Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (10,125)

Search Parameters:
Keywords = small molecules

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2213 KB  
Article
Combinatorial ERK Inhibition Enhances MAPK Pathway Suppression in BRAF-Mutant Melanoma
by Corinna Kosnopfel, Tobias Sinnberg, Shrunal Mane, Michelle Dongo, Claus Garbe and Heike Niessner
Int. J. Mol. Sci. 2025, 26(19), 9794; https://doi.org/10.3390/ijms26199794 - 8 Oct 2025
Abstract
Small molecule inhibitors targeting BRAF mutations at V600 and downstream MEK represent a significant advancement in treating BRAF-mutant melanoma. However, resistance mechanisms, often involving reactivation of the MAPK pathway via ERK1/2, limit their efficacy. The ERK1/2 inhibitor ravoxertinib (GDC0994) was tested on melanoma [...] Read more.
Small molecule inhibitors targeting BRAF mutations at V600 and downstream MEK represent a significant advancement in treating BRAF-mutant melanoma. However, resistance mechanisms, often involving reactivation of the MAPK pathway via ERK1/2, limit their efficacy. The ERK1/2 inhibitor ravoxertinib (GDC0994) was tested on melanoma cell lines with and without resistance to BRAFi or BRAFi + MEKi. Short-term assays evaluated cell viability, apoptosis induction, and pathway modulation via Western Blot, while long-term effects were assessed using a colony formation assay. Resistant and parental melanoma cells responded to long-term ERKi treatment with reduced growth, independent of sensitivity to BRAF or MEK inhibitors. Adding ERKi to BRAFi/MEKi significantly enhanced apoptosis and growth inhibition, particularly in resistant lines. Although ravoxertinib alone showed limited antitumor activity, its combination with BRAFi/MEKi yielded substantial benefits, especially in chronic settings. These findings suggest that combinatorial regimens incorporating ERK inhibitors represent a promising therapeutic strategy for BRAF-mutant melanoma. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets in Cancers: 3rd Edition)
Show Figures

Figure 1

22 pages, 2533 KB  
Article
DST-3, a Novel Modified Cryptotanshinone, Protects Against Pulmonary Fibrosis via Inhibiting STAT3/Smad Signaling Pathway and Improves Bioavailability
by Ruoqing Guan, Xiangjun He, Yuxing Dai, Guangye Huang, Zhaoyun Xue, Jianwen Chen and Peiqing Liu
Pharmaceutics 2025, 17(10), 1307; https://doi.org/10.3390/pharmaceutics17101307 - 8 Oct 2025
Abstract
Background/Objectives: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive loss of lung function and poor prognosis. Cryptotanshinone (CTS), a small-molecule compound extracted from Salvia miltiorrhiza, possesses diverse pharmacological activities but suffers from poor oral bioavailability, which restricts its [...] Read more.
Background/Objectives: Idiopathic pulmonary fibrosis (IPF) is a fatal lung disease characterized by progressive loss of lung function and poor prognosis. Cryptotanshinone (CTS), a small-molecule compound extracted from Salvia miltiorrhiza, possesses diverse pharmacological activities but suffers from poor oral bioavailability, which restricts its clinical development, particularly in pulmonary fibrosis. DST-3, a newly synthesized derivative of CTS, was designed to overcome these limitations. Methods: The antifibrotic effects of DST-3 were investigated in a bleomycin-induced pulmonary fibrosis model in C57BL/6 mice through lung function assessment, histopathological evaluation, hydroxyproline quantification, and cytokine profiling. In vitro, TGF-β1-stimulated MRC5 fibroblasts were employed to explore the mechanism of action, focusing on STAT3/Smad signaling via Western blotting and molecular binding assays. Furthermore, a validated HPLC–MS/MS method was developed for DST-3, and its pharmacokinetic profile was characterized in Sprague–Dawley rats and compared with that of CTS. Results: DST-3 markedly attenuated pulmonary fibrosis in vivo, as evidenced by improved lung function, reduced collagen deposition, and decreased proinflammatory cytokine levels. In vitro, DST-3 inhibited TGF-β1-induced fibroblast activation by directly binding to STAT3 and suppressing STAT3/Smad signaling. Pharmacokinetic analysis demonstrated that, compared with CTS, DST-3 exhibited more rapid absorption, a higher peak plasma concentration, a greater area under the curve (AUC), improved hepatic metabolic stability, and enhanced lung tissue exposure. Conclusions: Our study demonstrates that DST-3 exerts potent antifibrotic effects in vivo and in vitro, primarily through STAT3 pathway inhibition. Its improved pharmacokinetic characteristics further support its potential as a promising candidate for the treatment of pulmonary fibrosis. Full article
(This article belongs to the Section Pharmacokinetics and Pharmacodynamics)
Show Figures

