Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,649)

Search Parameters:
Keywords = skin model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2045 KB  
Article
Comparative Analysis of Polyphenol-Rich Extracts from Hamamelis virginiana Leaves and Bark: ROS Scavenging and Anti-Inflammatory Effects on Skin Cells
by Magdalena Wójciak, Wiktoria Pacuła, Katarzyna Tyszczuk-Rotko, Aleksandra Ziemlewska, Martyna Zagórska-Dziok, Zofia Nizioł-Łukaszewska, Rafał Patryn, Anna Pacian and Ireneusz Sowa
Molecules 2025, 30(17), 3572; https://doi.org/10.3390/molecules30173572 (registering DOI) - 31 Aug 2025
Abstract
Hamamelis virginiana (witch hazel) is traditionally used in dermatology for its antibacterial and anti-inflammatory effects. However, the number of studies on its chemical composition and potentials in skin protection remains limited. This study aimed to investigate the qualitative and quantitative composition of polyphenolic [...] Read more.
Hamamelis virginiana (witch hazel) is traditionally used in dermatology for its antibacterial and anti-inflammatory effects. However, the number of studies on its chemical composition and potentials in skin protection remains limited. This study aimed to investigate the qualitative and quantitative composition of polyphenolic compounds in the leaves and bark of the plant, as well as to explore their antioxidant, anti-inflammatory, and extracellular matrix (ECM)-protective activities in skin-relevant cell models. Human dermal fibroblasts and keratinocytes were exposed to oxidative and inflammatory stimuli and pretreated with leaf and bark extracts. ROS levels, antioxidant enzyme activity (SOD, GPx, CAT), pro-inflammatory cytokines (IL-6, IL-1β, TNF-α), and inhibition of collagenase, hyaluronidase, and elastase were assessed. Both extracts strongly reduced ROS levels, enhanced SOD activity, and significantly decreased pro-inflammatory cytokines. Bark extract also exhibited potent inhibitory activity against collagenase and elastase. UPLC-DAD-MS analysis revealed that both plant parts contained high levels of tannins; however, the leaf extract showed a more diverse composition, including more complex tannin forms and a significant amount of flavonoids from the quercetin and kaempferol class. In conclusion, H. virginiana leaf and bark extracts demonstrate multifunctional antioxidant and anti-inflammatory properties, supporting their potential use in cosmeceuticals and dermatological formulations targeting skin aging and inflammation. Full article
27 pages, 5798 KB  
Article
Bioengineered Chitosan–Collagen–Honey Sponges: Physicochemical, Antibacterial, and In Vitro Healing Properties for Enhanced Wound Healing and Infection Control
by David Servín de la Mora-López, Leticia Olivera-Castillo, Jaime López-Cervantes, Dalia I. Sánchez-Machado, Jesús Fernando Ayala-Zavala, Herlinda Soto-Valdez and Tomás J. Madera-Santana
Polymers 2025, 17(17), 2379; https://doi.org/10.3390/polym17172379 (registering DOI) - 31 Aug 2025
Abstract
Bacterial-mediated infections represent a major risk factor for chronic wounds. Numerous polymeric dressings have been proposed to reduce this incidence and promote wound healing. In the present investigation, chitosan/collagen/honey-based sponges were prepared by freeze-drying. The effect of honey incorporation at different concentrations on [...] Read more.
Bacterial-mediated infections represent a major risk factor for chronic wounds. Numerous polymeric dressings have been proposed to reduce this incidence and promote wound healing. In the present investigation, chitosan/collagen/honey-based sponges were prepared by freeze-drying. The effect of honey incorporation at different concentrations on the physicochemical and antibacterial properties of the sponges was evaluated. The SEM images showed that the surface and cross-sections of all samples had a porous structure. The pore size gradually increased in the range of 78.14 to 126.9 μm due to the increase in honey content in the sponges. This property resulted in considerably higher porosity degrees (79.90–90.13%) and absorption rates (ranges of 1357–1665% in deionized water and 865–1938% in PBS solution) in honey-loaded systems. Conversely, the honey composite formulations exhibited a reduction in permeability, with WVTR values ranging from 131.01 to 99.39 gh−1m−2 and values of WVP from 0.3255 to 0.2118 gm−1d−1mm Hg−1. The mechanical properties showed that adding honey made the sponges more flexible (12.49–7.95% MPa) but decreased elongation rates in the sponges (16.36–7.56%) due to higher pore heterogeneity. The antibacterial tests indicated that all treatments had inhibitory effects against S. aureus, P. aeruginosa, E. coli, and L. monocytogenes. The results from cells viability assays and in vitro healing models using human keratinocytes demonstrate that chitosan/collagen/honey sponges represent a potential alternative for applications such as wound dressings to help treat skin ulcers. The physicochemical, antibacterial, and biocompatibility properties of chitosan/collagen/honey sponges indicated their potential as a promising alternative for clinical use. Full article
(This article belongs to the Special Issue Development and Application of Polymer Scaffolds, 2nd Volume)
Show Figures

