Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (322)

Search Parameters:
Keywords = single-polarized image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 5251 KB  
Communication
High Energy Storage Performance in Bi0.46Sr0.06Na0.5TiO3/CaTiO3 Relaxor Ferroelectric Ceramics
by Yangyang Zhang, Haizhou Guo, Shuyao Zhai, Liqin Yue, Juqin Zhang, Suxia He, Ruiling Fu, Chiyu Yin and Ling Zhang
Materials 2025, 18(21), 4932; https://doi.org/10.3390/ma18214932 (registering DOI) - 28 Oct 2025
Abstract
(Bi0.5Na0.5)TiO3-based lead-free ferroelectric ceramics are among the most extensively researched energy storage materials today. In this paper, (1 − x)Bi0.46Sr0.06Na0.5TiO3−xCaTiO3 ceramics were synthesized through a solid-phase sintering method [...] Read more.
(Bi0.5Na0.5)TiO3-based lead-free ferroelectric ceramics are among the most extensively researched energy storage materials today. In this paper, (1 − x)Bi0.46Sr0.06Na0.5TiO3−xCaTiO3 ceramics were synthesized through a solid-phase sintering method by synergistically adjusting CaTiO3 components after introducing Sr2+ at the A-site. The XRD patterns revealed that all samples formed a single perovskite solid solution, with the 111 and 200 peaks shifting to higher levels as the CaTiO3 increased, indicating a gradual decrease in cell volume. The SEM images exhibited dense crystals without any apparent porosity, which were formed by the different components of the ceramics. Through energy storage, dielectric, and charge–discharge performance tests, it was found that with a 10%mol CaTiO3 addition, the samples obtained a maximum breakdown field strength of 260 kV/cm and corresponding saturation polarization strength of 32.80 μC/cm2 and thereby exhibited a reversible energy storage density valued 3.52 J/cm3. In addition, the dielectric constant varied by less than 10% within the temperature range of 63.7 °C to 132.7 °C and presented good frequency (10–250 Hz) stability at 180 kV/cm. Moreover, the ceramics demonstrated a maximum current density reaching 349.58 A/cm2 and a maximum power density of 18.90 MW/cm3 for their charge–discharge performance, all of which makes them suitable for pulse system applications. Full article
Show Figures

Figure 1

17 pages, 1454 KB  
Technical Note
PolarFormer: A Registration-Free Fusion Transformer with Polar Coordinate Position Encoding for Multi-View SAR Target Recognition
by Xiang Yu, Ying Qian, Guodong Jin, Zhe Geng and Daiyin Zhu
Remote Sens. 2025, 17(21), 3559; https://doi.org/10.3390/rs17213559 - 28 Oct 2025
Abstract
Multi-view Synthetic Aperture Radar (SAR) provides rich information for target recognition. However, fusing features from unaligned multi-view images presents challenges for existing methods. Conventional early fusion methods often rely on image registration, a process that is computationally intensive and can introduce feature distortions. [...] Read more.
Multi-view Synthetic Aperture Radar (SAR) provides rich information for target recognition. However, fusing features from unaligned multi-view images presents challenges for existing methods. Conventional early fusion methods often rely on image registration, a process that is computationally intensive and can introduce feature distortions. More recent registration-free approaches based on the Transformer architecture are constrained by standard position encodings, which were not designed to represent the rotational relationships among multi-view SAR data and thus can cause spatial ambiguity. To address this specific limitation of position encodings, we propose a registration-free fusion framework based on a spatially aware Transformer. The framework includes two key components: (1) a multi-view polar coordinate position encoding that models the geometric relationships of patches both within and across views in a unified coordinate system; and (2) a spatially aware self-attention mechanism that injects this geometric information as a learnable inductive bias. Experiments were conducted on our self-developed FAST-Vehicle dataset, which provides full 360° azimuthal coverage. The results show that our method outperforms both registration-based strategies and Transformer baselines that use conventional position encodings. This work indicates that for multi-view SAR fusion, explicitly modeling the underlying geometric relationships with a suitable position encoding is an effective alternative to physical image registration or the use of generic, single-image position encodings. Full article
Show Figures

