Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (131)

Search Parameters:
Keywords = smart transducer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 3156 KB  
Article
Magneto-Hygrothermal Deformation of FG Nanocomposite Annular Sandwich Nanoplates with Porous Core Using the DQM
by Fatemah H. H. Al Mukahal, Mohammed Sobhy and Aamna H. K. Al-Ali
Crystals 2025, 15(9), 827; https://doi.org/10.3390/cryst15090827 - 20 Sep 2025
Viewed by 330
Abstract
This study introduces a novel numerical approach to analyze the axisymmetric bending behavior of functionally graded (FG) graphene platelet (GPL)-reinforced annular sandwich nanoplates featuring a porous core. The nanostructures are exposed to coupled magnetic and hygrothermal environments. The porosity distribution and GPL weight [...] Read more.
This study introduces a novel numerical approach to analyze the axisymmetric bending behavior of functionally graded (FG) graphene platelet (GPL)-reinforced annular sandwich nanoplates featuring a porous core. The nanostructures are exposed to coupled magnetic and hygrothermal environments. The porosity distribution and GPL weight fraction are modeled as nonlinear functions through the thickness, capturing realistic gradation effects. The governing equations are derived using the virtual displacement principle, taking into account the Lorentz force and the interaction with an elastic foundation. To address the size-dependent behavior and thickness-stretching effects, the model employs the nonlocal strain gradient theory (NSGT) integrated with a modified version of Shimpi’s quasi-3D higher-order shear deformation theory (Q3HSDT). The differential quadrature method (DQM) is applied to obtain numerical solutions for the displacement and stress fields. A detailed parametric study is conducted to investigate the influence of various physical and geometric parameters, including the nonlocal parameter, strain gradient length scale, magnetic field strength, thermal effects, foundation stiffness, core thickness, and radius-to-thickness ratio. The findings support the development of smart, lightweight, and thermally adaptive nano-electromechanical systems (NEMS) and provide valuable insights into the mechanical performance of FG-GPL sandwich nanoplates. These findings have potential applications in transducers, nanosensors, and stealth technologies designed for ultrasound and radar detection. Full article
Show Figures

Figure 1

43 pages, 3473 KB  
Review
Biochips on the Move: Emerging Trends in Wearable and Implantable Lab-on-Chip Health Monitors
by Nikolay L. Kazanskiy, Pavel A. Khorin and Svetlana N. Khonina
Electronics 2025, 14(16), 3224; https://doi.org/10.3390/electronics14163224 - 14 Aug 2025
Viewed by 4466
Abstract
Wearable and implantable Lab-on-Chip (LoC) biosensors are revolutionizing healthcare by enabling continuous, real-time monitoring of physiological and biochemical parameters in non-clinical settings. These miniaturized platforms integrate sample handling, signal transduction, and data processing on a single chip, facilitating early disease detection, personalized treatment, [...] Read more.
Wearable and implantable Lab-on-Chip (LoC) biosensors are revolutionizing healthcare by enabling continuous, real-time monitoring of physiological and biochemical parameters in non-clinical settings. These miniaturized platforms integrate sample handling, signal transduction, and data processing on a single chip, facilitating early disease detection, personalized treatment, and preventive care. This review comprehensively explores recent advancements in LoC biosensing technologies, emphasizing their application in skin-mounted patches, smart textiles, and implantable devices. Key innovations in biocompatible materials, nanostructured transducers, and flexible substrates have enabled seamless integration with the human body, while fabrication techniques such as soft lithography, 3D printing, and MEMS have accelerated development. The incorporation of nanomaterials significantly enhances sensitivity and specificity, supporting multiplexed and multi-modal sensing. We examine critical application domains, including glucose monitoring, cardiovascular diagnostics, and neurophysiological assessment. Design considerations related to biocompatibility, power management, data connectivity, and long-term stability are also discussed. Despite promising outcomes, challenges such as biofouling, signal drift, regulatory hurdles, and public acceptance remain. Future directions focus on autonomous systems powered by AI, hybrid wearable–implantable platforms, and wireless energy harvesting. This review highlights the transformative potential of LoC biosensors in shaping the future of smart, patient-centered healthcare through continuous, minimally invasive monitoring. Full article
(This article belongs to the Special Issue Lab-on-Chip Biosensors)
Show Figures

Figure 1

31 pages, 3093 KB  
Review
A Comprehensive Review of IoT Standards: The Role of IEEE 1451 in Smart Cities and Smart Buildings
by José Rita, José Salvado, Helbert da Rocha and António Espírito-Santo
Smart Cities 2025, 8(4), 108; https://doi.org/10.3390/smartcities8040108 - 30 Jun 2025
Viewed by 2691
Abstract
The increasing demand for IoT solutions in smart cities, coupled with the increasing use of sensors and actuators and automation in these environments, has highlighted the need for efficient communication between Internet of Things (IoT) devices. The success of such systems relies on [...] Read more.
The increasing demand for IoT solutions in smart cities, coupled with the increasing use of sensors and actuators and automation in these environments, has highlighted the need for efficient communication between Internet of Things (IoT) devices. The success of such systems relies on interactions between devices that are governed by communication protocols which define how information is exchanged. However, the heterogeneity of sensor networks (wired and wireless) often leads to incompatibility issues, hindering the seamless integration of diverse devices. To address these challenges, standardisation is essential to promote scalability and interoperability across IoT systems. The IEEE 1451 standard provides a solution by defining a common interface that enables plug-and-play integration and enhances flexibility across diverse IoT devices. This standard enables seamless communication between devices from different manufacturers, irrespective of their characteristics, and ensures compatibility via the Transducer Electronic Data Sheet (TEDS) and the Network Capable Application Processor (NCAP). By reducing system costs and promoting adaptability, the standard mitigates the complexities posed by heterogeneity in IoT systems, fostering scalable, interoperable, and cost-effective solutions for IoT systems. The IEEE 1451 standard addresses key barriers to system integration, enabling the full potential of IoT technologies. This paper aims to provide a comprehensive review of the challenges transducer networks face around IoT applications, focused on the context of smart cities. This review underscores the significance and potential of the IEEE 1451 standard in establishing a framework that enables the harmonisation of IoT applications. The primary contribution of this work lies in emphasising the importance of adopting the standards for the development of harmonised and flexible systems. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

19 pages, 29431 KB  
Article
Hybrid Magneto-Responsive Composites Made from Recyclable Components: Tunable Electrical Properties Under Magnetic and Mechanical Fields
by Ioan Bica, Eugen Mircea Anitas, Paula Sfirloaga, Liviu Chirigiu and Andrei Mihai Gavrilovici
J. Compos. Sci. 2025, 9(5), 219; https://doi.org/10.3390/jcs9050219 - 29 Apr 2025
Viewed by 768
Abstract
This study presents the fabrication and characterization of hybrid magneto-responsive composites (hMRCs), composed of recyclable components: magnetite microparticles (MMPs) as fillers, lard as a natural binding matrix, and cotton fabric for structural reinforcement. MMPs are obtained by in-house plasma-synthesis, a sustainable, efficient, and [...] Read more.
This study presents the fabrication and characterization of hybrid magneto-responsive composites (hMRCs), composed of recyclable components: magnetite microparticles (MMPs) as fillers, lard as a natural binding matrix, and cotton fabric for structural reinforcement. MMPs are obtained by in-house plasma-synthesis, a sustainable, efficient, and highly tunable method for producing high-performance MMPs. hMRCs are integrated into flat capacitors, and their electrical capacitance (C), resistance (R), dielectric permittivity (ϵ), and electrical conductivity (σ) are investigated under a static magnetic field, uniform force field, and an alternating electric field. The experimental results reveal that the electrical properties of hMRCs are dependent on the volume fractions of MMPs and microfibers in the fabric, as well as the applied magnetic flux density (B) and compression forces (F). C shows an increase with both B and F, while R decreases due to improved conductive pathways formed by alignment of MMPs. σ is found to be highly tunable, with increases of up to 300% under combined field effects. In the same conditions, C increases up to 75%, and R decreases up to 80%. Thus, by employing plasma-synthesized MMPs, and commercially available recyclable lard and cotton fabrics, this study demonstrates an eco-friendly, low-cost approach to designing multifunctional smart materials. The tunable electrical properties of hMRCs open new possibilities for adaptive sensors, energy storage devices, and magnetoelectric transducers. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

