Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = ski geometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4691 KB  
Article
Characterisation of the Contact between Cross-Country Skis and Snow: On the Multi-Scale Interaction between Ski Geometry and Ski-Base Texture
by Kalle Kalliorinne, Gustav Hindér, Joakim Sandberg, Roland Larsson, Hans-Christer Holmberg and Andreas Almqvist
Lubricants 2023, 11(10), 427; https://doi.org/10.3390/lubricants11100427 - 3 Oct 2023
Cited by 2 | Viewed by 4195
Abstract
In elite endurance sports, marginal differences in finishing times drive ongoing equipment improvement to enhance athlete performance. In cross-country skiing, researchers, since the 1930s, have faced the challenge of minimising the resistance caused by friction in the contact between skis and snow. This [...] Read more.
In elite endurance sports, marginal differences in finishing times drive ongoing equipment improvement to enhance athlete performance. In cross-country skiing, researchers, since the 1930s, have faced the challenge of minimising the resistance caused by friction in the contact between skis and snow. This study was designed to evaluate the multi-scale interaction between the macro-scale ski-camber profile and the micro-scale ski-base texture. Considerations included real contact area, average interfacial separation, and total reciprocal interfacial separation between the ski and snow, which are properties that are intimately coupled to ski–snow friction. We found that both the profile of the ski camber and the texture of the ski base play decisive roles in determining viscous friction. At the same time, the texture of the ski base exerts a greater impact on the average real contact pressure, real contact area, and minimal average interfacial separation between the ski and snow than the ski-camber profile. Full article
Show Figures

Figure 1

19 pages, 10175 KB  
Article
Characterisation of the Contact between Cross-Country Skis and Snow: A Micro-Scale Study Considering the Ski-Base Texture
by Kalle Kalliorinne, Bo N. J. Persson, Joakim Sandberg, Gustav Hindér, Roland Larsson, Hans-Christer Holmberg and Andreas Almqvist
Lubricants 2023, 11(5), 225; https://doi.org/10.3390/lubricants11050225 - 16 May 2023
Cited by 6 | Viewed by 3721
Abstract
In winter sports, the equipment often comes into contact with snow or ice, and this contact generates a force that resists motion. In some sports, such as cross-country skiing, this resistive force can significantly affect the outcome of a race, as a small [...] Read more.
In winter sports, the equipment often comes into contact with snow or ice, and this contact generates a force that resists motion. In some sports, such as cross-country skiing, this resistive force can significantly affect the outcome of a race, as a small reduction in this force can give an athlete an advantage. Researchers have examined the contact between skis and snow in detail, and to fully understand this friction, the entire ski must be studied at various scales. At the macro scale, the entire geometry of the ski is considered and the apparent contact between the ski and the snow is considered and at the micro-scale the contact between the snow and the ski-base textures. In the present work, a method for characterising the contact between the ski-base texture and virtual snow will be presented. Six different ski-base textures will be considered. Five of them are stone-ground ski bases, and three of them have longitudinal linear textures with a varying number of lines and peak-to-valley heights, and the other two are factory-ground “universal” ski bases. The sixth ski base has been fabricated by a steel-scraping procedure. In general, the results show that a ski base texture with a higher Spk value has less real contact area, and that the mutual differences can be large for surfaces with similar Sa values. The average interfacial separation is, in general, correlated with the Sa value, where a “rougher” surface exhibits a larger average interfacial separation. The results for the reciprocal average interfacial separation, which is related to the Couette type of viscous friction, were in line with the general consensus that a “rougher” texture performs better at high speed than a “smoother” one, and it was found that a texture with high Sa and Spk values resulted in a low reciprocal average interfacial separation and consequently low viscous friction. The reciprocal average interfacial separation was found to increase with increasing real contact area, indicating a correlation between the real area of contact and the Couette part of the viscous friction. Full article
Show Figures