Figure 1

15 pages, 294 KB  
Article
Conics and Transformations Defined by the Parallelians of a Triangle
by Helena Koncul, Boris Odehnal and Ivana Božić Dragun
Mathematics 2025, 13(21), 3424; https://doi.org/10.3390/math13213424 - 27 Oct 2025
Abstract
For any point P in the Euclidean plane of a triangle Δ, the six parallelians of P lie on a single conic, which shall be called the parallelian conic of P with respect to Δ. We provide a synthetic and an [...] Read more.
For any point P in the Euclidean plane of a triangle Δ, the six parallelians of P lie on a single conic, which shall be called the parallelian conic of P with respect to Δ. We provide a synthetic and an analytic proof of this fact. Then, we studied the shape of this particular conic, depending on the choice of the pivot point P. This led to the finding that the only circular parallelian conic is the first Lemoine circle. Points on the Steiner inellipse produce parabolae, and those on a certain central line yield equilateral hyperbolae. The hexagon built by the parallelians has an inconic I and the tangents of P at the parallelians define some triangles and hexagons with several circum- and inconics. Certain pairings of conics, together with in- and circumscribed polygons, give rise to different kinds of porisms. Further, the inconics and circumconics of the triangles and hexagons span exponential pencils of conics in which any pair of subsequent conics defines a new conic as the polar image of the inconic with regard to the circumconic. This allows us to construct chains of nested porisms. The trilinear representations of the centers of the appearing conics, as well as the perspectors of some deduced triangles, depending on the indeterminate coordinates of P, define some algebraic transformations that establish algebraic relations between well- and lesser-known triangle centers. We completed our studies by compiling a list of possible porisms between any pair of conics. Further, we describe the possible loci of pivot points so that the mentioned conics allow for porisms of polygons with arbitrary numbers of vertices. Full article
(This article belongs to the Section B: Geometry and Topology)
Show Figures

Figure 1

22 pages, 3491 KB  
Review
A Review of Sub-Wavelength Wire Grid Polarizers and Their Development Trends
by Bing Chen, Xiuhua Fu, Xianzhu Liu, Yonggang Pan, Suotao Dong, Ben Wang, Zhaowen Lin and Huilin Jiang
Photonics 2025, 12(11), 1046; https://doi.org/10.3390/photonics12111046 - 23 Oct 2025
Viewed by 283
Abstract
There has been a significant rise in the fabrication of polarizing elements with the rapid advancement of polarization imaging technology, coinciding with a rise in research on such elements. This article provides a comprehensive review of sub-wavelength wire grid polarizers which can be [...] Read more.
There has been a significant rise in the fabrication of polarizing elements with the rapid advancement of polarization imaging technology, coinciding with a rise in research on such elements. This article provides a comprehensive review of sub-wavelength wire grid polarizers which can be applied in different operating wavelength ranges, specifically focusing on their design, as well as their related fabrication processes and metrology methods. First, structural parameters, designed and simulated via the finite-difference time-domain (FDTD) method or rigorous coupled wave analysis (RCWA), and their impact on wire grid performance are investigated based on the effective medium theory. Second, a comprehensive overview of domestic and international studies is provided, focusing on the developments in sub-wavelength wire grid polarizers with single-layer structures and bilayer structures at different operating wavelength bands—deep ultraviolet, visible, middle- and far-infrared, and terahertz wavelength bands. Research related to polarizers with multilayer structures, simulated and carried out via the use of specific software, is also presented. Finally, the progress regarding sub-wavelength wire grid polarizer research is summarized, and future prospects are forecasted, with emphasis on material selection, wire grid structure optimization, and innovation in manufacturing processes. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