Figure 1

56 pages, 32694 KB  
Article
Experimental Validation of Time-Explicit Ultrasound Propagation Models with Sound Diffusivity or Viscous Attenuation in Biological Tissues Using COMSOL Multiphysics
by Nuno A. T. C. Fernandes, Shivam Sharma, Ana Arieira, Betina Hinckel, Filipe Silva, Ana Leal and Óscar Carvalho
Bioengineering 2025, 12(9), 946; https://doi.org/10.3390/bioengineering12090946 (registering DOI) - 31 Aug 2025
Abstract
Ultrasonic wave attenuation in biological tissues arises from complex interactions between mechanical, structural, and fluidic properties, making it essential to identify dominant mechanisms for accurate simulation and device design. This work introduces a novel integration of experimentally measured tissue parameters into time-explicit nonlinear [...] Read more.
Ultrasonic wave attenuation in biological tissues arises from complex interactions between mechanical, structural, and fluidic properties, making it essential to identify dominant mechanisms for accurate simulation and device design. This work introduces a novel integration of experimentally measured tissue parameters into time-explicit nonlinear acoustic wave simulations, in which the equations are directly solved in the time domain using an explicit solver. This approach captures the full transient waveform without relying on frequency-domain simplifications, offering a more realistic representation of ultrasound propagation in heterogeneous media. The study estimates both sound diffusivity and viscous damping parameters (dynamic and bulk viscosity) for a broad range of ex vivo tissues (skin, adipose tissue, skeletal muscle, trabecular/cortical bone, liver, myocardium, kidney, tendon, ligament, cartilage, and gray/white brain matter). Four regression models (power law, linear, exponential, logarithmic) were applied to characterize their frequency dependence between 0.5 and 5 MHz. Results show that attenuation is more strongly driven by bulk viscosity than dynamic viscosity, particularly in fluid-rich tissues such as liver and myocardium, where compressional damping dominates. The power-law model consistently provided the best fit for all attenuation metrics, revealing a scale-invariant frequency relationship. Tissues such as cartilage and brain showed weaker viscous responses, suggesting the need for alternative modeling approaches. These findings not only advance fundamental understanding of attenuation mechanisms but also provide validated parameters and modeling strategies to improve predictive accuracy in therapeutic ultrasound planning and the design of non-invasive, tissue-specific acoustic devices. Full article
14 pages, 2478 KB  
Article
Protective Effect of a Highly Enriched Nacre-Derived Neutral Polysaccharide Fraction on D-Galactose-Induced Pancreatic Dysfunction
by Heng Zhang and Yasushi Hasegawa
Molecules 2025, 30(17), 3555; https://doi.org/10.3390/molecules30173555 (registering DOI) - 30 Aug 2025
Abstract
Nacre, the iridescent inner layer of mollusk shells, has long been traditionally used in medicine. While we have previously demonstrated its anti-aging effects on muscle and skin, its impact on pancreatic dysfunction and glucose metabolism remains unclear. In this study, we aimed to [...] Read more.
Nacre, the iridescent inner layer of mollusk shells, has long been traditionally used in medicine. While we have previously demonstrated its anti-aging effects on muscle and skin, its impact on pancreatic dysfunction and glucose metabolism remains unclear. In this study, we aimed to isolate and identify an active component from nacre extract that improves glucose metabolism and to evaluate its potential to prevent or ameliorate pancreatic dysfunction and glucose metabolic abnormalities in a D-galactose-induced aging mouse model. A polysaccharide component was successfully isolated using a combination of reverse-phase and ion-exchange chromatography. Structural analyses revealed that it was primarily composed of glucose, mannose, and rhamnose, which together accounted for approximately 87% of the total monosaccharide content. Further characterization by FT-IR spectroscopy and MALDI-TOF-MS confirmed its identity as a neutral polysaccharide with glycosidic linkages and an estimated molecular weight of approximately 5000 Da. Intraperitoneal administration of this polysaccharide significantly improved glucose tolerance and prevented a decline in serum insulin levels in D-galactose-induced aging mice. Immunohistochemical analysis of pancreatic tissues revealed that the polysaccharide preserved insulin expression and suppressed the D-galactose-induced upregulation of cellular senescence and apoptosis markers. These findings suggest that this nacre-derived polysaccharide effectively mitigates pancreatic dysfunction and glucose metabolic dysfunction, indicating its potential as a natural therapeutic agent for age-related metabolic disorders. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