Graphical abstract

35 pages, 8670 KB  
Article
Transcriptomic-Driven Drug Repurposing Reveals SP600125 as a Promising Drug Candidate for the Treatment of Glial-Mesenchymal Transition in Glioblastoma
by Kirill V. Odarenko, Marina A. Zenkova and Andrey V. Markov
Int. J. Mol. Sci. 2025, 26(19), 9772; https://doi.org/10.3390/ijms26199772 - 7 Oct 2025
Abstract
Glioblastoma multiforme (GBM) is an aggressive brain cancer characterized by highly invasive growth driven by glial-mesenchymal transition (GMT). Given the urgent need for effective therapies targeting this process, we aimed to discover potential GMT inhibitors using transcriptomic-based repurposing applied to both approved and [...] Read more.
Glioblastoma multiforme (GBM) is an aggressive brain cancer characterized by highly invasive growth driven by glial-mesenchymal transition (GMT). Given the urgent need for effective therapies targeting this process, we aimed to discover potential GMT inhibitors using transcriptomic-based repurposing applied to both approved and experimental drugs. Deep bioinformatic analysis of transcriptomic data from GBM patient tumors and GBM cell lines with mesenchymal phenotype using gene set variation analysis (GSVA), weighted gene co-expression network analysis (WGCNA), reconstruction of GMT-related gene association networks, gene set enrichment analysis (GSEA), and the search for correlation with transcriptomic profiles of known GMT markers, revealed a novel 31-gene GMT signature applicable as relevant input data for the connectivity map-based drug repurposing study. Using this gene signature, a number of small-molecule compounds were predicted as potent anti-GMT agents. Further ranking according to their blood–brain barrier permeability, as well as structural and transcriptomic similarities to known anti-GBM drugs, revealed SP600125, vemurafenib, FG-7142, dibenzoylmethane, and phensuximide as the most promising for GMT inhibition. In vitro validation showed that SP600125, which is most closely associated with GMT-related hub genes, effectively inhibited TGF-β1- and chemical hypoxia-induced GMT in U87 GBM cells by reducing morphological changes, migration, vasculogenic mimicry, and mesenchymal marker expression. These results clearly demonstrate the applicability of connectivity mapping as a powerful tool to accelerate the discovery of effective GMT-targeting therapies for GBM and significantly expand our understanding of the antitumor potential of SP600125. Full article
Show Figures

Figure 1

41 pages, 25159 KB  
Review
Overview on the Sensing Materials and Methods Based on Reversible Addition–Fragmentation Chain-Transfer Polymerization
by Zhao-Jiang Yu, Lin Liu, Su-Ling Yang and Shuai-Bing Yu
Biosensors 2025, 15(10), 673; https://doi.org/10.3390/bios15100673 - 7 Oct 2025
Viewed by 36
Abstract
Reversible addition–fragmentation chain-transfer (RAFT) polymerization has become an efficient method in the field of polymer synthesis. Recently, the RAFT polymerization technique has been successfully used to prepare functional materials and develop various sensing methods used in different scenarios. The polymerization reaction can be [...] Read more.
Reversible addition–fragmentation chain-transfer (RAFT) polymerization has become an efficient method in the field of polymer synthesis. Recently, the RAFT polymerization technique has been successfully used to prepare functional materials and develop various sensing methods used in different scenarios. The polymerization reaction can be initiated by thermal, electrochemical, photochemical, enzymatic, and mechanical stimulation. More interestingly, RAFT polymerization can be performed in situ by recruiting a large number of signal tags at the solid interface to amplify the signals. In this review, we addressed the latest achievements in the preparation of sensing materials and the design of different sensors based on the RAFT polymerization technique for sensing ions and small molecules and bioimaging of tumor cells and viruses. Then, electrochemical and optical biosensors through the signal amplification of the RAFT polymerization method were summarized. This work could provide inspiration for researchers to prepare fascinating sensing materials and develop novel detection technologies applied in various fields. Full article
(This article belongs to the Special Issue Signal Amplification in Biosensing)
Show Figures

Figure 1

17 pages, 6046 KB  
Article
Oral Treatment with the Vimentin-Targeting Compound ALD-R491 Mitigates Hyperinflammation, Multi-Organ Injury, and Mortality in CLP-Induced Septic Mice
by Jianping Wu, Shuaishuai Wang, Kuai Yu, Zijing Xu, Xueting Wu, Deebie Symmes, Lian Mo, Chun Cheng, Ruihuan Chen and Junfeng Zhang
Life 2025, 15(10), 1563; https://doi.org/10.3390/life15101563 - 6 Oct 2025
Viewed by 235
Abstract
Sepsis is a life-threatening condition driven by a dysregulated host response to infection, with high mortality and few treatment options. Decades of failed drug development underscore the urgent need for therapies with novel mechanisms of action. Vimentin, an intermediate filament protein, acts as [...] Read more.
Sepsis is a life-threatening condition driven by a dysregulated host response to infection, with high mortality and few treatment options. Decades of failed drug development underscore the urgent need for therapies with novel mechanisms of action. Vimentin, an intermediate filament protein, acts as a network hub that senses and integrates cellular signals. Its involvement in key sepsis pathologies, including infection, hyperinflammation, immunosuppression, coagulopathy and metabolic dysregulation, positions it as a potential therapeutic target. This study evaluated the efficacy of ALD-R491, a novel small-molecule vimentin modulator, in a murine model of polymicrobial sepsis induced by cecal ligation and puncture (CLP). Mice received ALD-R491 prophylactically or therapeutically, alone or with ceftriaxone. The treatment significantly reduced serum levels of key biomarkers of sepsis, including C-reactive protein (CRP), lactate (Lac), tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), and dose-dependently improved the survival of septic mice. Organ-specific analysis confirmed the effects of ALD-R491 in mitigating hyperinflammation and multi-organ injury. The treatment reduced pulmonary edema and inflammation; preserved liver tissue architecture and improved hepatic function with lowered alanine aminotransferase/aspartate aminotransferase (ALT/AST); decreased kidney tubular damage; and improved renal function with lowered creatinine/blood urea nitrogen (BUN). These preclinical findings indicate that the vimentin-targeting agent ALD-R491 represents a promising therapeutic candidate for sepsis and merits further clinical investigation. Full article
Show Figures

Graphical abstract

14 pages, 5634 KB  
Article
Validation of Analytical Models for the Development of Non-Invasive Glucose Measurement Devices
by Bruna Gabriela Pedro, Fernanda Maltauro de Cordova, Yana Picinin Sandri Lissarassa, Fabricio Noveletto and Pedro Bertemes-Filho
Biosensors 2025, 15(10), 669; https://doi.org/10.3390/bios15100669 - 3 Oct 2025
Viewed by 286
Abstract
Non-invasive glucose monitoring remains a persistent challenge in the scientific literature due to the complexity of biological samples and the limitations of traditional optical methods. Although advances have been made in the use of near-infrared (NIR) spectrophotometry, the direct application of the Lambert–Beer [...] Read more.
Non-invasive glucose monitoring remains a persistent challenge in the scientific literature due to the complexity of biological samples and the limitations of traditional optical methods. Although advances have been made in the use of near-infrared (NIR) spectrophotometry, the direct application of the Lambert–Beer Law (LBL) to such systems has proven problematic, particularly due to the non-linear behavior observed in complex organic solutions. In this context, the objective of this work is to propose and validate a methodology for the determination of the extinction coefficient of glucose in blood, taking into account the limitations of the LBL and the specificities of molecular interactions. The method was optimized through an iterative process to provide consistent results over multiple replicates. Whole blood and plasma samples from two individuals were analyzed using spectrophotometry in the 700 nm to 1400 nm. The results showed that glucose has a high spectral sensitivity close to 975 nm.The extinction coefficients obtained for glucose (αg) ranged from −0.0045 to −0.0053, and for insulin (αi) from 0.000075 to 0.000078, with small inter-individual variations, indicating strong stability of these parameters. The non-linear behaviour observed in the relationship between absorbance, glucose and insulin concentrations might be explained by the changes imposed by both s and p orbitals of organic molecules. In order to make the LBL valid in this context, the extinction coefficients must be functions of the analyte concentrations, and the insulin concentration must also be a function of glucose. A regression model was found which allows to differentiate glucose from insulin concentration, by considering the cuvette thickness and sample absorbance at 965, 975, and 985 nm. It can also be concluded from experiments that wavelength of approximately 975 nm is more suitable for blood glucose calculation by using photometry. The final spectra are consistent with those reported in mid-infrared validation studies, suggesting that the proposed model encompasses the key aspects of glucose behavior in biological media. Full article
(This article belongs to the Special Issue Recent Advances in Glucose Biosensors)
Show Figures

