
by Bojan Stojanovic, Ivana Milivojcevic Bevc, Milica Dimitrijevic Stojanovic, Bojana S. Stojanovic, Tatjana Lazarevic, Marko Spasic, Marko Petrovic, Ivana Stefanovic, Marina Markovic, Jelena Nesic, Danijela Jovanovic, Miodrag Peulic, Ana Azanjac Arsic, Ana Lukovic, Nikola Mirkovic, Stevan Eric and Nenad Zornic
Antioxidants 2025, 14(10), 1166; https://doi.org/10.3390/antiox14101166 - 25 Sep 2025
Abstract
Neuropathic pain is a chronic condition driven by intertwined mechanisms of oxidative stress, inflammation, and cellular senescence. Nerve injury and metabolic stress elevate reactive oxygen and nitrogen species, disrupt mitochondrial function, and activate the DNA-damage response, which stabilizes p53 and induces p16/p21-mediated cell-cycle [...] Read more.
Neuropathic pain is a chronic condition driven by intertwined mechanisms of oxidative stress, inflammation, and cellular senescence. Nerve injury and metabolic stress elevate reactive oxygen and nitrogen species, disrupt mitochondrial function, and activate the DNA-damage response, which stabilizes p53 and induces p16/p21-mediated cell-cycle arrest. These events promote a senescence-associated secretory phenotype (SASP) rich in cytokines, chemokines, and prostanoids that amplify neuroimmune signaling. In the spinal dorsal horn and dorsal root ganglia, microglia and astroglia respond to redox imbalance and danger cues by engaging NF-κB and MAPK pathways, increasing COX-2–dependent prostaglandin synthesis, and releasing mediators such as IL-1β and BDNF that enhance synaptic transmission and reduce inhibitory tone through KCC2 dysfunction. At the periphery, persistent immune-glial cross-talk lowers activation thresholds of nociceptors and sustains ectopic firing, while impaired autophagy and mitophagy further exacerbate mitochondrial dysfunction and ROS production. Collectively, these processes establish a feed-forward loop in which redox imbalance triggers senescence programs and SASP, SASP perpetuates neuroinflammation, and neuroinflammation maintains central sensitization—thereby consolidating a self-sustaining redox–senescence–inflammatory circuit underlying neuropathic pain chronicity. Full article
(This article belongs to the Special Issue Chronic Pain and Oxidative Stress)
Show Figures

Figure 1

16 pages, 1507 KB  
Review
Mechanism of Melatonin in Alleviating Aluminum Toxicity in Plants: A Review
by Feige Wang, Xiaoli Li, Can Chen, Le Zhao and Yunmin Wei
Biology 2025, 14(10), 1316; https://doi.org/10.3390/biology14101316 - 23 Sep 2025
Viewed by 83
Abstract
Aluminum (Al) toxicity is a major limiting factor for plant growth and development in acidic soils. Melatonin, a plant growth regulator and signaling molecule, enhances resistance to multiple stresses. Recent studies show that melatonin alleviates Al toxicity through several complementary mechanisms. Here, we [...] Read more.
Aluminum (Al) toxicity is a major limiting factor for plant growth and development in acidic soils. Melatonin, a plant growth regulator and signaling molecule, enhances resistance to multiple stresses. Recent studies show that melatonin alleviates Al toxicity through several complementary mechanisms. Here, we first outline the physiological and molecular impacts of Al stress and the external and internal strategies plants use to cope with it. We then summarize melatonin biosynthesis and its broader roles in stress adaptation. We focus on recent advances in melatonin-mediated mitigation of Al toxicity, highlighting four principal mechanisms: (i) the activation of antioxidant defense systems, (ii) the stimulation of organic acid anion exudation that chelates Al in the rhizosphere, (iii) the modification of cell wall composition to reduce Al binding sites, and (iv) the promotion of intracellular Al sequestration. We also discuss the crosstalk between melatonin and nitric oxide, as well as interactions with phytohormone signaling. Collectively, this review comprehensively synthesizes the current understanding regarding the role of melatonin in alleviating Al toxicity in plants, offering a promising strategy for crop production in acidic environments. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

Back to TopTop