22 pages, 3599 KB  
Article
The Neurotropic Activity of Novel Dermorphin Analogs Active at Systemic and Noninvasive Administration
by Vladislav Deigin, Nikolay Korobov, Olga Volpina, Natalia Linkova, Anastasiia Diatlova, Dmitrii Medvedev, Alexander Krasichkov and Victoria Polyakova
Int. J. Mol. Sci. 2025, 26(17), 8437; https://doi.org/10.3390/ijms26178437 (registering DOI) - 29 Aug 2025
Abstract
The neuropeptide’s multifaceted involvement in various components of neural homeostasis impacts pain and behavioral regulation. One of the highly potent neuropeptides is dermorphin, extracted from the skin of the Amazon frog (Phyllomedusa sauvagei). The unique feature of dermorphin is the D-Ala [...] Read more.
The neuropeptide’s multifaceted involvement in various components of neural homeostasis impacts pain and behavioral regulation. One of the highly potent neuropeptides is dermorphin, extracted from the skin of the Amazon frog (Phyllomedusa sauvagei). The unique feature of dermorphin is the D-Ala residue in its sequence, which has inspired researchers to search for dermorphin analogs for use as pharmaceuticals. The primary objective of this study is to synthesize several new linear and cyclic dermorphin analogs and evaluate them as potential non-invasive analgesics. By exploring our method for converting linear peptides into 2,5-diketopiperazine(2,5-DKP) derivatives, which stabilize peptide structures, we synthesize several new dermorphin linear peptides and chimeric cyclopeptidomimetics. These compounds were tested in vitro and in vivo to determine their biological activities and potential applicability as pharmaceuticals. For the evaluation of in vitro opioid activity, the “Guinea Pig Ileum” (GPI) test was used. D2 showed the highest activity, and cyclopeptides D3 and D4 showed high activity. We can assume that dermorphin analogues D2, D3, and D4 are potent agonists of µ-type opioid receptors and have high opioid activity. However, this needs to be verified using molecular modeling methods in further research. The analgesic effects of dermorphins have been evaluated in the “Hot-Plate” and “Tail-Flick” tests. In rats, D2 dermorphin analogues demonstrated dose-dependent analgesic effect in the “Water Tail-Flick” test after intranasal administration. A smaller dose of 0.5 µg/kg resulted in 40% analgesia and a short-term state of stupor. The maximum long-lasting analgesia was observed at a dose of 1.0 µg/kg, which induced complete stupor. The analgesic effect of peptide D2 after intraperitoneal administration at a 5.0 mg/kg dose was over 50%. The “Open-Field” test demonstrated a dose-dependent (15, 50, 150 μg/kg) peptide D2 suppression effect on behavioural reactions in rats following intranasal administration. A new modification of linear peptides, combined with a 2,5-DKP scaffold (D3 and D4), proved promising for oral use based on the results of analgesic effect evaluation in mice following intragastric administration. Full article
(This article belongs to the Special Issue Novel Therapeutic Strategies for Neurodegenerative Disease)
Show Figures