17 pages, 7451 KB  
Article
An Off-Axis Catadioptric Division of Aperture Optical System for Multi-Channel Infrared Imaging
by Jie Chen, Tong Yang, Hongbo Xie and Lei Yang
Photonics 2025, 12(10), 1008; https://doi.org/10.3390/photonics12101008 - 13 Oct 2025
Viewed by 227
Abstract
Multi-channel optical systems can provide more feature information compared to single-channel systems, making them valuable for optical remote sensing, target identification, and other applications. The division of aperture polarization imaging modality allows for the simultaneous imaging of targets in the same field of [...] Read more.
Multi-channel optical systems can provide more feature information compared to single-channel systems, making them valuable for optical remote sensing, target identification, and other applications. The division of aperture polarization imaging modality allows for the simultaneous imaging of targets in the same field of view with a single detector. To overcome the limitations of conventional refractive aperture-divided systems for miniaturization, this work proposes an off-axis catadioptric aperture-divided technique for polarization imaging. First, the design method of the off-axis reflective telescope structure is discussed. The relationship between optical parameters such as magnification, surface coefficient, and primary aberration is studied. Second, by establishing the division of the aperture optical model, the method of maximizing the field of view and aperture is determined. Finally, an off-axis catadioptric cooled aperture-divided infrared optical system with a single aperture focal length of 60 mm is shown as a specific design example. Each channel can achieve 100% cold shield efficiency, and the overall length of the telescope module can be decreased significantly. The image quality of each imaging channel is close to the diffraction limit, verifying the effectiveness and feasibility of the method. The proposed off-axis catadioptric aperture-divided design method holds potential applications in simultaneous infrared polarization imaging. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

23 pages, 11346 KB  
Article
Polarmetric Consistency Assessment and Calibration Method for Quad-Polarized ScanSAR Based on Cross-Beam Data
by Di Yin, Jitong Duan, Jili Sun, Liangbo Zhao, Xiaochen Wang, Songtao Shangguan, Lihua Zhong and Wen Hong
Remote Sens. 2025, 17(20), 3420; https://doi.org/10.3390/rs17203420 - 13 Oct 2025
Viewed by 212
Abstract
The range-dependence on polarization distortion of spaceborne polarimetric synthetic aperture radar (SAR) affects the accuracy of wide-swath polarization applications, such as environmental monitoring, sea ice classification and ocean wave inversion. Traditional calibration methods, assessing the distortion mainly based on ground experiments, suffer from [...] Read more.
The range-dependence on polarization distortion of spaceborne polarimetric synthetic aperture radar (SAR) affects the accuracy of wide-swath polarization applications, such as environmental monitoring, sea ice classification and ocean wave inversion. Traditional calibration methods, assessing the distortion mainly based on ground experiments, suffer from tedious active calibrator deployment work, which are time-consuming and cost-intensive. This paper proposes a novel polarimetric assessment and calibration method for the quad-polarized wide-swath ScanSAR imaging mode. Firstly, by using distributed target data that satisfy the system reciprocity requirement, we assess the polarization distortion matrices for a single beam in the mode. Secondly, we transfer the matrix results from one beam to another by analyzing data from the overlapping region between beams. Thirdly, we calibrate the quad-polarized data and achieve an overall assessment and calibration results. Compared to traditional calibration methods, the presented method focuses on using cross-beam (overlapping area) data to reduce the dependence on active calibrators and avoid conducting calibration work beam-by-beam. The assessment and calibration experiment is conducted on Gaofen-3 quad-polarized ScanSAR experiment mode data. The calibrated images and polarization decomposition results are compared with those from well-calibrated quad-polarized Stripmap mode data located in the same region. The results of the comparison revealed the effectiveness and accuracy of the proposed method. Full article
Show Figures

Figure 1

18 pages, 33351 KB  
Article
Polarization-Blind Image Dehazing Algorithm Based on Joint Polarization Model in Turbid Media
by Zhen Wang, Zhenduo Zhang, Rui Ma and Xueying Cao
Appl. Sci. 2025, 15(20), 10957; https://doi.org/10.3390/app152010957 - 12 Oct 2025
Viewed by 209
Abstract
To address the issue of reduced image contrast and visibility caused by turbid media, such as dense fog, this paper proposes a novel polarization-based single-image dehazing model. The model introduces a first-of-its-kind nonlinear joint polarization model for airlight and target light. This model [...] Read more.
To address the issue of reduced image contrast and visibility caused by turbid media, such as dense fog, this paper proposes a novel polarization-based single-image dehazing model. The model introduces a first-of-its-kind nonlinear joint polarization model for airlight and target light. This model is established within a Cartesian coordinate system, abstracted as an analytical geometric model. Leveraging the structural similarity principle in images, boundary constraints are applied to enhance the accuracy of target light estimation. Finally, image dehazing and enhancement are achieved using the atmospheric scattering model. Experimental results demonstrate that the proposed algorithm does not rely on dataset training, maintains the highest structural consistency, and achieves superior image restoration across various scenarios, producing results that most closely resemble natural observation. Full article
Show Figures

Figure 1

32 pages, 33744 KB  
Article
Attention-Based Enhancement of Airborne LiDAR Across Vegetated Landscapes Using SAR and Optical Imagery Fusion
by Michael Marks, Daniel Sousa and Janet Franklin
Remote Sens. 2025, 17(19), 3278; https://doi.org/10.3390/rs17193278 - 24 Sep 2025
Viewed by 581
Abstract
Accurate and timely 3D vegetation structure information is essential for ecological modeling and land management. However, these needs often cannot be met with existing airborne LiDAR surveys, whose broad-area coverage comes with trade-offs in point density and update frequency. To address these limitations, [...] Read more.
Accurate and timely 3D vegetation structure information is essential for ecological modeling and land management. However, these needs often cannot be met with existing airborne LiDAR surveys, whose broad-area coverage comes with trade-offs in point density and update frequency. To address these limitations, this study introduces a deep learning framework built on attention mechanisms, the fundamental building block of modern large language models. The framework upsamples sparse (<22 pt/m2) airborne LiDAR point clouds by fusing them with stacks of multi-temporal optical (NAIP) and L-band quad-polarized Synthetic Aperture Radar (UAVSAR) imagery. Utilizing a novel Local–Global Point Attention Block (LG-PAB), our model directly enhances 3D point-cloud density and accuracy in vegetated landscapes by learning structure directly from the point cloud itself. Results in fire-prone Southern California foothill and montane ecosystems demonstrate that fusing both optical and radar imagery reduces reconstruction error (measured by Chamfer distance) compared to using LiDAR alone or with a single image modality. Notably, the fused model substantially mitigates errors arising from vegetation changes over time, particularly in areas of canopy loss, thereby increasing the utility of historical LiDAR archives. This research presents a novel approach for direct 3D point-cloud enhancement, moving beyond traditional raster-based methods and offering a pathway to more accurate and up-to-date vegetation structure assessments. Full article
Show Figures

Graphical abstract

24 pages, 8487 KB  
Article
Morphological and Morphometric Characterization of Lycopodiaceae Spores from the Białowieża Primeval Forest Ecosystem (NE Poland)
by Konrad Wilamowski, Monika Puchlik, Tomasz Pawłowicz and Tomasz Oszako
Forests 2025, 16(9), 1437; https://doi.org/10.3390/f16091437 - 9 Sep 2025
Viewed by 558
Abstract
Spores offer the most accessible diagnostic characters for the early-divergent Lycopodiaceae. We quantified eight morphometric traits—equivalent diameter, polar length, equatorial width, projected area, perimeter, and aspect ratio—in a balanced sample of 50 spores from each of six Central European taxa (Diphasiastrum alpinum [...] Read more.
Spores offer the most accessible diagnostic characters for the early-divergent Lycopodiaceae. We quantified eight morphometric traits—equivalent diameter, polar length, equatorial width, projected area, perimeter, and aspect ratio—in a balanced sample of 50 spores from each of six Central European taxa (Diphasiastrum alpinum, D. tristachyum, D. complanatum, Lycopodium annotinum, L. clavatum, and Huperzia selago) collected in the Białowieża Primeval Forest. Integrated light-microscope and scanning-electron-microscope imaging revealed three discrete wall-ornamentation syndromes (reticulate, verrucate, and granulose) that parallel the quantitative gradients. Principal component analysis showed that a single, collinear size axis accounts for 79% of variance, situating H. selago at the large-diameter extreme (mean: 37μm) and the three Diphasiastrum species at the small-diameter pole (mean: 32–33μm). One-way ANOVA (p<1031) and PERMANOVA (R2=0.52) confirmed decisive interspecific separation that mirrors published molecular phylogenies, underscoring a strong phylogenetic signal in spore form. While trait baselines are taxonomically stable, moderate microhabitat-driven shifts indicate limited ecophenotypic plasticity. The resulting high-resolution benchmark refines palynological identification, enables rapid spore-based bioindication of demographic stress, and strengthens conservation monitoring in relic temperate forest ecosystems. Full article
(This article belongs to the Special Issue Pollen Monitoring of Forest Communities)
Show Figures

Figure 1

13 pages, 7032 KB  
Article
Frequency-Domain Gaussian Cooperative Filtering Demodulation Method for Spatially Modulated Full-Polarization Imaging Systems
by Ziyang Zhang, Pengbo Ma, Shixiao Ye, Song Ye, Wei Luo, Shu Li, Wei Xiong, Yuting Zhang, Wentao Zhang, Fangyuan Wang, Jiejun Wang, Xinqiang Wang and Niyan Chen
Photonics 2025, 12(9), 857; https://doi.org/10.3390/photonics12090857 - 26 Aug 2025
Viewed by 605
Abstract
The spatially modulated full-polarization imaging system encodes complete polarization information into a single interferogram, enabling rapid demodulation. However, traditional single Gaussian low-pass filtering cannot adequately suppress crosstalk among Stokes components, leading to reduced accuracy. To address this issue, this paper proposes a frequency-domain [...] Read more.
The spatially modulated full-polarization imaging system encodes complete polarization information into a single interferogram, enabling rapid demodulation. However, traditional single Gaussian low-pass filtering cannot adequately suppress crosstalk among Stokes components, leading to reduced accuracy. To address this issue, this paper proposes a frequency-domain Gaussian cooperative filter (FGCF) based on a divide-and-conquer strategy in the frequency domain. Specifically, the method employs six Gaussian high-pass filters to effectively identify and suppress interference signals located at different positions in the frequency domain, while utilizing a single Gaussian low-pass filter to preserve critical polarization information within the image. Through the cooperative processing of the low-pass filter response and the complementary responses of the high-pass filters, simultaneous optimization of information retention and interference suppression is achieved. Simulation and real-scene experiments show that FGCF significantly enhances demodulation quality, especially for S1, and achieves superior structural similarity compared with traditional low-pass filtering. Full article
Show Figures

Figure 1

31 pages, 3129 KB  
Review
A Review on Gas Pipeline Leak Detection: Acoustic-Based, OGI-Based, and Multimodal Fusion Methods
by Yankun Gong, Chao Bao, Zhengxi He, Yifan Jian, Xiaoye Wang, Haineng Huang and Xintai Song
Information 2025, 16(9), 731; https://doi.org/10.3390/info16090731 - 25 Aug 2025
Cited by 1 | Viewed by 1679
Abstract
Pipelines play a vital role in material transportation within industrial settings. This review synthesizes detection technologies for early-stage small gas leaks from pipelines in the industrial sector, with a focus on acoustic-based methods, optical gas imaging (OGI), and multimodal fusion approaches. It encompasses [...] Read more.
Pipelines play a vital role in material transportation within industrial settings. This review synthesizes detection technologies for early-stage small gas leaks from pipelines in the industrial sector, with a focus on acoustic-based methods, optical gas imaging (OGI), and multimodal fusion approaches. It encompasses detection principles, inherent challenges, mitigation strategies, and the state of the art (SOTA). Small leaks refer to low flow leakage originating from defects with apertures at millimeter or submillimeter scales, posing significant detection difficulties. Acoustic detection leverages the acoustic wave signals generated by gas leaks for non-contact monitoring, offering advantages such as rapid response and broad coverage. However, its susceptibility to environmental noise interference often triggers false alarms. This limitation can be mitigated through time-frequency analysis, multi-sensor fusion, and deep-learning algorithms—effectively enhancing leak signals, suppressing background noise, and thereby improving the system’s detection robustness and accuracy. OGI utilizes infrared imaging technology to visualize leakage gas and is applicable to the detection of various polar gases. Its primary limitations include low image resolution, low contrast, and interference from complex backgrounds. Mitigation techniques involve background subtraction, optical flow estimation, fully convolutional neural networks (FCNNs), and vision transformers (ViTs), which enhance image contrast and extract multi-scale features to boost detection precision. Multimodal fusion technology integrates data from diverse sensors, such as acoustic and optical devices. Key challenges lie in achieving spatiotemporal synchronization across multiple sensors and effectively fusing heterogeneous data streams. Current methodologies primarily utilize decision-level fusion and feature-level fusion techniques. Decision-level fusion offers high flexibility and ease of implementation but lacks inter-feature interaction; it is less effective than feature-level fusion when correlations exist between heterogeneous features. Feature-level fusion amalgamates data from different modalities during the feature extraction phase, generating a unified cross-modal representation that effectively resolves inter-modal heterogeneity. In conclusion, we posit that multimodal fusion holds significant potential for further enhancing detection accuracy beyond the capabilities of existing single-modality technologies and is poised to become a major focus of future research in this domain. Full article
Show Figures