Graphical abstract

14 pages, 4508 KB  
Article
Flexible Electrochromic Device on Polycarbonate Substrate with PEDOT:PSS and Color-Neutral TiO2 as Ion Storage Layer
by Christopher Johannes, Sven Macher, Lukas Niklaus, Marco Schott, Hartmut Hillmer, Michael Hartung and Hans-Peter Heim
Polymers 2023, 15(9), 1982; https://doi.org/10.3390/polym15091982 - 22 Apr 2023
Cited by 10 | Viewed by 3482
Abstract
Electrochromic (EC) windows on glass for thermal and glare protection in buildings, often referred to as smart (dimmable) windows, are commercially available, along with rearview mirrors or windows in aircraft cabins. Plastic-based applications, such as ski goggles, visors and car windows, that require [...] Read more.
Electrochromic (EC) windows on glass for thermal and glare protection in buildings, often referred to as smart (dimmable) windows, are commercially available, along with rearview mirrors or windows in aircraft cabins. Plastic-based applications, such as ski goggles, visors and car windows, that require lightweight, three-dimensional (3D) geometry and high-throughput manufacturing are still under development. To produce such EC devices (ECDs), a flexible EC film could be integrated into a back injection molding process, where the films are processed into compact 3D geometries in a single automized step at a low processing time. Polycarbonate (PC) as a substrate is a lightweight and robust alternative to glass due to its outstanding optical and mechanical properties. In this study, an EC film on a PC substrate was fabricated and characterized for the first time. To achieve a highly transmissive and colorless bright state, poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was used as the working electrode, while titanium dioxide (TiO2) was used as the counter electrode material. They were deposited onto ITO-coated PC films using dip- and slot-die coating, respectively. The electrodes were optically and electrochemically characterized. An ECD with a polyurethane containing gel electrolyte was investigated with regard to optical properties, switching speed and cycling behavior. The ECD exhibits a color-neutral and highly transmissive bright state with a visible light transmittance of 74% and a bluish-colored state of 64%, a fast switching speed (7 s/4 s for bleaching/coloring) and a moderately stable cycling behavior over 500 cycles with a decrease in transmittance change from 10%to 7%. Full article
(This article belongs to the Special Issue Advances in Polymer-Based Electrochromic Devices)
Show Figures

Figure 1

10 pages, 1218 KB  
Article
Coefficient of Difficulty in Running a Sports Course in Alpine Skiing
by Piotr Aschenbrenner, Włodzimierz Erdmann, Bartosz Krawczyński and Marcin Krawczyński
Appl. Sci. 2023, 13(4), 2363; https://doi.org/10.3390/app13042363 - 12 Feb 2023
Viewed by 1485
Abstract
In alpine ski disciplines, it is common for competitors to record incomplete runs. In some instances, up to 40% of competitors have failed to complete a course. Possible reasons include incorrect preparation of skiers (lack of adequate motor preparation) and poor tactical approaches. [...] Read more.
In alpine ski disciplines, it is common for competitors to record incomplete runs. In some instances, up to 40% of competitors have failed to complete a course. Possible reasons include incorrect preparation of skiers (lack of adequate motor preparation) and poor tactical approaches. However, there are also some errors in the setting of gates on a course. The aim of this paper is to determine the objective difficulty coefficient of alpine skiing competition courses, based on course geometry and the kinematic parameters of the run. This research monitored alpine skiers during the FIS World Cup. All four alpine skiing disciplines (i.e., downhill, super giant, giant slalom, and slalom) were considered. The average value of the coefficient of difficulty (W.tr) was the highest for the downhill style runs and amounted to 1.20, the super giant and the giant had comparable values of 1.13–1.14, and for the slalom, the W.tr value was the lowest at 0.97. Based on the determined coefficients of route difficulty, it is possible to derive a quantifiable metric to estimate the degree of risk associated with different sections of a course. Full article
Show Figures