Figure 1

23 pages, 1961 KB  
Article
Validation of Madecassoside Synergy Significantly Enhanced Cryptotanshinone’s Therapeutic Efficacy Against Acne Vulgaris
by Yaling Guo, Xiaobin Yang, Lifeng Tang, Tao Liang, Rongshen Xiao and Qiang Liu
Bioengineering 2025, 12(9), 935; https://doi.org/10.3390/bioengineering12090935 - 29 Aug 2025
Abstract
Current acne therapies face major limitations, including antibiotic resistance and skin irritancy. In this study, a synergistic strategy combining cryptotanshinone and madecassoside was developed through functional complementarity. Antibacterial activity against Cutibacterium acnes was evaluated using minimum inhibitory concentration (MIC) and inhibition zone assays, [...] Read more.
Current acne therapies face major limitations, including antibiotic resistance and skin irritancy. In this study, a synergistic strategy combining cryptotanshinone and madecassoside was developed through functional complementarity. Antibacterial activity against Cutibacterium acnes was evaluated using minimum inhibitory concentration (MIC) and inhibition zone assays, while cytotoxicity was assessed using human keratinocytes (HaCaTs). Anti-inflammatory efficacy was quantified by measuring tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and prostaglandin E2 (PGE2) in lipopolysaccharide-stimulated macrophages and a copper sulfate-induced zebrafish inflammatory model. Systemic safety was examined in zebrafish models (developmental toxicity and sodium dodecyl sulfate-induced irritation). Finally, macroscopic severity, histopathology, and serum cytokines were used to assess an oleic acid-induced rat acne model. Cryptotanshinone inhibited Cutibacterium acnes (minimum inhibitory concentration = 62.5 μg/mL) but exhibited cytotoxicity (>5 μg/mL) and irritancy (≥1000 μg/mL). Madecassoside eliminated cryptotanshinone-induced cytotoxicity and reduced irritation. Importantly, the combination maintained antibacterial efficacy while synergistically enhancing anti-inflammatory effects, achieving a 94% reduction in follicular hyperkeratosis compared with 39% for cryptotanshinone alone (p < 0.01), alongside normalization of histopathology and cytokine levels. In conclusion, madecassoside functionally complements cryptotanshinone by neutralizing its cytotoxicity and irritancy, enabling a safe, synergistic therapy that concurrently targets antibacterial and anti-inflammatory pathways in acne pathogenesis. Full article
15 pages, 788 KB  
Article
Deep Ensemble Learning for Multiclass Skin Lesion Classification
by Tsu-Man Chiu, I-Chun Chi, Yun-Chang Li and Ming-Hseng Tseng
Bioengineering 2025, 12(9), 934; https://doi.org/10.3390/bioengineering12090934 - 29 Aug 2025
Abstract
The skin, the largest organ of the body, acts as a protective shield against external stimuli. Skin lesions, which can be the result of inflammation, infection, tumors, or autoimmune conditions, can appear as rashes, spots, lumps, or scales, or remain asymptomatic until they [...] Read more.
The skin, the largest organ of the body, acts as a protective shield against external stimuli. Skin lesions, which can be the result of inflammation, infection, tumors, or autoimmune conditions, can appear as rashes, spots, lumps, or scales, or remain asymptomatic until they become severe. Conventional diagnostic approaches such as visual inspection and palpation often lack accuracy. Artificial intelligence (AI) improves diagnostic precision by analyzing large volumes of skin images to detect subtle patterns that clinicians may not recognize. This study presents a multiclass skin lesion diagnostic model developed using the CSMUH dataset, which focuses on the Eastern population. The dataset was categorized into seven disease classes for model training. A total of 25 pre-trained models, including convolutional neural networks (CNNs) and vision transformers (ViTs), were fine-tuned. The top three models were combined into an ensemble using the hard and soft voting methods. To ensure reliability, the model was tested through five randomized experiments and validated using the holdout technique. The proposed ensemble model, Swin-ViT-EfficientNetB4, achieved the highest test accuracy of 98.5%, demonstrating strong potential for accurate and early skin lesion diagnosis. Full article
(This article belongs to the Special Issue Mathematical Models for Medical Diagnosis and Testing)
23 pages, 1289 KB  
Article
Development and Clinical Validation of a Skin Test for In Vivo Assessment of SARS-CoV-2 Specific T-Cell Immunity
by Tikhon V. Savin, Vladimir V. Kopat, Elena D. Danilenko, Alexey A. Churin, Anzhelika M. Milichkina, Edward S. Ramsay, Ilya V. Dukhovlinov, Andrey S. Simbirtsev and Areg A. Totolian
Viruses 2025, 17(9), 1186; https://doi.org/10.3390/v17091186 - 29 Aug 2025
Abstract
A novel skin test for an in vivo assessment of SARS-CoV-2-specific T-cell immunity was developed using CoronaDermPS, a multiepitope recombinant polypeptide encompassing MHC II–binding CD4+ T-cell epitopes of the SARS-CoV-2 structural proteins (S, E, M) and full length nucleocapsid (N). In silico epitope [...] Read more.
A novel skin test for an in vivo assessment of SARS-CoV-2-specific T-cell immunity was developed using CoronaDermPS, a multiepitope recombinant polypeptide encompassing MHC II–binding CD4+ T-cell epitopes of the SARS-CoV-2 structural proteins (S, E, M) and full length nucleocapsid (N). In silico epitope prediction and modeling guided antigen design, which was expressed in Escherichia coli, was purified (>95% purity) and formulated for intradermal administration. Preclinical evaluation in guinea pigs, mice, and rhesus macaques demonstrated a robust delayed type hypersensitivity (DTH) response at optimal doses (10–75 µg), with no acute or chronic toxicity, mutagenicity, or adverse effects on reproductive organs. An integrated clinical analysis included 374 volunteers stratified by vaccination status (EpiVacCorona, Gam-COVID-Vac, CoviVac) prior to COVID-19 infection (Wuhan/Alpha, Delta, Omicron variants), and SARS-CoV-2–naïve controls. Safety assessments across phase I–II trials recorded 477 adverse events, of which >88% were mild and self-limiting; no severe or anaphylactic reactions occurred. DTH responses were measured at 24 h, 72 h, and 144 h post-injection by papule and hyperemia measurements. Overall, 282/374 participants (75.4%) exhibited a positive skin test. Receiver operating characteristic analysis yielded an overall AUC of 0.825 (95% CI: 0.726–0.924), sensitivity 79.5% (95% CI: 75.1–83.3%), and specificity 85.5% (95% CI: 81.8–88.7%), with comparable diagnostic accuracy across vaccine, and variant subgroups (AUC range 0.782–0.870). CoronaDerm-PS–based skin testing offers a simple, reproducible, and low-cost method for qualitative evaluation of T-cell–mediated immunity to SARS-CoV-2, independent of specialized laboratory equipment (Eurasian Patent No. 047119). Its high safety profile and consistent performance across diverse cohorts support its utility for mass screening and monitoring of cellular immune protection following infection or vaccination. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

