Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (214)

Search Parameters:
Keywords = single-lap joint

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3916 KB  
Article
Bond Behavior Between Fabric-Reinforced Cementitious Matrix (FRCM) Composites and Different Substrates: An Experimental Investigation
by Pengfei Ma, Shangke Yuan and Shuming Jia
J. Compos. Sci. 2025, 9(8), 407; https://doi.org/10.3390/jcs9080407 - 1 Aug 2025
Viewed by 449
Abstract
This study investigates the bond behavior of fabric-reinforced cementitious matrix (FRCM) composites with three common masonry substrates—solid clay bricks (SBs), perforated bricks (PBs), and concrete hollow blocks (HBs)—using knitted polyester grille (KPG) fabric. Through uniaxial tensile tests of the KPG fabric and FRCM [...] Read more.
This study investigates the bond behavior of fabric-reinforced cementitious matrix (FRCM) composites with three common masonry substrates—solid clay bricks (SBs), perforated bricks (PBs), and concrete hollow blocks (HBs)—using knitted polyester grille (KPG) fabric. Through uniaxial tensile tests of the KPG fabric and FRCM system, along with single-lap and double-lap shear tests, the interfacial debonding modes, load-slip responses, and composite utilization ratio were evaluated. Key findings reveal that (i) SB and HB substrates predominantly exhibited fabric slippage (FS) or matrix–fabric (MF) debonding, while PB substrates consistently failed at the matrix–substrate (MS) interface, due to their smooth surface texture. (ii) Prism specimens with mortar joints showed enhanced interfacial friction, leading to higher load fluctuations compared to brick units. PB substrates demonstrated the lowest peak stress (69.64–74.33 MPa), while SB and HB achieved comparable peak stresses (133.91–155.95 MPa). (iii) The FRCM system only achieved a utilization rate of 12–30% in fabric and reinforcement systems. The debonding failure at the matrix–substrate interface is one of the reasons that cannot be ignored, and exploring methods to improve the bonding performance between the matrix–substrate interface is the next research direction. HB bricks have excellent bonding properties, and it is recommended to prioritize their use in retrofit applications, followed by SB bricks. These findings provide insights into optimizing the application of FRCM reinforcement systems in masonry structures. Full article
Show Figures

Figure 1

36 pages, 4967 KB  
Review
Mechanical Behavior of Adhesively Bonded Joints Under Tensile Loading: A Synthetic Review of Configurations, Modeling, and Design Considerations
by Leila Monajati, Aurelian Vadean and Rachid Boukhili
Materials 2025, 18(15), 3557; https://doi.org/10.3390/ma18153557 - 29 Jul 2025
Viewed by 672
Abstract
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an [...] Read more.
This review presents a comprehensive synthesis of recent advances in the tensile performance of adhesively bonded joints, focusing on applied aspects and modeling developments rather than providing a full theoretical analysis. Although many studies have addressed individual joint types or modeling techniques, an integrated review that compares joint configurations, modeling strategies, and performance optimization methods under tensile loading remains lacking. This work addresses that gap by examining the mechanical behavior of key joint types, namely, single-lap, single-strap, and double-strap joints, and highlighting their differences in stress distribution, failure mechanisms, and structural efficiency. Modeling and simulation approaches, including cohesive zone modeling, extended finite element methods, and virtual crack closure techniques, are assessed for their predictive accuracy and applicability to various joint geometries. This review also covers material and geometric enhancements, such as adherend tapering, fillets, notching, bi-adhesives, functionally graded bondlines, and nano-enhanced adhesives. These strategies are evaluated in terms of their ability to reduce stress concentrations and improve damage tolerance. Failure modes, adhesive and adherend defects, and delamination risks are also discussed. Finally, comparative insights into different joint configurations illustrate how geometry and adhesive selection influence strength, energy absorption, and weight efficiency. This review provides design-oriented guidance for optimizing bonded joints in aerospace, automotive, and structural engineering applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