Figure 1

12 pages, 11986 KB  
Article
Design of Long-Wave Fully Polarized HgCdTe Photodetector Based on Silicon Metasurface
by Bo Cheng, Xiaoming Wang, Yuxiao Zou, Guofeng Song, Kunpeng Zhai and Xiaojun Wang
Micromachines 2025, 16(8), 937; https://doi.org/10.3390/mi16080937 - 14 Aug 2025
Viewed by 827
Abstract
Polarization-sensitive photodetection is critical for advanced optical systems, yet achieving simultaneous high-fidelity recognition of the circularly polarized (CP) and linearly polarized (LP) light with compact designs remains challenging. Here, we use COMSOL 5.6 software to demonstrate a silicon metasurface-integrated MCT photodetector that resolves [...] Read more.
Polarization-sensitive photodetection is critical for advanced optical systems, yet achieving simultaneous high-fidelity recognition of the circularly polarized (CP) and linearly polarized (LP) light with compact designs remains challenging. Here, we use COMSOL 5.6 software to demonstrate a silicon metasurface-integrated MCT photodetector that resolves both CP and LP signals through a single ultrathin platform. The device deciphers LP states via four orientation-specific linear gratings for differential detection, while chiral symmetric silicon nanostructures enable direct CP discrimination with an exceptional extinction ratio of 30 dB. The proposed architecture combines two breakthroughs: (1) superior polarization reconstruction capability, achieved via the synergy of grating-induced polarization selectivity and chiral near-field enhancement, and (2) a fabrication-simplified process that eliminates multilayer stacking or complex alignment steps. This work establishes a new paradigm for miniaturized, high-performance polarization optics, with potential applications in polarization imaging, quantum communication, and hyperspectral sensing. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, Third Edition)
Show Figures

Figure 1

16 pages, 3847 KB  
Article
Water Body Extraction Methods for SAR Images Fusing Sentinel-1 Dual-Polarized Water Index and Random Forest
by Min Zhai, Huayu Shen, Qihang Cao, Xuanhao Ding and Mingzhen Xin
Sensors 2025, 25(15), 4868; https://doi.org/10.3390/s25154868 - 7 Aug 2025
Viewed by 901
Abstract
Synthetic Aperture Radar (SAR) technology has the characteristics of all-day and all-weather functionality; accordingly, it is not affected by rainy weather, overcoming the limitations of optical remote sensing, and it provides irreplaceable technical support for efficient water body extraction. To address the issues [...] Read more.
Synthetic Aperture Radar (SAR) technology has the characteristics of all-day and all-weather functionality; accordingly, it is not affected by rainy weather, overcoming the limitations of optical remote sensing, and it provides irreplaceable technical support for efficient water body extraction. To address the issues of low accuracy and unstable results in water body extraction from Sentinel-1 SAR images using a single method, a water body extraction method fusing the Sentinel-1 dual-polarized water index and random forest is proposed. This novel method enhances water extraction accuracy by integrating the results of two different algorithms, reducing the biases associated with single-method water body extraction. Taking Dalu Lake, Yinfu Reservoir, and Huashan Reservoir as the study areas, water body information was extracted from SAR images using the dual-polarized water body index, the random forest method, and the fusion method. Taking the normalized difference water body index extraction results obtained via Sentinel-2 optical images as a reference, the accuracy of different water body extraction methods when used with SAR images was quantitatively evaluated. The experimental results show that, compared with the dual-polarized water body index and the random forest method, the fusion method, on average, increased overall water body extraction accuracy and Kappa coefficients by 3.9% and 8.2%, respectively, in the Dalu Lake experimental area; by 1.8% and 3.5%, respectively, in the Yinfu Reservoir experimental area; and by 4.1% and 8.1%, respectively, in the Huashan Reservoir experimental area. Therefore, the fusion method of the dual-polarized water index and random forest effectively improves the accuracy and reliability of water body extraction from SAR images. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