17 pages, 2886 KB  
Article
Improvement Effect and Mechanism of Hydroxytyrosol on Skin Aging Induced Advanced Glycation End Products
by Rui Fan, Yuxin Ma, Meng Sun, Haohao Zhang, Yaxin Han, Junbo Wang, Wenli Zhu and Zhaofeng Zhang
Nutrients 2025, 17(17), 2810; https://doi.org/10.3390/nu17172810 - 29 Aug 2025
Abstract
Objectives: Skin aging, often accelerated by dietary advanced glycation end products (AGEs), poses both cosmetic and health challenges. This study explores the protective effects of hydroxytyrosol (HT), a potent antioxidant found in olives, against AGEs-induced skin aging in mice. Methods: A total of [...] Read more.
Objectives: Skin aging, often accelerated by dietary advanced glycation end products (AGEs), poses both cosmetic and health challenges. This study explores the protective effects of hydroxytyrosol (HT), a potent antioxidant found in olives, against AGEs-induced skin aging in mice. Methods: A total of forty-eight 8-month-old specific pathogen-free (SPF) male C57BL/6J mice were randomly assigned to one of four groups: control, model, low-dose hydroxytyrosol (HT25), and high-dose hydroxytyrosol (HT50). An additional group of six 6-week-old SPF male C57BL/6J mice served as the youth group. The experimental period lasted 16 weeks. Following the intervention, skin, serum, and ileum samples were collected. Results: The results demonstrated that HT50 significantly increased skin moisture, epidermal thickness, and dermal thickness (p < 0.05). HT50 also significantly elevated hydroxyproline levels as well as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities in the skin while reducing malondialdehyde (MDA) content (p < 0.05). Furthermore, HT50 significantly reduced the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) (p < 0.05). Regarding intestinal integrity, hydroxytyrosol intervention (either HT25 or HT50) significantly increased the positive staining ratios of zonula occludens-1 (ZO-1) and occludin in the ileum (p < 0.05). Conclusions: HT improves skin hydration, thickness, and collagen levels while reducing oxidative stress and inflammation. Notably, HT also enhances intestinal barrier function, suggesting a role for the gut–skin axis. These findings highlight HT’s potential as a natural intervention for skin aging. Full article
(This article belongs to the Section Geriatric Nutrition)
Show Figures

Figure 1

31 pages, 3096 KB  
Article
Pathoadapative Genomic Determinants of Staphylococcus aureus Community Skin Infections and Nasal Colonization
by Cody A. Black, Wonhee So, Raymond Benavides, Julianne A. Mercer, Steven S. Dallas, James F. Shurko, Sarah M. Bandy, Benjamin A. Encino, Justina S. Lipscomb, Adriana Vargus, Christopher R. Frei and Grace C. Lee
Microorganisms 2025, 13(9), 2023; https://doi.org/10.3390/microorganisms13092023 - 29 Aug 2025
Abstract
Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTIs), yet the bacterial genomic adaptations underlying the transition from nasal colonization to invasive infection remain incompletely defined. We sequenced and analyzed 157 S. aureus isolates (126 from SSTIs and 31 [...] Read more.
Staphylococcus aureus is a leading cause of skin and soft tissue infections (SSTIs), yet the bacterial genomic adaptations underlying the transition from nasal colonization to invasive infection remain incompletely defined. We sequenced and analyzed 157 S. aureus isolates (126 from SSTIs and 31 from asymptomatic nasal colonization) from a primary care network in South Texas. Using genome-wide association studies, non-synonymous single-nucleotide variant (NSNV) profiling, and machine learning, we identified strain-specific adaptations in metabolic and regulatory pathways. SSTI isolates exhibited significant enrichment of nitrogen assimilation, purine biosynthesis, menaquinone production, and anaerobic respiration genes. Elevated copy number and colocalization of phage-linked metabolic genes—including nirB, narH, and nifR3—suggest a pathoadaptive genomic island supporting infection-specific energy generation. The enrichment of α/β-hydrolase domain-encoding genes was associated with clinical severity. To quantify severity, we developed the Purulent Ulcer Skin (PUS) score, which integrates wound size, drainage, and erythema. The α/β-hydrolase and lipoprotein genes were significantly associated with higher PUS scores (higher SSTI severity) and phage-encoded virulence gene products were linked to larger wound size. Machine learning prioritized purL and other metabolic loci as key infection classifiers. NSNVs and unitig-level changes co-localized within nutrient transport, stress resistance, and cytolytic genes, supporting a model of multi-layered genomic selection. Metagenomic assemblies of nasal microbiota were enriched for Staphylococcus, Enterococcus, and Micrococcus species, core metabolic pathways, and taxon-specific virulence determinants. This underscores the roles of metabolic and virulent co-networks within nasal commensals and their adaptive capacity for pathogenic transition. These findings provide a potential genomic blueprint of S. aureus pathoadaptation during SSTI and are a step towards the development of novel therapeutic targets. Full article
Show Figures

Graphical abstract

17 pages, 2925 KB  
Article
Case Study on Skin Calorimetry: Modeling Localized Muscle Heat Transfer During Exercise
by Pedro Jesús Rodríguez de Rivera, Miriam Rodríguez de Rivera, Fabiola Socorro and Manuel Rodríguez de Rivera
Biosensors 2025, 15(9), 567; https://doi.org/10.3390/bios15090567 - 29 Aug 2025
Viewed by 20
Abstract
Direct measurement of heat loss in a moving limb requires attached heat-flux sensors, which are strongly affected by convection and radiation. Skin calorimetry minimizes these effects, enabling an accurate measurement. A skin calorimeter was used to measure the heat flux in the rectus [...] Read more.
Direct measurement of heat loss in a moving limb requires attached heat-flux sensors, which are strongly affected by convection and radiation. Skin calorimetry minimizes these effects, enabling an accurate measurement. A skin calorimeter was used to measure the heat flux in the rectus femoris (thigh) of a subject exercising for 30 min at a mechanical power of 80 W. In this work, we have developed an analytical model able to describe the thermal evolution of the rectus femoris during exercise and subsequent recovery. This model consists of a sum of two exponentials f(t) = A1(1 − et/τ) + A2·t·et/τ, with the novelty that the second term is a linear–exponential, which opposes the first term, and that allows the initial thermal transient characterization. The time constants are the most relevant parameters, with mean values of 5 min during exercise and 10 min during recovery (for the 4 cm2 sensing area). The mean exercise amplitude (A1) is 1.1 mW/W, while in post-exercise it is −0.8 mW/W. In addition, the measurement of the thermal resistance of the skin before and after exercise allowed for the estimation and analysis of the evolution of the subcutaneous internal temperature, which follows the same exponential function. The developed mathematical model defines a Transfer Function (TF)—a potential invariant that can predict the thigh’s heat flux response to any exercise protocol (for the subject analyzed). This mathematical approach may be useful for sports and clinical applications. Full article
(This article belongs to the Section Wearable Biosensors)
Show Figures

Figure 1

25 pages, 8084 KB  
Article
Neural Network-Based Prediction of Compression Behaviour in Steel–Concrete Composite Adapter for CFDST Lattice Turbine Tower
by Shi-Chao Wei, Hao Wen, Ji-Zhi Zhao, Yu-Sen Liu, Yong-Jun Duan and Cheng-Po Wang
Buildings 2025, 15(17), 3103; https://doi.org/10.3390/buildings15173103 - 29 Aug 2025
Viewed by 30
Abstract
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the [...] Read more.
The prestressed concrete-filled double skin steel tube (CFDST) lattice tower has emerged as a promising structural solution for large-capacity wind turbine systems due to its superior load-bearing capacity and economic efficiency. The steel–concrete composite adapter (SCCA) is a key component that connects the upper tubular steel tower to the lower lattice segment, transferring axial loads. However, the compressive behaviour of the SCCA remains underexplored due to its complex multi-shell configuration and steel–concrete interaction. This study investigates the axial compression behaviour of SCCAs through refined finite element simulations, identifying diagonal extrusion as the typical failure mode. The analysis clarifies the distinct roles of the outer and inner shells in confinement, highlighting the dominant influence of outer shell thickness and concrete strength. A sensitivity-based parametric study highlights the significant roles of outer shell thickness and concrete strength. To address the high cost of FE simulations, a 400-sample database was built using Latin Hypercube Sampling and engineering-grade material inputs. Using this dataset, five neural networks were trained to predict SCCA capacity. The Dropout model exhibited the best accuracy and generalization, confirming the feasibility of physics-informed, data-driven prediction for SCCAs and outperforming traditional empirical approaches. A graphical prediction tool was also developed, enabling rapid capacity estimation and design optimization for wind turbine structures. This tool supports real-time prediction and multi-objective optimization, offering practical value for the early-stage design of composite adapters in lattice turbine towers. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

12 pages, 2492 KB  
Case Report
Post-Mortem Animal Bite Mark Analysis Reimagined: A Pilot Study Evaluating the Use of an Intraoral Scanner and Photogrammetry for Forensic 3D Documentation
by Salvatore Nigliaccio, Davide Alessio Fontana, Emanuele Di Vita, Marco Piraino, Pietro Messina, Antonina Argo, Stefania Zerbo, Davide Albano, Enzo Cumbo and Giuseppe Alessandro Scardina
Forensic Sci. 2025, 5(3), 39; https://doi.org/10.3390/forensicsci5030039 - 29 Aug 2025
Viewed by 72
Abstract
Digital dentistry is undergoing rapid evolution, with three-dimensional imaging technologies increasingly integrated into routine clinical workflows. Originally developed for accurate dental arch reconstruction, modern intraoral scanners have demonstrated expanding versatility in capturing intraoral mucosal as well as perioral cutaneous structures. Concurrently, photogrammetry has [...] Read more.
Digital dentistry is undergoing rapid evolution, with three-dimensional imaging technologies increasingly integrated into routine clinical workflows. Originally developed for accurate dental arch reconstruction, modern intraoral scanners have demonstrated expanding versatility in capturing intraoral mucosal as well as perioral cutaneous structures. Concurrently, photogrammetry has emerged as a powerful method for full-face digital reconstruction, particularly valuable in orthodontic and prosthodontic treatment planning. These advances offer promising applications in forensic sciences, where high-resolution, three-dimensional documentation of anatomical details such as palatal rugae, lip prints, and bite marks can provide objective and enduring records for legal and investigative purposes. This study explores the forensic potential of two digital acquisition techniques by presenting two cadaveric cases of animal bite injuries. In the first case, an intraoral scanner (Dexis 3600) was used in an unconventional extraoral application to directly scan skin lesions. In the second case, photogrammetry was employed using a digital single-lens reflex (DSLR) camera and Agisoft Metashape, with standardized lighting and metric scale references to generate accurate 3D models. Both methods produced analyzable digital reconstructions suitable for forensic archiving. The intraoral scanner yielded dimensionally accurate models, with strong agreement with manual measurements, though limited by difficulties in capturing complex surface morphology. Photogrammetry, meanwhile, allowed for broader contextual reconstruction with high texture fidelity, albeit requiring more extensive processing and scale calibration. A notable advantage common to both techniques is the avoidance of physical contact and impression materials, which can compress and distort soft tissues, an especially relevant concern when documenting transient evidence like bite marks. These results suggest that both technologies, despite their different origins and operational workflows, can contribute meaningfully to forensic documentation of bite-related injuries. While constrained by the exploratory nature and small sample size of this study, the findings support the viability of digitized, non-destructive evidence preservation. Future perspectives may include the integration of artificial intelligence to assist with morphological matching and the establishment of digital forensic databases for pattern comparison and expert review. Full article
Show Figures

Figure 1

24 pages, 2282 KB  
Article
Top-k Bottom All but σ Loss Strategy for Medical Image Segmentation
by Corneliu Florea, Laura Florea and Constantin Vertan
Diagnostics 2025, 15(17), 2189; https://doi.org/10.3390/diagnostics15172189 - 29 Aug 2025
Viewed by 133
Abstract
Background/Objectives In this study we approach the problem of medical image segmentation by introducing a new loss function envelope that is derived from the Top-k loss strategy. We exploit the fact that, for semantic segmentation, the training loss is computed at two levels, [...] Read more.
Background/Objectives In this study we approach the problem of medical image segmentation by introducing a new loss function envelope that is derived from the Top-k loss strategy. We exploit the fact that, for semantic segmentation, the training loss is computed at two levels, more specifically at pixel level and at image level. Quite often, the envisaged problem has particularities that include noisy annotation at pixel level and limited data, but with accurate annotations at image level. Methods To address the mentioned issues, the Top-k strategy at image level and respectively the “Bottom all but σ” strategy at pixel level are assumed. To deal with the discontinuities of the differentials faced in the automatic learning, a derivative smoothing procedure is introduced. Results The method is thoroughly and successfully tested (in conjunction with a variety of backbone models) for several medical image segmentation tasks performed onto a variety of image acquisition types and human body regions. We present the burned skin area segmentation in standard color images, the segmentation of fetal abdominal structures in ultrasound images and ventricles and myocardium segmentation in cardiac MRI images, in all cases yielding performance improvements. Conclusions The proposed novel mechanism enhances model training by selectively emphasizing certain loss values by the use of two complementary strategies. The major benefits of the approach are clear in challenging scenarios, where the segmentation problem is inherently difficult or where the quality of pixel-level annotations is degraded by noise or inconsistencies. The proposed approach performs equally well in both convolutional neural networks (CNNs) and vision transformer (ViT) architectures. Full article
(This article belongs to the Special Issue 3rd Edition: AI/ML-Based Medical Image Processing and Analysis)
Show Figures

Figure 1

19 pages, 1488 KB  
Systematic Review
Effect of (Poly)phenols as Potential Agents in the Treatment of Psoriasis: A Systematic Review of the Evidence and Future Applications
by Tariq A. Alalwan, Rojbin Aksal, Sabika Allehdan, Mariangela Rondanelli and Simone Perna
Nutraceuticals 2025, 5(3), 24; https://doi.org/10.3390/nutraceuticals5030024 - 29 Aug 2025
Viewed by 147
Abstract
Psoriasis is a chronic inflammatory autoimmune skin disease with current treatments often causing significant side effects. This study systematically evaluated the therapeutic potential and mechanisms of polyphenolic compounds in psoriasis treatment. Following PRISMA guidelines, we searched PubMed, Google Scholar, and ScienceDirect databases between [...] Read more.
Psoriasis is a chronic inflammatory autoimmune skin disease with current treatments often causing significant side effects. This study systematically evaluated the therapeutic potential and mechanisms of polyphenolic compounds in psoriasis treatment. Following PRISMA guidelines, we searched PubMed, Google Scholar, and ScienceDirect databases between January 2008 and September 2023. Studies investigating polyphenolic effects on psoriasis through in vitro, animal, or clinical models were included. Twenty-five studies met inclusion criteria: nine in vitro studies, eleven animal studies, and five clinical trials. Curcumin was most extensively studied, demonstrating 30–60% reductions in inflammatory markers (TNF-alpha, IL-17, IL-22) and significant PASI score improvements. Mechanistic analysis revealed polyphenols primarily target NF-kappaB pathway inhibition and IL-17/Th17 axis suppression, addressing fundamental inflammatory processes in psoriatic pathophysiology. However, limited clinical evidence represents a significant implementation barrier. Polyphenols show potential as adjunctive therapies to conventional topical and systemic treatments. Future research should prioritize large-scale randomized controlled trials with standardized formulations and combination therapy investigations to establish clinical efficacy and overcome bioavailability challenges. Full article
Show Figures

Figure 1

Back to TopTop