Figure 1

23 pages, 18751 KB  
Article
Structure-from-Motion 3D Reconstruction of the Historical Overpass Ponte della Cerra: A Comparison between MicMac® Open Source Software and Metashape®
by Matteo Cutugno, Umberto Robustelli and Giovanni Pugliano
Drones 2022, 6(9), 242; https://doi.org/10.3390/drones6090242 - 6 Sep 2022
Cited by 18 | Viewed by 5426
Abstract
In recent years, the performance of free-and-open-source software (FOSS) for image processing has significantly increased. This trend, as well as technological advancements in the unmanned aerial vehicle (UAV) industry, have opened blue skies for both researchers and surveyors. In this study, we aimed [...] Read more.
In recent years, the performance of free-and-open-source software (FOSS) for image processing has significantly increased. This trend, as well as technological advancements in the unmanned aerial vehicle (UAV) industry, have opened blue skies for both researchers and surveyors. In this study, we aimed to assess the quality of the sparse point cloud obtained with a consumer UAV and a FOSS. To achieve this goal, we also process the same image dataset with a commercial software package using its results as a term of comparison. Various analyses were conducted, such as the image residuals analysis, the statistical analysis of GCPs and CPs errors, the relative accuracy assessment, and the Cloud-to-Cloud distance comparison. A support survey was conducted to measure 16 markers identified on the object. In particular, 12 of these were used as ground control points to scale the 3D model, while the remaining 4 were used as check points to assess the quality of the scaling procedure by examining the residuals. Results indicate that the sparse clouds obtained are comparable. MicMac® has mean image residuals equal to 0.770 pixels while for Metashape® is 0.735 pixels. In addition, the 3D errors on control points are similar: the mean 3D error for MicMac® is equal to 0.037 m with a standard deviation of 0.017 m, whereas for Metashape®, it is 0.031 m with a standard deviation equal to 0.015 m. The present work represents a preliminary study: a comparison between software packages is something hard to achieve, given the secrecy of the commercial software and the theoretical differences between the approaches. This case study analyzes an object with extremely complex geometry; it is placed in an urban canyon where the GNSS support can not be exploited. In addition, the scenario changes continuously due to the vehicular traffic. Full article
(This article belongs to the Special Issue Unconventional Drone-Based Surveying)
Show Figures

Figure 1

9 pages, 616 KB  
Article
A Comparison of ACL Injury Risk, Ski Geometry and Standing Height Parameters between Skiers with Rented and with Owned Skis
by Gerhard Ruedl, Markus Posch, Katja Tecklenburg, Alois Schranz, Martin Faulhaber, Elena Pocecco and Martin Burtscher
Int. J. Environ. Res. Public Health 2022, 19(17), 11124; https://doi.org/10.3390/ijerph191711124 - 5 Sep 2022
Cited by 4 | Viewed by 3003
Abstract
Aim: to evaluate if ACL injuries are associated with recreational skiers using rented skis and whether individual factors, ski geometry parameters and standing heights differ between skiers who rented or owned skis. A retrospective questionnaire-based, case–control study of ACL-injured and uninjured recreational skiers [...] Read more.
Aim: to evaluate if ACL injuries are associated with recreational skiers using rented skis and whether individual factors, ski geometry parameters and standing heights differ between skiers who rented or owned skis. A retrospective questionnaire-based, case–control study of ACL-injured and uninjured recreational skiers was conducted during six winter seasons. Age, sex, body height, body weight, nationality, ownership of skis, skill level, risk-taking behavior, ski length, side-cut radius, widths of the tip, waist, and tail, and the standing heights at the front and rear components of the ski binding were assessed. Additionally, ratios between ski widths and a standing height ratio were calculated. Altogether, 1780 skiers (48.9% females) with a mean age of 39.2 ± 13.0 years participated, of whom 22.0% sustained an ACL injury and 32.3% rented skis. ACL injury risk was significantly associated with rented skis (OR 3.2, 95% CI 2.5–4.0). Compared to skiers using own skis, participants who rented skis were more likely female, smaller and lighter, tourists, less skilled and more cautious. In comparison to owned skis, rented skis showed significantly lower mean values in ski length, side-cut radius, ski widths, and for the three ski widths ratios. Additionally, standing heights were significantly lower while standing height ratio was higher for rented skis. Beside individual factors, equipment-related factors should be considered when renting skis in order to reduce ACL injury risk. Full article
(This article belongs to the Section Traumas)
Show Figures