17 pages, 8715 KB  
Article
Experimental Investigation of Failure Behaviors of CFRP–Al Lap Joints with Various Configurations Under High- and Low-Temperature Conditions
by Mingzhen Wang, Qiaosheng Huang, Qingfeng Duan, Wentao Yang, Yue Cui and Hongqiang Lyu
Materials 2025, 18(15), 3467; https://doi.org/10.3390/ma18153467 - 24 Jul 2025
Viewed by 397
Abstract
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap [...] Read more.
The failure behaviors of CFR–aluminum lap joints with diverse configurations through quasi-static tensile tests were conducted at −40 °C, 25 °C, and 80 °C. Four specimen types were examined: CFRP–aluminum alloy two-bolt single-lap joints (TBSL), two-bolt double-lap joints (TBDL), two-bolt bonded–bolted hybrid single-lap joints (BBSL), and two-bolt bonded–bolted hybrid double-lap joints (BBDL). The analysis reveals that double-lap joints possess a markedly higher strength than single-lap joints. The ultimate loads of the TBSL (single-lap joints) at temperatures of −40 °C and 25 °C are 29.5% and 26.20% lower, respectively, than those of the TBDL (double-lap joints). Similarly, the ultimate loads of the BBSL (hybrid single-lap joints) at −40 °C, 25 °C, and 80 °C are 19.8%, 31.66%, and 40.05% lower, respectively, compared to the corresponding data of the TBDL. In bolted–bonded hybrid connections, the adhesive layer enhances the joint’s overall stiffness but exhibits significant temperature dependence. At room and low temperatures, the ultimate loads of the BBDL are 46.97 kN at −40 °C and 50.30 kN at 25 °C, which are significantly higher than those of the TBDL (42.24 kN and 44.63 kN, respectively). However, at high temperatures, the load–displacement curves of the BBDL and TBDL are nearly identical. This suggests that the adhesive layers are unable to provide a sufficient shear-bearing capacity due to their low modulus at elevated temperatures. This research provides valuable insights for designing composite–metal connections in aircraft structures, highlighting the impacts of different joint configurations and temperature conditions on failure modes and load-bearing capacities. Full article
Show Figures

Figure 1

28 pages, 7820 KB  
Review
Mechanisms and Performance of Composite Joints Through Adhesive and Interlocking Means—A Review
by Khishigdorj Davaasambuu, Yu Dong, Alokesh Pramanik and Animesh Kumar Basak
J. Compos. Sci. 2025, 9(7), 359; https://doi.org/10.3390/jcs9070359 - 10 Jul 2025
Viewed by 1844
Abstract
Conventional adhesively bonded joints, such as single-lap, curved-lap, wavy-lap, double-lap, stepped-lap, and scarf joints, are widely used for aerospace, automotive, and medical applications. These adhesively bonded joints exhibit different load transfer mechanisms and stress distributions within adhesive layers, which depend primarily on their [...] Read more.
Conventional adhesively bonded joints, such as single-lap, curved-lap, wavy-lap, double-lap, stepped-lap, and scarf joints, are widely used for aerospace, automotive, and medical applications. These adhesively bonded joints exhibit different load transfer mechanisms and stress distributions within adhesive layers, which depend primarily on their geometries and mechanical properties of bonded materials. As such, joint geometry and material properties play a critical role in determining the capability of the joints to withstand high loads, resist fatigue, and absorb energy under impact loading. This paper investigates the effects of geometry and material dissimilarity on the performance of both conventional bonded and interlocking joints under tensile loading based on the information available in the literature. In addition, bonding and load transfer mechanisms were analysed in detail. It was found that stress concentration often occurs at free edges of the adhesive layer due to geometric discontinuities, while most of the load is carried by these regions rather than its centre. Sharp corners further intensify resulting stresses, thereby increasing the risk of joint failure. Adhesives typically resist shear loads better than peel loads, and stiffness mismatches between adherents induce an asymmetric stress distribution. Nonetheless, similar materials promote symmetric load sharing. Among conventional joints, scarf joints provide the most uniform load distribution. In interlocking joints such as dovetail, T-slot, gooseneck, and elliptical types, the outward bending of the female component under tension can lead to mechanical failure. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