30 pages, 15717 KB  
Article
Channel Amplitude and Phase Error Estimation of Fully Polarimetric Airborne SAR with 0.1 m Resolution
by Jianmin Hu, Yanfei Wang, Jinting Xie, Guangyou Fang, Huanjun Chen, Yan Shen, Zhenyu Yang and Xinwen Zhang
Remote Sens. 2025, 17(15), 2699; https://doi.org/10.3390/rs17152699 - 4 Aug 2025
Viewed by 557
Abstract
In order to achieve 0.1 m resolution and fully polarimetric observation capabilities for airborne SAR systems, the adoption of stepped-frequency modulation waveform combined with the polarization time-division transmit/receive (T/R) technique proves to be an effective technical approach. Considering the issue of range resolution [...] Read more.
In order to achieve 0.1 m resolution and fully polarimetric observation capabilities for airborne SAR systems, the adoption of stepped-frequency modulation waveform combined with the polarization time-division transmit/receive (T/R) technique proves to be an effective technical approach. Considering the issue of range resolution degradation and paired echoes caused by multichannel amplitude–phase mismatch in fully polarimetric airborne SAR with 0.1 m resolution, an amplitude–phase error estimation algorithm based on echo data is proposed in this paper. Firstly, the subband amplitude spectrum correction curve is obtained by the statistical average of the subband amplitude spectrum. Secondly, the paired-echo broadening function is obtained by selecting high-quality sample points after single-band imaging and the nonlinear phase error within the subbands is estimated via Sinusoidal Frequency Modulation Fourier Transform (SMFT). Thirdly, based on the minimum entropy criterion of the synthesized compressed pulse image, residual linear phase errors between subbands are quickly acquired. Finally, two-dimensional cross-correlation of the image slice is utilized to estimate the positional deviation between polarization channels. This method only requires high-quality data samples from the echo data, then rapidly estimates both intra-band and inter-band amplitude/phase errors by using SMFT and the minimum entropy criterion, respectively, with the characteristics of low computational complexity and fast convergence speed. The effectiveness of this method is verified by the imaging results of the experimental data. Full article
Show Figures

Graphical abstract

23 pages, 9118 KB  
Article
Scattering Characteristics of a Circularly Polarized Bessel Pincer Light-Sheet Beam Interacting with a Chiral Sphere of Arbitrary Size
by Shu Zhang, Shiguo Chen, Qun Wei, Renxian Li, Bing Wei and Ningning Song
Micromachines 2025, 16(8), 845; https://doi.org/10.3390/mi16080845 - 24 Jul 2025
Viewed by 409
Abstract
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent [...] Read more.
The scattering interaction between a circularly polarized Bessel pincer light-sheet beam and a chiral particle is investigated within the framework of generalized Lorenz–Mie theory (GLMT). The incident electric field distribution is rigorously derived via the vector angular spectrum decomposition method (VASDM), with subsequent determination of the beam-shape coefficients (BSCs) pmnu and qmnu through multipole expansion in the basis of vector spherical wave functions (VSWFs). The expansion coefficients for the scattered field (AmnsBmns) and interior field (AmnBmn) are derived by imposing boundary conditions. Simulations highlight notable variations in the scattering field, near-surface field distribution, and far-field intensity, strongly influenced by the dimensionless size parameter ka, chirality κ, and beam parameters (beam order l and beam scaling parameter α0). These findings provide insights into the role of chirality in modulating scattering asymmetry and localization effects. The results are particularly relevant for applications in optical manipulation and super-resolution imaging in single-molecule microbiology. Full article
Show Figures

Figure 1

Back to TopTop