Figure 1

23 pages, 1105 KB  
Systematic Review
Toxoplasmosis in the Era of Targeted Immunotherapy: A Systematic Review of Emerging Cases Linked to Biologics and Small Molecules in Autoimmune Diseases, Oncology and Transplantation
by Stephanie M. Cho, Jose G. Montoya and Despina G. Contopoulos-Ioannidis
Pathogens 2025, 14(10), 1001; https://doi.org/10.3390/pathogens14101001 - 3 Oct 2025
Viewed by 278
Abstract
A systematic review of toxoplasmosis cases in patients receiving targeted immunotherapy with biologics or small molecules was performed. This systematic review searched for case reports, case series and observational studies in PubMed; last search was on 19 July 2025. The review identified 46 [...] Read more.
A systematic review of toxoplasmosis cases in patients receiving targeted immunotherapy with biologics or small molecules was performed. This systematic review searched for case reports, case series and observational studies in PubMed; last search was on 19 July 2025. The review identified 46 toxoplasmosis cases among patients receiving biologics (including CAR T-Cell Therapies) or small molecules for diverse autoimmune, oncologic and transplant conditions. These cases were reported from 18 countries, including the United States and several European countries. Most patients developed severe disease. Fifty percent (23/46) presented with cerebral toxoplasmosis, 33% (15/46) with ocular toxoplasmosis, 7% (3/46) with lymphadenopathy, 4% (2/46) with disseminated disease, 2% (1/46) with both cerebral and ocular disease, 2% (1/46) with pneumonic toxoplasmosis, and 2% (1/46) with severe fetal congenital toxoplasmosis. Among those were also four cases with fatal outcomes due to toxoplasmosis and eight cases with permanent ocular or neurological deficits. In addition, there was a case of fetal congenital toxoplasmosis that occurred despite maternal discontinuation of adalimumab five months before conception, resulting in elective pregnancy termination due to severe fetal cerebral disease. Overall, 44% (20/46) of cases were due to reactivation of chronic latent Toxoplasma infections and 39% (18/46) due to acute primary infections; 17% did not report this information. One case of disseminated acute toxoplasmosis was also identified after eating wild boar sausages, and two cases of severe acute ocular toxoplasmosis after eating undercooked venison meat, and undercooked unspecified type of meat respectively, while on small molecules or biologics. Details on the clinical presentations, management and clinical outcomes of these cases were reported. Recommendations for the management of toxoplasmosis in patients with targeted immunotherapies were also provided. Health care providers should consider toxoplasmosis in patients on biologics or small molecules who present with compatible clinical syndromes. Prompt diagnosis and treatment can be lifesaving. Full article
Show Figures

Figure 1

15 pages, 1290 KB  
Article
Successful Delivery of Small Non-Coding RNA Molecules into Human iPSC-Derived Lung Spheroids in 3D Culture Environment
by Anja Schweikert, Chiara De Santi, Xi Jing Teoh, Frederick Lee Xin Yang, Enya O’Sullivan, Catherine M. Greene, Killian Hurley and Irene K. Oglesby
Biomedicines 2025, 13(10), 2419; https://doi.org/10.3390/biomedicines13102419 - 3 Oct 2025
Viewed by 347
Abstract
Background/Objectives: Spheroid cultures in Matrigel are routinely used to study cell behaviour in complex 3D settings, thereby generating preclinical models of disease. Ideally, researchers would like to modulate gene expression ‘in situ’ for testing novel gene therapies while conserving the spheroid architecture. [...] Read more.
Background/Objectives: Spheroid cultures in Matrigel are routinely used to study cell behaviour in complex 3D settings, thereby generating preclinical models of disease. Ideally, researchers would like to modulate gene expression ‘in situ’ for testing novel gene therapies while conserving the spheroid architecture. Here, we aim to provide an efficient method to transfect small RNAs (such as microRNAs and small interfering RNAs, i.e., siRNAs) into human induced pluripotent stem cell (iPSC)-derived 3D lung spheroids, specifically alveolar type II epithelial cells (iAT2) and basal cell (iBC) spheroids. Methods: Transfection of iAT2 spheroids within 3D Matrigel ‘in situ’, whole spheroids released from Matrigel or spheroids dissociated to single cells was explored via flow cytometry using a fluorescently labelled siRNA. Validation of the transfection method was performed in iAT2 and iBC spheroids using siRNA and miRNA mimics and measurement of specific target expression post-transfection. Results: Maximal delivery of siRNA was achieved in serum-free conditions in whole spheroids released from the Matrigel, followed by whole spheroids ‘in situ’. ‘In situ’ transfection of SFTPC-siRNA led to a 50% reduction in the SFTPC mRNA levels in iAT2 spheroids. Transfection of miR-29c mimic and miR-21 pre-miR into iAT2 and iBC spheroids, respectively, led to significant miRNA overexpression, together with a significant decrease in protein levels of the miR-29 target FOXO3a. Conclusions: This study demonstrates successful transfection of iPSC-derived lung spheroids without disruption of their 3D structure using a simple and feasible approach. Further development of these methods will facilitate functional studies in iPSC-derived spheroids utilizing small RNAs. Full article
(This article belongs to the Section Molecular Genetics and Genetic Diseases)
Show Figures