20 pages, 18136 KB  
Article
Effect of Oxidation and Silane Modifications Applied to the Bonded Material and Fibers in Carbon-Fiber-Reinforced Composite Adhesive Joints
by Iclal Avinc Akpinar, Ömer Faruk Koçyiğit and Selcuk Atasoy
Polymers 2025, 17(14), 1893; https://doi.org/10.3390/polym17141893 - 8 Jul 2025
Cited by 2 | Viewed by 637
Abstract
In carbon-fiber-reinforced composites, hydroxyl and carboxyl groups are formed on the carbon fiber surface as a result of the oxidation process applied to the fibers. These groups strengthen the interfacial bond between the fibers and the epoxy resin. In addition, the silanization process [...] Read more.
In carbon-fiber-reinforced composites, hydroxyl and carboxyl groups are formed on the carbon fiber surface as a result of the oxidation process applied to the fibers. These groups strengthen the interfacial bond between the fibers and the epoxy resin. In addition, the silanization process chemically bonds amino and glycidyl groups to the fiber surface, further improving adhesion and thus optimizing the performance of the joint. In light of this, the primary objective of the present study is to optimize the performance of adhesive joints by applying oxidation and silane modifications to the fibers added to the adhesive and the bonded metal materials. In this study, carbon fibers underwent oxidation treatment for 5, 10, and 20 min, followed by silanization with 3-aminopropyltriethoxysilane (APTES) and glycidoxypropyltrimethoxysilane (GPTMS) silane agents. Additionally, the surfaces of the bonded aluminum materials were subjected to a 10 min oxidation process, followed by silanization with APTES and GPTMS silane agents. The tensile test performance of single-lap joints, bonded using chemically surface-treated aluminum and composite adhesives containing 2 wt.% chemically treated carbon fibers, was experimentally investigated. According to the contact angle measurement results obtained in this study, aluminum materials subjected to oxidation treatment exhibited superhydrophilic behavior, whereas materials subjected to silanization displayed hydrophilic behavior. A similar trend was observed in the fibers. The performance of adhesive joints increased by approximately 14% when only the aluminum materials underwent oxidation treatment. Moreover, the addition of 2 wt.% carbon fibers to the adhesive enhanced the joint performance by approximately 31%. However, when oxidation treatments of varying durations were applied to both the aluminum materials and the fibers, the joint performance improved by approximately 35% to 40%. When silanization treatments were applied in addition to the oxidation treatments on aluminum and fiber surfaces, the joint performance increased by approximately 68% to 70%. These findings were corroborated through analyses performed using 3D profilometry and Scanning Electron Microscopy (SEM) imaging. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

18 pages, 3197 KB  
Article
The Progressive Damage Modeling of Composite–Steel Lapped Joints
by Alaa El-Sisi, Ahmed Elbelbisi, Ahmed Elkilani and Hani Salim
J. Compos. Sci. 2025, 9(7), 350; https://doi.org/10.3390/jcs9070350 - 7 Jul 2025
Viewed by 874
Abstract
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; [...] Read more.
In advanced structural applications—aerospace and automotive—fiber-laminated composite (FRP) materials are increasingly used for their superior strength-to-weight ratios, making the reliability of their mechanical joints a critical concern. Mechanically fastened joints play a major role in ensuring the structural stability of FRP Composite structures; however, accurately predicting their failure behavior remains a major challenge due to the anisotropic and heterogeneous nature of composite materials. This paper presents a progressive damage modeling approach to investigate the failure modes and joint strength of mechanically fastened carbon fiber-laminated (CFRP) composite joints. A 3D constitutive model based on continuum damage mechanics was developed and implemented within a three-dimensional finite element framework. The joint model comprises a composite plate, a steel plate, a steel washer, and steel bolts, capturing realistic assembly behavior. Both single- and double-lap joint configurations, featuring single and double bolts, were analyzed under tensile loading. The influence of clamping force on joint strength was also investigated. Model predictions were validated against existing experimental results, showing a good correlation. It was observed that double-lap joints exhibit nearly twice the strength of single-lap joints and can retain up to 85% of the strength of a plate with a hole. Furthermore, double-lap configurations support higher clamping forces, enhancing frictional resistance at the interface and load transfer efficiency. However, the clamping force must be optimized, as excessive values can induce premature damage in the composite before external loading. The stiffness of double-bolt double-lap (3DD) joints was found to be approximately three times that of single-bolt single-lap (3DS) joints, primarily due to reduced rotational flexibility. These findings provide useful insights into the design and optimization of composite bolted joints under tensile loading. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

18 pages, 10483 KB  
Article
The Effect of Low-Temperature Plasma Treatment on the Adhesive Bonding Performance of CF/PEKK Surfaces
by Liwei Wen, Zhentao Dong and Ruozhou Wang
Surfaces 2025, 8(3), 41; https://doi.org/10.3390/surfaces8030041 - 20 Jun 2025
Viewed by 592
Abstract
Polyaryletherketone (PAEK) polymers inherently exhibit low surface activity, leading to poor adhesive bonding performance when using epoxy-based adhesives. In this study, low-temperature plasma surface modification was conducted on carbon fiber-reinforced polyetherketone ketone (CF/PEKK) composites to investigate the influence of plasma treatment parameters on [...] Read more.
Polyaryletherketone (PAEK) polymers inherently exhibit low surface activity, leading to poor adhesive bonding performance when using epoxy-based adhesives. In this study, low-temperature plasma surface modification was conducted on carbon fiber-reinforced polyetherketone ketone (CF/PEKK) composites to investigate the influence of plasma treatment parameters on their lap shear strength. Surface characterization was systematically performed using scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and contact angle analysis to evaluate morphological, chemical, and wettability changes induced via plasma treatment. The results demonstrated a significant enhancement in lap shear strength after plasma treatment. Optimal bonding performance was achieved at a treatment speed of 10 mm/s and a nozzle-to-substrate distance of 5 mm, yielding a maximum shear strength of 28.28 MPa, a 238% improvement compared to the untreated control. Notably, the failure mode transitioned from interfacial fracture in the untreated sample to a mixed-mode failure dominated by cohesive failure of the adhesive and substrate. Plasma treatment substantially reduced the contact angle of CF/PEKK, indicating improved surface wettability. SEM micrographs revealed an increased micro-porous texture on the treated surface, which enhanced mechanical interlocking between the composite and adhesive. XPS analysis confirmed compositional alterations, specifically elevated oxygen-containing functional groups on the plasma-treated surface. These modifications facilitated stronger chemical bonding between CF/PEKK and the epoxy resin, thereby validating the efficacy of plasma treatment in optimizing surface chemical activity and adhesion performance. Full article
Show Figures

Graphical abstract

12 pages, 2394 KB  
Article
Numerical Analysis on Optimal Adhesive Thickness in CFRP Single-Lap Joints Considering Material Properties
by Maruri Takamura, Minori Isozaki, Shin-ichi Takeda and Jun Koyanagi
Materials 2025, 18(11), 2423; https://doi.org/10.3390/ma18112423 - 22 May 2025
Viewed by 606
Abstract
Accurately evaluating the strength of adhesively bonded joints is essential for ensuring structural reliability, but size-dependent effects remain a challenge in consistent strength assessment. This study performs finite element simulations of Single Lap Shear (SLS) tests, focusing on the local stress state at [...] Read more.
Accurately evaluating the strength of adhesively bonded joints is essential for ensuring structural reliability, but size-dependent effects remain a challenge in consistent strength assessment. This study performs finite element simulations of Single Lap Shear (SLS) tests, focusing on the local stress state at fracture initiation. The analysis considers unidirectional and quasi-isotropic carbon fiber reinforced plastic (CFRP) adherends combined with three adhesives: polyphenylene sulfide (PPS), polyether ether ketone (PEEK), and epoxy. Adhesive thicknesses ranging from 0.1 mm to 0.5 mm are evaluated. The results indicate that the optimal thickness ranges between 0.1–0.3 mm to maximize joint strength, while excessively thin or thick layers reduce performance. These findings align with experimental trends and support the development of precise design guidelines for polymer-based joints in structural applications. Full article
(This article belongs to the Special Issue Advanced Materials and Processing Technologies)
Show Figures

Figure 1

22 pages, 15055 KB  
Article
Tension Strength of Multi-Fastener, Single-Lap Joints in Flax and Jute Composite Plates Using Bolts or Rivets
by Mike R. Bambach
Materials 2025, 18(10), 2180; https://doi.org/10.3390/ma18102180 - 8 May 2025
Cited by 1 | Viewed by 460
Abstract
The behavior of joints and fasteners in fiber-epoxy composites has been researched for several decades, and many studies have demonstrated their performance in tension testing. These studies have focused nearly exclusively on synthetic fibers, such as carbon and glass. Meanwhile, natural fiber–epoxy composites [...] Read more.
The behavior of joints and fasteners in fiber-epoxy composites has been researched for several decades, and many studies have demonstrated their performance in tension testing. These studies have focused nearly exclusively on synthetic fibers, such as carbon and glass. Meanwhile, natural fiber–epoxy composites have recently received considerable attention as load-bearing members, including as columns and beams. In order for individual members to be used to create structural systems, the behavior of mechanically fastened joints in natural fiber–epoxy composites needs to be thoroughly investigated. This paper presents an experimental program of 120 single-lap joints in flax–epoxy and jute–epoxy composites. Between one and three mechanical fasteners were used in the joints, and both bolts and rivets were investigated. A variety of geometric variables were investigated, relevant to joints between load-bearing members. The results are used to demonstrate the optimum strength of multi-fastener joints in natural fiber composite structural systems. It is shown that maximum joint efficiency is achieved with larger fastener-diameter-to-width ratios, three fasteners (located along the line of action of the force), and edge-distance-to-fastener-diameter ratios greater than 2.5. Full article
Show Figures

Figure 1

16 pages, 3292 KB  
Article
Topology Optimization of Additively Manufactured Adherends for Increased Adhesive Bond Strength
by Michael Ascher and Ralf Späth
Materials 2025, 18(10), 2170; https://doi.org/10.3390/ma18102170 - 8 May 2025
Viewed by 561
Abstract
The limited build space of additive manufacturing (AM) machines constrains the maximum size of AM components, while manufacturing costs rise with geometric complexity. To enhance value and overcome size limitations, it can be more efficient to join non-AM and AM components to meet [...] Read more.
The limited build space of additive manufacturing (AM) machines constrains the maximum size of AM components, while manufacturing costs rise with geometric complexity. To enhance value and overcome size limitations, it can be more efficient to join non-AM and AM components to meet the requirements by means of a hybrid structure. Adhesive bonding is particularly suitable for such joints, as it imposes no constraints on the joining surface’s geometry or the adherend’s material. To ensure structural integrity, it is conceivable to exploit the design freedom underlying AM processes by optimizing the topology of the AM component to stress the adhesive layer homogeneously. This study explores the feasibility of this concept using the example of an axially loaded single-lap tubular joint between a carbon fiber-reinforced composite tube and an additively manufactured laser-based powder-bed-fusion aluminum alloy sleeve. The sleeve topology was optimized using the finite element method, achieving a 75 %P reduction in adhesive stress increase compared to a non-optimized sleeve. Due to the pronounced ductility of the two-component epoxy-based adhesive, the static bond strength remained unaffected, whereas fatigue life significantly improved. The findings demonstrate the feasibility of leveraging AM design freedom to enhance adhesive joint performance, providing a promising approach for hybrid structures in lightweight applications. Full article
Show Figures

Figure 1

15 pages, 3120 KB  
Article
Thermal Curing of Adhesive Joints Enabled by Precision Heating Multi-Material Additive Manufacturing
by Mattia Frascio, Matilde Minuto, Francesco Musiari, Stefano Morchio, Khalid M. Usman, Federico Dittamo, Matteo Zoppi and Massimiliano Avalle
J. Manuf. Mater. Process. 2025, 9(5), 151; https://doi.org/10.3390/jmmp9050151 - 5 May 2025
Viewed by 922
Abstract
This study explores the development of adhesive joints incorporating embedded resistive heating elements, fabricated using Multi-Material Additive Manufacturing. By embedding conductive circuits within the adherends, localized heating enables controlled curing of the adhesive, optimizing its mechanical properties according to the specific application. This [...] Read more.
This study explores the development of adhesive joints incorporating embedded resistive heating elements, fabricated using Multi-Material Additive Manufacturing. By embedding conductive circuits within the adherends, localized heating enables controlled curing of the adhesive, optimizing its mechanical properties according to the specific application. This study focused on modifying the stiffness of the adhesive in order to reduce edge effects in the joints and allow for better load distribution. The adherends were made of PLA, the resistive heating elements were fabricated using carbon black-filled conductive PLA, and an epoxy resin served as the adhesive. Thermal and mechanical characterizations were conducted, evaluating the effects of different curing temperatures on joint strength. The tensile strength for joints cured at 120 °C exhibited a 58% increase in maximum breaking force and a 144% increase in elongation at break compared to the joints cured at room temperature. These findings highlight the potential of AM-integrated resistive heating for precise adhesive curing, enabling the local tailoring of the adhesive stiffness in the overlap volume. Full article
Show Figures

Figure 1

21 pages, 12040 KB  
Article
Electrically Conductive Nanoparticle-Enhanced Epoxy Adhesives for Localised Joule Heating-Based Curing in Composite Bonding
by Karina Dragasiute, Gediminas Monastyreckis and Daiva Zeleniakiene
Polymers 2025, 17(9), 1176; https://doi.org/10.3390/polym17091176 - 25 Apr 2025
Viewed by 797
Abstract
This study investigates the application of carbon nanotube (CNT)-enhanced epoxy adhesives for localised Joule heating-based curing in composite bonding. The electrical, thermal, and mechanical properties of epoxy with 0.25–1 wt% CNT loadings were evaluated. A simple CNT alignment method using DC voltage showed [...] Read more.
This study investigates the application of carbon nanotube (CNT)-enhanced epoxy adhesives for localised Joule heating-based curing in composite bonding. The electrical, thermal, and mechanical properties of epoxy with 0.25–1 wt% CNT loadings were evaluated. A simple CNT alignment method using DC voltage showed improved electrical conductivity, greatly reducing the percolation threshold. Transient thermal analysis using finite element modelling of representative volume elements revealed that aligned CNTs led to increased localised temperatures near the CNT clusters. The model was validated with infrared thermal imaging analysis, which also showed similar non-linear heat distribution and more uniform heating under higher CNT loading. Additionally, power distribution mapping was evaluated through inverse modelling techniques, suggesting different conductivity zones and cluster distribution within the single-lap joint. The numerical and experimental results demonstrated that CNT alignment significantly enhanced localised conductivity, thereby improving curing efficiency at lower voltages. The lap shear test results showed a peak shear strength of 10.16 MPa at 0.5 wt% CNT loading, 9% higher than pure epoxy. Scanning electron microscopy analysis confirmed the formation of aligned CNT clusters, and how CNT loading affected the failure modes, transitioning from cohesive to void-rich fracture patterns at a higher wt%. These findings establish CNT-enhanced Joule heating as a viable and scalable alternative for efficient composite bonding in aerospace and structural applications. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

24 pages, 10743 KB  
Article
Investigation of Diffusion of Different Composite Materials on the Damage Caused by Axial Impact Adhesive Joints
by Dudu Mertgenç Yoldaş and Mehmet Fatih Yoldaş
J. Compos. Sci. 2025, 9(4), 188; https://doi.org/10.3390/jcs9040188 - 14 Apr 2025
Cited by 1 | Viewed by 759
Abstract
In this study, the effects of exposure to seawater on the material properties of glass fiber-reinforced polymer (GFRP) and carbon fiber-reinforced polymer (CFRP) samples were investigated. The samples were stored in seawater with a salinity of 3.3–3.7% and a temperature of 23.5 °C [...] Read more.
In this study, the effects of exposure to seawater on the material properties of glass fiber-reinforced polymer (GFRP) and carbon fiber-reinforced polymer (CFRP) samples were investigated. The samples were stored in seawater with a salinity of 3.3–3.7% and a temperature of 23.5 °C taken from the Aegean Sea in September for different periods (1, 2, 3, 6 and 15 months). The samples prepared in accordance with the ASTM D5868-01 standard were subjected to axial impact testing. In the first stage of this study, moisture retention percentages were determined, and, then, axial impact tests were performed. In the tests, a total of 36 samples bonded with single-lap adhesive were subjected to 30 Joule impact energy, and their mechanical strength was evaluated. In line with the experimental results, moisture absorption and axial impact energy values were compared in order to determine the most durable composite material connection, and the most durable connection was selected by evaluating the mechanical properties. Damage analysis on the samples was performed at the DEU Science and Technology Application and Research Center with ZEISS GEMINI SEM 560. (Oberkochen, Germany). The fracture surfaces of the CFRP and GFRP samples after gold coating were examined in detail with a scanning electron microscope, and their interface properties and internal structures were observed. The fracture toughness of GFRP specimens increased from 4.6% in a dry environment to 27.96% after 15 months in seawater. CFRP specimens increased from 4.2% in a dry environment to 11.96% after 15 months in seawater, but the increase was less pronounced compared to GFRP. According to the experimental results, CFRP samples exhibited superior mechanical performance compared to GFRP samples. Full article
Show Figures

Figure 1

21 pages, 78310 KB  
Article
Effect of Laser Power on Formation and Joining Strength of DP980-CFRP Joint Fabricated by Laser Circle Welding
by Sendong Ren, Yihao Shen, Taowei Wang, Hao Chen, Ninshu Ma and Jianguo Yang
Polymers 2025, 17(7), 997; https://doi.org/10.3390/polym17070997 - 7 Apr 2025
Cited by 1 | Viewed by 560
Abstract
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap [...] Read more.
In the present research, laser circle welding (LCW) was proposed to join dual-phase steel (DP980) and carbon fiber-reinforced plastic (CFRP). The welding appearance, cross-section of the welded joint and fracture surfaces were subjected to multi-scale characterizations. Joining strength was evaluated by the single-lap shear test. Moreover, a numerical model was established based on the in-house finite element (FE) code JWRIAN-Hybrid to reproduce the thermal process of LCW. The results showed that successful bonding was achieved with a laser power higher than 300 W. The largest joining strength increased to about 1353.2 N (12.2 MPa) with 450 W laser power and then decreased under higher heat input. While the welded joint always presented brittle fracture, the joining zone could be divided into a squeezed zone (SZ), molten zone (MZ) and decomposition zone (DZ). The morphology of CFRP and chemical bonding information were distinct in each subregion. The chemical reaction between the O-C=O bond on the CFRP surface and the -OH bond on the DP980 sheet provided the joining force between dissimilar materials. Additionally, the developed FE model was effective in predicting the interfacial maximum temperature distribution of LCW. The influence of laser power on the joining strength of LCW joints was dualistic in character. The joining strength variation reflected the competitive result between joining zone expansion and local bonding quality change. Full article
(This article belongs to the Special Issue Advanced Joining Technologies for Polymers and Polymer Composites)
Show Figures

Figure 1

13 pages, 4809 KB  
Article
Optimization of Hybrid Composite–Metal Joints: Single Pin
by Ruopu Bian, Bin Wang, Hongying Yang, Jiazhi Ren, Lujun Cui and Oluwamayokun B. Adetoro
Materials 2025, 18(7), 1664; https://doi.org/10.3390/ma18071664 - 4 Apr 2025
Viewed by 534
Abstract
Deepening the understanding of composite and metal joint methodologies applied in the aerospace industry is crucial for minimizing operational expenditures. Current investigations are focusing on innovative joining techniques that incorporate additive manufactured rivet pins. This research aims to analyze the mechanical strength of [...] Read more.
Deepening the understanding of composite and metal joint methodologies applied in the aerospace industry is crucial for minimizing operational expenditures. Current investigations are focusing on innovative joining techniques that incorporate additive manufactured rivet pins. This research aims to analyze the mechanical strength of these joints for the effective optimization of pin profiles. Through extensive study of the impact of pin geometry on joint performance, we derived the optimal pin design, considering various initial parameters with the objective of minimizing stress concentration in the pin structure. The joint configurations of metal to composite interfaces were systematically examined using finite element analysis and lap shear testing, which included a singular pin and an adhesive-bonding layer. Numerical simulations reveal that the maximum shear stress in the pin is located at the junction between the base of the pin and the metal plate. By optimizing the shape and dimensions of the pin, both the shear and axial stresses can be significantly mitigated. Following the numerical optimization process, a series of enhanced pins have been produced via additive manufacturing techniques to facilitate mechanical testing. The experimental data obtained align closely with the simulation results, thereby reinforcing the validity of the optimization. The optimal configuration for a single pin, involving a 60° angle and a total height of 3.43 mm, achieves the minimum shear stress. Based on these findings, further investigations are underway to explore optimized designs utilizing multiple pins. This paper presents the results of the single pin study, whereas the findings pertaining to the ongoing investigation on the multi-pin configuration will be disseminated in subsequent publications. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

Back to TopTop