Figure 1

10 pages, 2535 KB  
Article
At the End of a Slippery Slope: A Pilot Study of Deceleration Mats for Snow Tubing
by Irving S. Scher, Lenka Stepan, Jasper E. Shealy and Christopher Stoddard
Appl. Sci. 2021, 11(21), 10501; https://doi.org/10.3390/app112110501 - 8 Nov 2021
Viewed by 3356
Abstract
On-slope pilot testing of snow tubes was conducted at two ski areas in the United States to examine the effects of deceleration mats. Snow tube and rider kinematics were measured using an instrumented bodysuit and a GPS system worn by the rider. For [...] Read more.
On-slope pilot testing of snow tubes was conducted at two ski areas in the United States to examine the effects of deceleration mats. Snow tube and rider kinematics were measured using an instrumented bodysuit and a GPS system worn by the rider. For each test, the riders descended a tubing run with minimal input and stopped in the run-out area. Snow tube and rider speeds when entering the run-out area were controlled to be approximately 9.5 m/s. Test trials were conducted with and without deceleration mats. Four deceleration mat conditions were tested, including two raised surface protuberances (ribs and projections) and two mat geometry parameters (flat and folded). The deceleration and effective coefficient of friction (COF) were determined for each trial. Data were recorded for 75 test trials with a mean (± standard deviation) speed entering the run-out area of 9.5 (±1.8) m/s. There were no significant differences in the deceleration or effective coefficient of friction between the surface protuberance conditions. The peak deceleration and effective COF for the folded mats (5.1 ± 1.6 m/s2 and 0.26 ± 0.14) was greater than for the flat (3.3 ± 0.8 m/s2 and 0.10 ± 0.07) and no mat (0.06 ± 0.3 m/s2 and 0.08 ± 0.03) conditions (all p < 0.05). Deceleration mats in run-out areas slow snow tube riders faster than without deceleration mats. Folding the deceleration mats produced greater deceleration but did not produce significantly different kinematics for the riders. Full article
(This article belongs to the Special Issue Sports Performance and Health (in Times of COVID-19))
Show Figures

Figure 1

9 pages, 232 KB  
Article
The Impact of Ski Geometry Data and Standing Height on the Risk of Falling in Recreational Alpine Skiers
by Gerhard Ruedl, Markus Posch, Klaus Greier, Martin Faulhaber and Martin Burtscher
Appl. Sci. 2021, 11(21), 9912; https://doi.org/10.3390/app11219912 - 23 Oct 2021
Viewed by 2595
Abstract
The aim of this study was to evaluate the impact of individual, equipment-related and environmental factors associated with falls among adult recreational skiers. Individual, equipment-related (ski geometry data) and environmental data were collected by questionnaire among uninjured skiers with and without reported falls [...] Read more.
The aim of this study was to evaluate the impact of individual, equipment-related and environmental factors associated with falls among adult recreational skiers. Individual, equipment-related (ski geometry data) and environmental data were collected by questionnaire among uninjured skiers with and without reported falls during the skiing day. Ski length, side cut radius, and width of the waist were directly recorded from the ski and standing height was measured using a digital sliding caliper. Absolute ski length was relativized to body height. A total of 1174 recreational skiers participated in this study, of whom 13.5% (n = 158) reported at least one fall during the skiing day. Results of the multiple logistic regression analysis found that a lower age, a very good/good fitness level, a moderate skiing speed, a lower relativized ski length, and fresh and grippy snow conditions decreased, while a lower skill level, a larger sidecut radius and an easy slope difficulty increased risk of falling on ski slopes. Besides individual and environmental factors, a lower relativized ski length and a lower sidecut radius decreased the risk of falling. Considering these ski geometry parameters when buying new skis could potentially decrease the risk of falling and thus prevent injuries in recreational skiers. Full article
(This article belongs to the Special Issue Sports Performance and Health (in Times of COVID-19))
19 pages, 6306 KB  
Article
An Improved Approach for the Control Measurements of a Ski-Flying Hill Inrun: A Case Study of Planica
by Tilen Urbančič, Oskar Sterle and Klemen Kregar
Sensors 2020, 20(9), 2680; https://doi.org/10.3390/s20092680 - 8 May 2020
Cited by 2 | Viewed by 2715
Abstract
Ski jumping hills should be prepared for competitions in accordance with project documentation in order to ensure safe and fair conditions for competitors. Geodesy/surveying is essential for guiding preparations and controlling the actual shape of the hill. In this article, we present a [...] Read more.
Ski jumping hills should be prepared for competitions in accordance with project documentation in order to ensure safe and fair conditions for competitors. Geodesy/surveying is essential for guiding preparations and controlling the actual shape of the hill. In this article, we present a methodology for the control measurements and preparation of an inrun for a ski-flying hill in Planica. On each side of the track, there is metal tube that guides the trolley, which mills tracks into the ice. A special platform containing three measuring prisms was designed to control the position of the tubes. The proposed method was thoroughly analyzed in terms of its measurement quality and compared to previously used methodologies. The empirical results suggest that our proposed platform provides inrun geometry with a higher quality than previously used methods. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop