Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,329)

Search Parameters:
Keywords = sludge treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2290 KB  
Article
Effect of Microwave Treatment on Physicochemical Properties and Subsequent Anaerobic Digestion of Fecal Sludge
by Principal Mdolo, Jon Pocock and Konstantina Velkushanova
Water 2025, 17(22), 3230; https://doi.org/10.3390/w17223230 - 12 Nov 2025
Viewed by 208
Abstract
Fecal sludge (FS) requires effective management to mitigate environmental and public health risks and enable resource recovery. This study evaluated the effects of microwave (MW) treatment on FS characteristics and subsequent anaerobic digestion (AD) performance. MW treatment raised FS temperatures to ~96 °C, [...] Read more.
Fecal sludge (FS) requires effective management to mitigate environmental and public health risks and enable resource recovery. This study evaluated the effects of microwave (MW) treatment on FS characteristics and subsequent anaerobic digestion (AD) performance. MW treatment raised FS temperatures to ~96 °C, reducing FS volume by 50% and inducing three thermal phases. Soluble chemical oxygen demand (sCOD) showed a multi-phase pattern, with a maximum solubilization of 29.8% during initial heating due to the solubilization of proteins and carbohydrates. Scanning electron microscopy (SEM) revealed morphological changes, while Fourier transform infrared (FTIR) spectroscopy confirmed that core functional groups remained unchanged. MW-pretreated FS enhanced AD performance, achieving a 17% increase in cumulative methane yield, alongside 18% and 33% improvements in organic loading and methane production rates, respectively. MW treatment influenced the phase distribution of digestate components, showing a shift in nutrient portioning towards the liquid fraction. These results suggest that integrating MW pretreatment into FS management systems can improve energy recovery, reduce treatment costs, and support resource-efficient sanitation solutions. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 1350 KB  
Article
Investigating the Potential of Coagulants to Improve Microplastics Removal in Wastewater and Tap Water
by Claudio Casella, Daniel Sol, Adriana Laca and Mario Díaz
Microplastics 2025, 4(4), 89; https://doi.org/10.3390/microplastics4040089 - 12 Nov 2025
Viewed by 126
Abstract
This study investigates the impact of using coagulants on the removal of microplastics (MPs) from wastewater and tap water. Before the settling step, coagulants commonly used in water treatment (FeCl3 or Al2(SO4)3) were added at different [...] Read more.
This study investigates the impact of using coagulants on the removal of microplastics (MPs) from wastewater and tap water. Before the settling step, coagulants commonly used in water treatment (FeCl3 or Al2(SO4)3) were added at different concentrations to samples taken from an activated sludge reactor and tap water. MPs initially contained in the water samples were chemically and physically characterized, resulting in most of them being fibres smaller than 500 μm, in both media. The use of coagulants improved MPs removal, and the best results were obtained with the aluminum salt, which allowed removal efficiencies of 43% and 62% for tap water and wastewater, respectively. These results demonstrated the potential of coagulants to improve the removal of MPs in treated waters and wastewaters. However, the necessary concentration of the assayed coagulants was quite high, highlighting the interest in investigating their combination with coagulant aids, such as organic polyelectrolytes, which might allow for reduced doses. Full article
Show Figures

Figure 1

29 pages, 4059 KB  
Article
Computational Characterisation of Sulphate-Reducing Bacteria Inhibitors to Overcome Methanogenic Competence and Optimise Green Biogas Production
by David Talavera-Cortés, Laureano E. Carpio, Patricia Serrano-Candelas, Carlos Lafita, María José Tàrrega Marti, Ángela Baeza-Serrano, Pau Granell, Rafael Gozalbes and Eva Serrano-Candelas
Appl. Microbiol. 2025, 5(4), 128; https://doi.org/10.3390/applmicrobiol5040128 - 11 Nov 2025
Viewed by 111
Abstract
Microorganisms such as methanogenic archaea play a key role in wastewater treatment plants (WWTPs) by breaking down organic matter and pollutants and producing methane, a potential renewable energy source. However, sulphate-reducing bacteria (SRB) compete with archaea for the same substrates under anaerobic conditions, [...] Read more.
Microorganisms such as methanogenic archaea play a key role in wastewater treatment plants (WWTPs) by breaking down organic matter and pollutants and producing methane, a potential renewable energy source. However, sulphate-reducing bacteria (SRB) compete with archaea for the same substrates under anaerobic conditions, lowering methane production and generating harmful hydrogen sulphide (H2S). Inhibiting SRB is therefore crucial to enhance methane yield and reduce toxic by-products. By means of manual screening of public databases (KEGG, BRENDA, PDB, PubChem) 12 potential inhibitors of SRB were found. After computational ecotoxicological assessment, four candidates were selected, and one of them experimentally increased methane production, demonstrating that SRB inhibition favours the anaerobic digestion of sludges. In order to further explore new candidates, Quantitative Structure–Activity Relationship (QSAR) models were developed showing reliable predictive performance. These models enabled the virtual screening of COCONUT, a natural product database, identifying 73 potential SRB inhibitors. After an ecotoxicological assessment, five commercially available compounds remained. The identified candidates may reduce competition between SRB and methanogenic archaea, leading to higher methane production and supporting WWTPs in generating their own biogas. This would contribute to a circular economy and help mitigate greenhouse gas emissions. Full article
Show Figures

Graphical abstract

19 pages, 1020 KB  
Article
Greenhouse Evaluation of the Agronomic Potential of Urban Wastewater-Based Fertilizers: Sewage Sludge and Struvite for Lettuce Production in Sandy Soil
by Andreia F. Santos, Gonçalo Carreira, Mariana Mota, Licínio M. Gando-Ferreira, Margarida J. Quina and Paula Alvarenga
Agronomy 2025, 15(11), 2589; https://doi.org/10.3390/agronomy15112589 - 10 Nov 2025
Viewed by 200
Abstract
Environmental impacts of urban wastewater treatment plants (WWTPs) can be reduced by recovering nutrients and organic matter (OM) from their streams for agricultural use, decreasing dependence on conventional fertilizers. This study evaluated dehydrated sewage sludge (SS) as an organic amendment and the partial [...] Read more.
Environmental impacts of urban wastewater treatment plants (WWTPs) can be reduced by recovering nutrients and organic matter (OM) from their streams for agricultural use, decreasing dependence on conventional fertilizers. This study evaluated dehydrated sewage sludge (SS) as an organic amendment and the partial replacement of mineral P fertilizers in lettuce cultivation. Struvite, a byproduct of WWTPs, was also investigated as a sustainable P source. A 43-day greenhouse pot experiment assessed SS (12 t/ha) and struvite (at two P rates: 30 and 60 kg P2O5/ha), both alone and combined. SS significantly increased soil OM (p < 0.001), though long-term applications would be required to enhance this effect. The highest struvite rate (60 kg P2O5/ha) yielded the greatest extractable soil-P levels (150 ± 8.1 mg P2O5/kg), while its combination with SS further increased extractable P (>250 mg P2O5/kg), indicating a stable soil P pool. The highest plant dry biomass (8.9 ± 1.1 g, p < 0.05) also occurred under the highest struvite dosage. Complementary effects between SS and struvite were observed in foliar K, Ca, Mg, and S contents, although no significant interaction between both was found for P content. Adequate foliar P levels (0.40–0.52%) were achieved only in treatments containing SS, indicating its essential role in improving plant P nutrition. Full article
Show Figures

Figure 1

18 pages, 2742 KB  
Article
Chemical and Bio-Based Coagulation Coupled with Adsorption: Advancing Leachate Treatment Chemistry
by Maroua Almi, Nadia Chekir, Leila Merabti, Djilali Tassalit, Naima Sahraoui, Soumeya Bouchareb, Khadidja Benkraouche, Wissam Yanina and Seif El Islam Lebouachera
Appl. Sci. 2025, 15(22), 11948; https://doi.org/10.3390/app152211948 - 10 Nov 2025
Viewed by 231
Abstract
Leachate from the Magtaa Kheira landfill exhibits complex physicochemical characteristics that restrict the efficacy of single-treatment processes. This study assessed a sustainable two-stage treatment strategy combining coagulation–flocculation and adsorption. During the initial stage of the study, both aluminum sulfate (AS) and a bio-based [...] Read more.
Leachate from the Magtaa Kheira landfill exhibits complex physicochemical characteristics that restrict the efficacy of single-treatment processes. This study assessed a sustainable two-stage treatment strategy combining coagulation–flocculation and adsorption. During the initial stage of the study, both aluminum sulfate (AS) and a bio-based coagulant derived from Moringa oleifera seeds (MOS) were evaluated for their effectiveness in the pretreatment of leachate. Box–Behnken Design combined with Response Surface Methodology was used to optimize the coagulation process using aluminum sulfate (AS). The highest removal efficiencies were 91% for turbidity and 85% for chemical oxygen demand (COD) removal, achieved at an AS concentration of 1.44 g·L−1 and an initial pH of 8. In parallel, the performance of MOS extract was investigated as an eco-friendly alternative to AS. An FTIR analysis revealed the presence of protein-associated hydroxyl (3288 cm−1) and carboxyl and amine groups (1647 cm−1), which are integral to destabilization via hydrogen bonding, while SEM confirmed a surface morphology conducive to effective floc formation. MOS demonstrated comparable turbidity removal to AS, significantly reducing both sludge generation and chemical consumption. Following the coagulation stage, treated leachates were passed through a granular activated carbon (GAC) column, enhancing overall COD removal to over 94% to reach acceptable discharge and reuse levels. The coagulation–adsorption sequence, incorporating both chemical and bio-based coagulants, provides an efficient and sustainable approach for the treatment of complex leachate, addressing both performance and environmental considerations. Full article
(This article belongs to the Special Issue Water Pollution and Wastewater Treatment Chemistry)
Show Figures

Figure 1

18 pages, 1116 KB  
Review
Anammox-MBR Technology: Breakthroughs and Challenges in Sustainable Nitrogen Removal from Wastewater
by Sumayya Abdul Rahiman and Hazim Qiblawey
Membranes 2025, 15(11), 337; https://doi.org/10.3390/membranes15110337 - 10 Nov 2025
Viewed by 361
Abstract
Wastewater nitrogen pollution is a serious environmental problem, and traditional treatment techniques are frequently constrained by their high energy requirements and operational complexity. The anaerobic ammonium oxidation (anammox) process combined with membrane bioreactor (MBR) technology (anammox-MBR) offers a practical and energy-efficient solution for [...] Read more.
Wastewater nitrogen pollution is a serious environmental problem, and traditional treatment techniques are frequently constrained by their high energy requirements and operational complexity. The anaerobic ammonium oxidation (anammox) process combined with membrane bioreactor (MBR) technology (anammox-MBR) offers a practical and energy-efficient solution for the sustainable removal of nitrogen, further enhanced by its potential to minimize emissions of nitrous oxide (N2O), a potent greenhouse gas with a global warming potential nearly 300 times that of carbon dioxide. This review outlines the most recent advancements in anammox-MBR systems, highlighting their ability to achieve nitrogen removal efficiencies of more than 70–90% and, in integrated systems with reverse osmosis, to recover up to 75% of the inflow as high-quality reusable water. Significant advancements such as high-rate activated sludge coupling, reverse osmosis integration, microaeration methods, and membrane surface modifications have decreased membrane fouling, accelerated startup times, and enhanced system stability. Despite these achievements, there are still issues that hinder widespread use, such as membrane fouling exacerbated by hydrophobic anammox metabolites, sensitivity to low temperatures (≤10 °C), and the persistent challenge of suppressing nitrite-oxidizing bacteria (NOB), which compete for the essential nitrite substrate. To enable cost-effective, energy-efficient, and environmentally sustainable large-scale applications, future research directions will focus on creating cold-tolerant anammox strains, advanced anti-fouling membranes, and AI-driven process optimization. Full article
Show Figures

Figure 1

16 pages, 2565 KB  
Article
Occurrence of Linear Alkylbenzene Sulfonates Homologues in Sludge Stabilization Treatments
by Julia Martín, Carmen Mejías, Noelia García-Criado, Juan Luis Santos, Irene Aparicio, Esteban Alonso and John Heinze
Sustainability 2025, 17(22), 10034; https://doi.org/10.3390/su172210034 - 10 Nov 2025
Viewed by 187
Abstract
Linear alkylbenzene sulfonates (LAS) are one of the organic pollutants of most concern in sewage sludge due to their widespread occurrence in domestic sewage. In this work, the occurrence of LAS was assessed in 15 wastewater treatment plants (WWTPs), with different sludge stabilization [...] Read more.
Linear alkylbenzene sulfonates (LAS) are one of the organic pollutants of most concern in sewage sludge due to their widespread occurrence in domestic sewage. In this work, the occurrence of LAS was assessed in 15 wastewater treatment plants (WWTPs), with different sludge stabilization treatments, from September 2023 to March 2024. Samples were analyzed by ultrasound-assisted extraction and LC-MS/MS. In primary sludge, LAS homologues displayed the typical fingerprint of laundry detergents, suggesting these products are a primary source in influent wastewater. There was no clear correlation between the population served and the LAS concentrations in the studied WWTPs. The highest concentrations of LAS (sum of the homologues C10–C13) were found in anaerobic lagoons, followed by aerobically (6438 mg/kg) and anaerobically digested (5521 mg/kg) sludge. The lower levels were observed in composted sludge (215 mg/kg). 100% of the composted samples showed concentrations lower than 2600 mg/kg (concentration limit currently proposed by the EU for LAS), while these percentages were reduced to 25 and 13% in the case of aerobically and anaerobically digested sludges. These results showed that composting could be an effective method for ensuring compliance with a future EU Directive on sludge application to the soil. Full article
Show Figures

Graphical abstract

21 pages, 3667 KB  
Article
Modeling of Hydrodynamics of Agglomeration of Low-Grade Phosphorites in the Presence of Phosphate-Siliceous Shales and Oil Sludge
by Saltanat Tleuova, Zhunisbek Turishbekov, Ayaulym Tileuberdi, Dana Pazylova, Iskandarbek Iristaev, Mariyam Ulbekova and Nurila Sagindikova
ChemEngineering 2025, 9(6), 125; https://doi.org/10.3390/chemengineering9060125 - 7 Nov 2025
Viewed by 142
Abstract
The purpose of this study is to develop a multiphysical model of agglomeration of low-grade phosphorites with the addition of phosphate-siliceous shales and oil sludge. To achieve these tasks, a numerical approach was used in the COMSOL Multiphysics environment, based on solving the [...] Read more.
The purpose of this study is to develop a multiphysical model of agglomeration of low-grade phosphorites with the addition of phosphate-siliceous shales and oil sludge. To achieve these tasks, a numerical approach was used in the COMSOL Multiphysics environment, based on solving the related problems of heat transfer and hydrodynamics during heat treatment of the material. A laboratory vertical tubular furnace made of heat-resistant quartz glass with electric heating was used to study the effect of the temperature field and the velocity of gases on the degree of sintering and the dynamics of phosphorous agglomerate formation under various technological conditions. It has been established that the optimal temperature for the agglomeration process is a layer temperature of 950–1000 °C at a gas flow rate of 1.5–2 m/s, which ensures the formation of durable granules and minimizes sintering heterogeneity. The maximum sintering layer height of the test charge reaches 210–230 mm at pressures of 0.015–0.027 MPa. A comparison of the numerical simulation results with experimental data showed a good agreement, which confirms the practical significance of the proposed model for the design and optimization of industrial processes of agglomeration of phosphorous raw materials. Modern physical and chemical analyses have established the phase, microstructural, and element-by-element characteristics of the studied phosphate-siliceous shale and the product of agglomeration firing. The results of modeling the hydrodynamics of the charge agglomeration process can be recommended to increase the efficiency of processing phosphate-containing waste and reduce energy consumption. Full article
Show Figures

Figure 1

20 pages, 1073 KB  
Article
Developing Insights into Pretreatment Optimization: Effects of Eliminating Lime and Soda Ash in Groundwater RO Desalination
by Yazeed Algurainy, Ashraf Refaat and Omar Alrehaili
Water 2025, 17(22), 3186; https://doi.org/10.3390/w17223186 - 7 Nov 2025
Viewed by 320
Abstract
In arid and water-stressed regions, groundwater desalination plants are critical for ensuring reliable potable water supplies, making improvements in their operational efficiency and cost effectiveness a priority for utilities. In many such facilities, lime and soda ash softening remain common pretreatment practices, which [...] Read more.
In arid and water-stressed regions, groundwater desalination plants are critical for ensuring reliable potable water supplies, making improvements in their operational efficiency and cost effectiveness a priority for utilities. In many such facilities, lime and soda ash softening remain common pretreatment practices, which increase chemical consumption and sludge generation, prompting the need for alternative low-chemical strategies. This study evaluates the technical, operational, and economic implications of transitioning a full-scale brackish groundwater desalination plant, from lime–soda ash softening (old plan) to a low-chemical pretreatment strategy based on antiscalant dosing (new plan) upstream of reverse osmosis (RO). Key parameters, including pH, total hardness, calcium and magnesium hardness, silica, iron, alkalinity, and total dissolved solids (TDS), were measured and compared at multiple locations within the treatment plant under both the old and new plans. Removing lime and soda ash caused higher levels of hardness, alkalinity, and silica in the water before RO treatment, increasing the risk of scaling. Operationally, the feed pressure increased from 11.43 ± 0.16 bar (old plan) to a peak of 25.50 ± 0.10 bar in the new plan, accompanied by a decline in water production. Chemical cleaning effectively restored performance, reducing feed pressure to 13.13 ± 0.05 bar, confirming that fouling and scaling were the primary, reversible causes. Despite these challenges, the plant consistently produced water that complied with Saudi Standards for Unbottled Drinking Water (e.g., pH = 7.18 ± 0.09, TDS = 978.27 ± 9.26 mg/L). Economically, the new strategy reduced operating expenditure by approximately 54% (0.295 → 0.135 $/m3), largely due to substantial reductions in chemical and sludge handling costs, although these savings were partially offset by higher energy consumption and more frequent membrane maintenance. Overall, the findings emphasize the importance of systematic performance evaluation during operational transitions, providing guidance for utilities seeking to optimize pretreatment design while maintaining compliance, long-term membrane protection, and environmental sustainability. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

45 pages, 6806 KB  
Article
Sustainable Soil Stabilisation Using Water Treatment Sludge: Experimental Evaluation and Metaheuristic-Based Genetic Programming
by Bidur Kafle and Abolfazl Baghbani
Sustainability 2025, 17(21), 9919; https://doi.org/10.3390/su17219919 - 6 Nov 2025
Viewed by 333
Abstract
Recycling water treatment sludge (WTS) offers a sustainable solution to reduce environmental waste and enhance soil stabilisation in geotechnical applications. This study investigates the mechanical performance of soil-sludge-cement-lime mixtures through an extensive experimental program and focuses on compaction characteristics and California Bearing Ratio [...] Read more.
Recycling water treatment sludge (WTS) offers a sustainable solution to reduce environmental waste and enhance soil stabilisation in geotechnical applications. This study investigates the mechanical performance of soil-sludge-cement-lime mixtures through an extensive experimental program and focuses on compaction characteristics and California Bearing Ratio (CBR) values. Mixtures containing 40% soil, 50% sludge, and 10% lime achieved a CBR value of 58.7% and represented a 550% increase compared to untreated soil. Additionally, advanced predictive modelling using symbolic metaheuristic-based genetic programming (GP) techniques, including the Dingo Optimisation Algorithm (DOA), Osprey Optimisation Algorithm (OOA), and Rime-Ice Optimisation Algorithm (RIME), demonstrated exceptional accuracy in predicting CBR values. The GP-RIME model achieved an R2 of 0.991 and a mean absolute error (MAE) of 1.02 in predicting CBR values, significantly outperforming traditional regression methods. Four formulas are proposed to predict CBR values. This research highlights the dual benefits of sustainable WTS recycling and advanced modelling techniques, providing scalable solutions for environmentally friendly infrastructure development. This research aligns with global sustainability goals by valorising waste streams from water treatment plants. The reuse of sludge not only reduces landfill disposal but also lowers demand for energy-intensive binders, contributing to circular economy practice and sustainable infrastructure development. Full article
(This article belongs to the Special Issue Environmental Protection and Sustainable Ecological Engineering)
Show Figures

Figure 1

19 pages, 2716 KB  
Article
Flocculation–Electro-Osmosis-Coupled Dewatering Treatment of River-Dredged Sludge
by Ziwei Liu, Qing Wei, Chunzhen Fan, Shutian Li and Suqing Wu
Water 2025, 17(21), 3174; https://doi.org/10.3390/w17213174 - 5 Nov 2025
Viewed by 451
Abstract
The presence of organic matter can alter the dewatering characteristics of river-dredged silt and affect the dewatering efficiency. This study systematically compared the dewatering effects of cationic polyacrylamide (CPAM), ferric chloride (FeCl3), and composite flocculant (CPAM + FeCl3) for [...] Read more.
The presence of organic matter can alter the dewatering characteristics of river-dredged silt and affect the dewatering efficiency. This study systematically compared the dewatering effects of cationic polyacrylamide (CPAM), ferric chloride (FeCl3), and composite flocculant (CPAM + FeCl3) for sludge with different organic matter contents by using the combined flocculation–electro-osmotic dewatering technology. The results show that the presence of organic matter significantly hinders the dewatering of silt. After the combined treatment of low-, medium-, and high-organic-matter river-dredging sludge with composite flocculants and electro-osmotic treatment, the final water content was 39.53%, 45.08%, and 47.28%, respectively. Compared with the use of CPAM alone, its dewatering efficiency increased by 66.98%, 5.39%, and 13.72%, respectively. Three-dimensional fluorescence spectroscopy analysis (3D-EEM) indicates that the combined dewatering of flocculation and electro-osmosis can improve the dewatering performance of sludge by promoting the transformation of organic matter. Scanning electron microscopy (SEM) analysis shows that under the action of the composite flocculant, the sludge particles aggregate significantly, and after electro-osmosis, the structure becomes more compact and channels are formed, which further improves the sludge dewatering efficiency. This study provides a theoretical basis for the optimization of dewatering processes for dredged silt with different organic matter contents. Full article
(This article belongs to the Special Issue Ecological Wastewater Treatment and Resource Utilization)
Show Figures

Figure 1

18 pages, 1023 KB  
Article
Hydrothermal Treatment of Kitchen Waste as a Strategy for Dark Fermentation Biohydrogen Production
by Marlena Domińska, Katarzyna Paździor, Radosław Ślęzak and Stanisław Ledakowicz
Energies 2025, 18(21), 5811; https://doi.org/10.3390/en18215811 - 4 Nov 2025
Viewed by 299
Abstract
This study presents an innovative approach to the production of hydrogen from liquids following hydrothermal treatment of biowaste, offering a potential solution for renewable energy generation and waste management. By combining biological and hydrothermal processes, the efficiency of H2 production can be [...] Read more.
This study presents an innovative approach to the production of hydrogen from liquids following hydrothermal treatment of biowaste, offering a potential solution for renewable energy generation and waste management. By combining biological and hydrothermal processes, the efficiency of H2 production can be significantly improved, contributing to a reduced carbon footprint and lower reliance on fossil fuels. The inoculum used was fermented sludge from a wastewater treatment plant, which had been thermally pretreated to enhance microbial activity towards hydrogen production. Kitchen waste, consisting mainly of plant-derived materials (vegetable matter), was used as a substrate. The process was conducted in batch 1-L bioreactors. The results showed that higher pretreatment temperatures (up to 180 °C) increased the hydrolysis of compounds and enhanced H2 production. However, temperatures above 180 °C resulted in the formation of toxic compounds, such as catechol and hydroquinone, which inhibited H2 production. The highest hydrogen production was achieved at 180 °C (approximately 66 mL H2/gTVSKW). The standard Gompertz model was applied to describe the process kinetics and demonstrated an excellent fit with the experimental data (R2 = 0.99), confirming the model’s suitability for optimizing H2 production. This work highlights the potential of combining hydrothermal and biological processes to contribute to the development of sustainable energy systems within the circular economy. Full article
Show Figures

Figure 1

17 pages, 436 KB  
Article
Comparing the Agronomic and Economic Aspects of Sewage Sludge Composting and Vermicomposting
by Fernando V. Armas-Vega, Irene Gavilanes-Terán, Julio Idrovo-Novillo, Mateo Acosta, Bryan Sánchez-Andrango and Concepción Paredes
Agriculture 2025, 15(21), 2292; https://doi.org/10.3390/agriculture15212292 - 3 Nov 2025
Viewed by 345
Abstract
In recent decades, the urban population of Ecuador has grown, increasing the need for wastewater sanitation in cities. Wastewater treatment in this country generates sewage sludge (SS), which is mainly deposited on land near wastewater treatment plants or in sanitary landfills, generating significant [...] Read more.
In recent decades, the urban population of Ecuador has grown, increasing the need for wastewater sanitation in cities. Wastewater treatment in this country generates sewage sludge (SS), which is mainly deposited on land near wastewater treatment plants or in sanitary landfills, generating significant environmental impacts. In view of this, composting or vermicomposting of SS can be suitable treatments for this waste, and the final materials obtained can be used as organic amendments. The objective of this study was to compare the agronomic and economic aspects of composting and vermicomposting using the same SS mixtures with different plant residues. For this purpose, the evolution of various physicochemical and biological parameters of both processes, the quality of the materials obtained, and the costs of their production were evaluated. The results revealed that all the amendments presented characteristics suitable for safe agricultural use. The vermicomposts had significantly lower levels of salts and higher levels of most macro- and micronutrients than the composts, thus increasing their economic value. However, the average production cost of composts was lower than that of vermicomposts, with faster stabilization of organic matter. All of this indicates that both techniques could be suitable for treating SS, but in order to choose the most appropriate technique for the study area, further studies with other waste mixtures and agricultural validation of the composts and vermicomposts obtained, as well as control of possible contaminants, would be required. Full article
Show Figures

Figure 1

23 pages, 14254 KB  
Article
Construction of an Automated Biochemical Potential Methane (BMP) Prototype Based on Low-Cost Embedded Systems
by Sergio Arango-Osorio, Carlos Alejandro Zuluaga-Toro, Idi Amín Isaac-Millán, Antonio Arango-Castaño and Oscar Vasco-Echeverri
Biomass 2025, 5(4), 68; https://doi.org/10.3390/biomass5040068 - 3 Nov 2025
Viewed by 234
Abstract
Anaerobic digestion is a sustainable approach for waste treatment and renewable biogas production. A key parameter for large-scale applications is the Biochemical Methane Potential (BMP), which enables methane yield estimation and facilitates process scale-up. This study introduces an automated, low-cost prototype for BMP [...] Read more.
Anaerobic digestion is a sustainable approach for waste treatment and renewable biogas production. A key parameter for large-scale applications is the Biochemical Methane Potential (BMP), which enables methane yield estimation and facilitates process scale-up. This study introduces an automated, low-cost prototype for BMP testing, comprising three 2-L reactors with provisions for future expansion. Control and data acquisition are carried out by low-cost embedded systems integrated with sensors for pressure, temperature, pH, and biogas flow. The system was evaluated using a mixture of pig manure and sludge from a local wastewater treatment plant. Real-time monitoring of temperature, pH, and biogas production was achieved. The heat exchanger, designed through transient energy balance modeling, increased the reactor temperature from 20 °C (lab temp.) to 38 °C in 400 s. Overall, the prototype demonstrated reliable performance, achieving rapid heating, stable monitoring, and precise biogas flow quantification through both displacement and pressure methods. Full article
Show Figures

Figure 1

12 pages, 911 KB  
Article
Environmental Footprint of Antibiotics: A Multi-Source Investigation of Wastewater Systems in UAE
by Shahana Seher Malik, Balamurugan Sadaiappan, Ashraf Aly Hassan, Iltaf Shah, Sampathkumar Elangovan and Sunil Mundra
Antibiotics 2025, 14(11), 1105; https://doi.org/10.3390/antibiotics14111105 - 2 Nov 2025
Viewed by 455
Abstract
Background/Objectives: Antibiotic resistance is a growing global health threat, requiring comprehensive investigations into the occurrence, distribution, and diversity of antibiotics across environmental systems. This study aimed to examine the distribution and prevalence of commonly used antibiotics in various wastewater sources across the [...] Read more.
Background/Objectives: Antibiotic resistance is a growing global health threat, requiring comprehensive investigations into the occurrence, distribution, and diversity of antibiotics across environmental systems. This study aimed to examine the distribution and prevalence of commonly used antibiotics in various wastewater sources across the United Arab Emirates (UAE), providing insights into potential environmental reservoirs contributing to antimicrobial resistance dissemination. Methods: Wastewater samples were collected from the outlets of three hospitals, three residential communities, and the influent and return activated sludge of two wastewater treatment plants. Samples were prepared using solid-phase extraction (SPE) and analyzed via liquid chromatography–mass spectrometry (LC–MS/MS) to quantify antibiotic concentrations and compare their distribution among sources. Results: Significant variations were observed in antibiotic concentrations across the different wastewater sources. Ciprofloxacin concentrations were highest in hospital wastewater, reaching up to 247.9 ng/mL, while cefuroxime and vancomycin ranged between 0.2 and 10.9 ng/mL across samples. Clindamycin was notably prevalent in wastewater treatment plant samples (up to 10.9 ng/mL), whereas vancomycin and cefuroxime were dominant in residential community samples, reflecting diverse antibiotic usage patterns and persistence in treatment systems. Conclusions: The findings reveal substantial antibiotic contamination in United Arab Emirates wastewater systems, underscoring the need for ongoing surveillance and regulatory measures. Continuous monitoring, coupled with effective wastewater treatment and antibiotic stewardship strategies, is critical to mitigating the environmental spread of antimicrobial resistance and safeguarding public and environmental health. Full article
Show Figures

Figure 1

Back to TopTop