Figure 1

58 pages, 5125 KB  
Review
Organic Fluorescent Sensors for Environmental Analysis: A Critical Review and Insights into Inorganic Alternatives
by Katia Buonasera, Maurilio Galletta, Massimo Rosario Calvo, Gianni Pezzotti Escobar, Antonio Alessio Leonardi and Alessia Irrera
Nanomaterials 2025, 15(19), 1512; https://doi.org/10.3390/nano15191512 - 2 Oct 2025
Viewed by 172
Abstract
The exponential increase in environmental pollutants due to industrialization, urbanization, and agricultural intensification has underscored the urgent need for sensitive, selective, and real-time monitoring technologies. Among emerging analytical tools, organic fluorescent sensors have demonstrated exceptional potential for detecting a wide range of pollutants [...] Read more.
The exponential increase in environmental pollutants due to industrialization, urbanization, and agricultural intensification has underscored the urgent need for sensitive, selective, and real-time monitoring technologies. Among emerging analytical tools, organic fluorescent sensors have demonstrated exceptional potential for detecting a wide range of pollutants in water, air, and soil, with a limit of detection (LOD) in the pM–µM range. This review critically examines recent advances in organic fluorescent sensors, focusing on their photophysical properties, molecular structures, sensing mechanisms, and environmental applications. Key categories of organic sensors, including small molecules, polymeric materials, and nanoparticle-based systems, are discussed, highlighting their advantages, such as biocompatibility, tunability, and cost-effectiveness. Comparative insights into inorganic fluorescent sensors, including quantum dots, are also provided, emphasizing their superior photostability and wide operating range (in some cases from pg/mL up to mg/mL) but limited biodegradability and higher toxicity. The integration of nanomaterials and microfluidic systems is presented as a promising route for developing portable, on-site sensing platforms. Finally, the review outlines current challenges and future perspectives, suggesting that fluorescent sensors, particularly organic ones, represent a crucial strategy toward sustainable environmental monitoring and pollutant management. Full article
16 pages, 6405 KB  
Article
Striking at Survivin: YM-155 Inhibits High-Risk Neuroblastoma Growth and Enhances Chemosensitivity
by Danielle C. Rouse, Rameswari Chilamakuri and Saurabh Agarwal
Cancers 2025, 17(19), 3221; https://doi.org/10.3390/cancers17193221 - 2 Oct 2025
Viewed by 269
Abstract
Background/Objectives: Neuroblastoma (NB) is an aggressive pediatric malignancy that accounts for nearly 15% of all childhood cancer-related deaths, with high-risk cases showing a poor 20% prognosis and limited response to current therapies. Survivin, encoded by the BIRC5 gene, is an anti-apoptotic protein frequently [...] Read more.
Background/Objectives: Neuroblastoma (NB) is an aggressive pediatric malignancy that accounts for nearly 15% of all childhood cancer-related deaths, with high-risk cases showing a poor 20% prognosis and limited response to current therapies. Survivin, encoded by the BIRC5 gene, is an anti-apoptotic protein frequently overexpressed in NB and linked to treatment resistance and unfavorable clinical outcomes. Methods and Results: An analysis of 1235 NB patient datasets revealed a significant association between elevated BIRC5 expression and reduced overall and event-free survival, highlighting survivin as an important therapeutic target in NB. To explore this strategy, we evaluated the efficacy of YM-155, a small-molecule survivin inhibitor, across multiple NB cell lines. YM-155 displayed potent cytotoxic activity in six NB cell lines with IC50 values ranging from 8 to 212 nM and significantly inhibited colony formation and 3D spheroid growth in a dose-dependent manner. Mechanistic analyses revealed that YM-155 downregulated survivin at both mRNA and protein levels, induced apoptosis by about 2–7-fold, and caused G0/G1 phase cell cycle arrest. Moreover, YM-155 treatment enhanced p53 expression, suggesting reactivation of tumor suppressor pathways. Notably, combining YM-155 and the chemotherapeutic agent etoposide resulted in synergistic inhibition of NB growth with ED75 values ranging from 0.17 to 1, compared to either agent alone. In the xenograft mouse model, YM-155 inhibited tumor burden in contrast to controls by about 3-fold, and without any notable toxic effects in vivo. Conclusion: Overall, our findings identify YM-155 as a promising therapeutic agent for high-risk NB by directly targeting survivin and enhancing chemosensitivity. These results support continued preclinical development of survivin inhibitors as part of rational combination strategies in pediatric cancer treatment. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms of Malignant Nervous System Cancers)
Show Figures

Graphical abstract

35 pages, 2877 KB  
Review
RNA-Targeting Techniques: A Comparative Analysis of Modern Approaches for RNA Manipulation in Cancer Research and Therapeutics
by Michaela A. Boti, Marios A. Diamantopoulos and Andreas Scorilas
Genes 2025, 16(10), 1168; https://doi.org/10.3390/genes16101168 - 2 Oct 2025
Viewed by 532
Abstract
RNA-targeting techniques have emerged as powerful tools in cancer research and therapeutics, offering precise and programmable control over gene expression at the post-transcriptional level. Once viewed as passive intermediates in the central dogma, RNA molecules are now recognized as dynamic regulators of cellular [...] Read more.
RNA-targeting techniques have emerged as powerful tools in cancer research and therapeutics, offering precise and programmable control over gene expression at the post-transcriptional level. Once viewed as passive intermediates in the central dogma, RNA molecules are now recognized as dynamic regulators of cellular function, capable of influencing transcription, translation, and epigenetic regulation. Advances in high-throughput sequencing technologies, transcriptomics, and structural RNA biology have uncovered a diverse landscape of coding and non-coding RNAs involved in oncogenesis, drug resistance, and tumor progression. In response, several RNA-targeting strategies have been developed to modulate these transcripts, including antisense oligonucleotides (ASOs), RNA interference (RNAi), CRISPR-Cas13 systems, small molecules, and aptamers. This review provides a comparative analysis of these technologies, highlighting their molecular mechanisms, therapeutic potential, and current limitations. Emphasis is placed on the translational progress of RNA-targeting agents, including recent FDA approvals and ongoing clinical trials for cancer indications. Through a critical comparison of these strategies, this review underscores the growing significance of RNA-targeting technologies as a foundation for next-generation cancer therapeutics and precision oncology. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

17 pages, 2528 KB  
Article
Potential Modulatory Effects of β-Hydroxy-β-Methylbutyrate on Type I Collagen Fibrillogenesis: Preliminary Study
by Izabela Świetlicka, Eliza Janek, Krzysztof Gołacki, Dominika Krakowiak, Michał Świetlicki and Marta Arczewska
Int. J. Mol. Sci. 2025, 26(19), 9621; https://doi.org/10.3390/ijms26199621 - 2 Oct 2025
Viewed by 173
Abstract
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix [...] Read more.
β-Hydroxy-β-methylbutyrate (HMB), a natural metabolite derived from the essential amino acid leucine, is primarily recognised for its anabolic and anti-catabolic effects on skeletal muscle tissue. Recent studies indicate that HMB may also play a role in influencing the structural organisation of extracellular matrix (ECM) components, particularly collagen, which is crucial for maintaining the mechanical integrity of connective tissues. In this investigation, bovine type I collagen was polymerised in the presence of two concentrations of HMB (0.025 M and 0.25 M) to explore its potential function as a molecular modulator of fibrillogenesis. The morphology of the resulting collagen fibres and their molecular architecture were examined using atomic force microscopy (AFM) and Fourier-transform infrared (FTIR) spectroscopy. The findings demonstrated that lower levels of HMB facilitated the formation of more regular and well-organised fibrillar structures, exhibiting increased D-band periodicity and enhanced stabilisation of the native collagen triple helix, as indicated by Amide I and III band profiles. Conversely, higher concentrations of HMB led to significant disruption of fibril morphology and alterations in secondary structure, suggesting that HMB interferes with the self-assembly of collagen monomers. These structural changes are consistent with a non-covalent influence on interchain interactions and fibril organisation, to which hydrogen bonding and short-range electrostatics may contribute. Collectively, the results highlight the potential of HMB as a small-molecule regulator for soft-tissue matrix engineering, extending its consideration beyond metabolic supplementation towards controllable, materials-oriented modulation of ECM structure. Full article
(This article belongs to the Special Issue Advanced Spectroscopy Research: New Findings and Perspectives)
Show Figures

Graphical abstract

17 pages, 2248 KB  
Article
Expression of L-Amino Acid Oxidase (Ml-LAAO) from the Venom of the Micrurus lemniscatus Snake in a Mammalian Cell System
by Ari Junio de Oliveira Costa, Alessandra Matavel, Patricia Cota Campos, Jaqueline Leal dos Santos, Ana Caroline Zampiroli Ataide, Sophie Yvette Leclercq, Valéria Gonçalves de Alvarenga, Sergio Caldas, William Castro-Borges and Márcia Helena Borges
Toxins 2025, 17(10), 491; https://doi.org/10.3390/toxins17100491 - 2 Oct 2025
Viewed by 291
Abstract
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer [...] Read more.
Animal venoms are rich in bioactive molecules with promising biotechnological potential. They comprise both protein and non-protein toxins. Among the protein toxins are enzymes, such as phospholipases A2, proteases and L-amino acid oxidases (LAAOs). LAAOs exhibit antimicrobial, antiparasitic, antiviral, and anticancer effects, making them potential candidates for biotechnological applications. These activities are linked to their ability to catalyze oxidative reactions that convert L-amino acids into α-keto acids, releasing ammonia and hydrogen peroxide, which contribute to the immune response, pathogen elimination, and oxidative stress. However, in snakes of the Micrurus genus, LAAOs generally represent a small portion of the venom (up to ~7%), which limits their isolation and study. To overcome this, the present study aimed to produce Ml-LAAO, the enzyme from Micrurus lemniscatus, through heterologous expression in mammalian cells. The gene sequence was inferred from its primary structure and synthesized into the pSecTag2B vector for expression in HEK293T cells. After purification using a His Trap-HP column, the presence of recombinant Ml-LAAO (Ml-LAAOrec) was confirmed by Western blot and mass spectrometry, validating its identity. These results support successful recombinant expression of Ml-LAAO and highlight its potential for scalable production and future biotechnological applications. Full article
(This article belongs to the Special Issue Biochemistry, Pathology and Applications of Venoms)
Show Figures

Figure 1

27 pages, 1191 KB  
Review
Small RNA and Epigenetic Control of Plant Immunity
by Sopan Ganpatrao Wagh, Akshay Milind Patil, Ghanshyam Bhaurao Patil, Sumeet Prabhakar Mankar, Khushboo Rastogi and Masamichi Nishiguchi
DNA 2025, 5(4), 47; https://doi.org/10.3390/dna5040047 - 1 Oct 2025
Viewed by 361
Abstract
Plants have evolved a complex, multilayered immune system that integrates molecular recognition, signaling pathways, epigenetic regulation, and small RNA-mediated control. Recent studies have shown that DNA-level regulatory mechanisms, such as RNA-directed DNA methylation (RdDM), histone modifications, and chromatin remodeling, are critical for modulating [...] Read more.
Plants have evolved a complex, multilayered immune system that integrates molecular recognition, signaling pathways, epigenetic regulation, and small RNA-mediated control. Recent studies have shown that DNA-level regulatory mechanisms, such as RNA-directed DNA methylation (RdDM), histone modifications, and chromatin remodeling, are critical for modulating immune gene expression, allowing for rapid and accurate pathogen-defense responses. The epigenetic landscape not only maintains immunological homeostasis but also promotes stress-responsive transcription via stable chromatin modifications. These changes contribute to immunological priming, a process in which earlier exposure to pathogens or abiotic stress causes a heightened state of preparedness for future encounters. Small RNAs, including siRNAs, miRNAs, and phasiRNAs, are essential for gene silencing before and after transcription, fine-tuning immune responses, and inhibiting negative regulators. These RNA molecules interact closely with chromatin features, influencing histone acetylation/methylation (e.g., H3K4me3, H3K27me3) and guiding DNA methylation patterns. Epigenetically encoded immune memory can be stable across multiple generations, resulting in the transgenerational inheritance of stress resilience. Such memory effects have been observed in rice, tomato, maize, and Arabidopsis. This review summarizes new findings on short RNA biology, chromatin-level immunological control, and epigenetic memory in plant defense. Emerging technologies, such as ATAC-seq (Assay for Transposase-Accessible Chromatin using Sequencing), ChIP-seq (Chromatin Immunoprecipitation followed by Sequencing), bisulfite sequencing, and CRISPR/dCas9-based epigenome editing, are helping researchers comprehend these pathways. These developments hold an opportunity for establishing epigenetic breeding strategies that target the production of non-GMO, stress-resistant crops for sustainable agriculture. Full article
Show Figures

Figure 1

36 pages, 5393 KB  
Review
Microneedle-Mediated Transdermal Drug Delivery for the Treatment of Multiple Skin Diseases
by Lian Zhou, Shilong Xu and Siwen Li
Pharmaceutics 2025, 17(10), 1281; https://doi.org/10.3390/pharmaceutics17101281 - 1 Oct 2025
Viewed by 490
Abstract
In recent years, microneedles (MNs), an innovative transdermal drug delivery system, have demonstrated significant advantages in treating diverse skin diseases. The stratum corneum (SC), with its ‘brick-mortar’ structure, is the main barrier to drug penetration into the skin. MNs—including solid, coated, hollow, dissolving, [...] Read more.
In recent years, microneedles (MNs), an innovative transdermal drug delivery system, have demonstrated significant advantages in treating diverse skin diseases. The stratum corneum (SC), with its ‘brick-mortar’ structure, is the main barrier to drug penetration into the skin. MNs—including solid, coated, hollow, dissolving, and hydrogel-forming types—penetrate it minimally to form temporary micro-channels, enabling efficient delivery of a wide range of therapeutic agents. These include small molecules, biologics, nanoparticles, and photosensitizers, among others. This technology has been effectively applied in the treatment of androgenetic alopecia, acne, scars, melanoma, psoriasis, atopic dermatitis, and vitiligo. By avoiding stimulation of dermal blood vessels and nerves, MNs offer low pain and high patient compliance. These advantages underscore their broad clinical potential for dermatologic therapy. Future studies must optimize material selection, drug-carrying efficiency, and scale-up production to facilitate clinical translation. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

Back to TopTop