11 pages, 3387 KB  
Communication
Smart Capacitive Transducer for High-Frequency Vibration Measurement
by Vygantas Augutis, Gintautas Balčiūnas, Pranas Kuzas, Darius Gailius and Edita Raudienė
Sensors 2025, 25(6), 1639; https://doi.org/10.3390/s25061639 - 7 Mar 2025
Cited by 1 | Viewed by 2341
Abstract
A smart capacitive transducer (SCT) for high-frequency vibration (HFV) measurements was developed, featuring self-calibration for the improvement of measurement accuracy. Measurements using this transducer are performed by positioning it over a thin (10 µm) dielectric layer on a conductive surface. This method was [...] Read more.
A smart capacitive transducer (SCT) for high-frequency vibration (HFV) measurements was developed, featuring self-calibration for the improvement of measurement accuracy. Measurements using this transducer are performed by positioning it over a thin (10 µm) dielectric layer on a conductive surface. This method was shown to be a non-contact vibration measurement technique for solid surfaces at frequencies over 10 kHz. Auto-calibration is performed every time the SCT is placed on the object being measured. This reduces the influence of positioning and the object’s surface properties on the measurement results. For the transducer’s auto-calibration, a predefined vibration of the measurement electrode is induced. This is achieved using a waveguide excited by a piezo element. The diameter of the developed SCT is 5 mm, with a frequency range of 10 kHz to 1 MHz, an object HFV amplitude measurement resolution of several picometers, and a repeatability error of several percent. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 833 KB  
Article
Low-Complexity Ultrasonic Flowmeter Signal Processor Using Peak Detector-Based Envelope Detection
by Myeong-Geon Yu and Dong-Sun Kim
J. Sens. Actuator Netw. 2025, 14(1), 12; https://doi.org/10.3390/jsan14010012 - 30 Jan 2025
Cited by 2 | Viewed by 1806
Abstract
Ultrasonic flowmeters are essential sensor devices widely used in remote metering systems, smart grids, and monitoring systems. In these environments, a low-power design is critical to maximize energy efficiency. Real-time data collection and remote consumption monitoring through remote metering significantly enhance network flexibility [...] Read more.
Ultrasonic flowmeters are essential sensor devices widely used in remote metering systems, smart grids, and monitoring systems. In these environments, a low-power design is critical to maximize energy efficiency. Real-time data collection and remote consumption monitoring through remote metering significantly enhance network flexibility and efficiency. This paper proposes a low-complexity structure that ensures an accurate time-of-flight (ToF) estimation within an acceptable error range while reducing computational complexity. The proposed system utilizes Hilbert envelope detection and a differentiator-based parallel peak detector. It transmits and collects data through ultrasonic transmitter and receiver transducers and is designed for seamless integration as a node into wireless sensor networks (WSNs). The system can be involved in various IoT and industrial applications through high energy efficiency and real-time data transmission capabilities. The proposed structure was validated using the MATLAB software, with an LPG gas flowmeter as the medium. The results demonstrated a mean relative deviation of 5.07% across a flow velocity range of 0.1–1.7 m/s while reducing hardware complexity by 78.9% compared to the conventional FFT-based cross-correlation methods. This study presents a novel design integrating energy-efficient ultrasonic flowmeters into remote metering systems, smart grids, and industrial monitoring applications. Full article
Show Figures

Figure 1

18 pages, 4219 KB  
Article
Experimental Investigation of Concrete Crack Depth Detection Using a Novel Piezoelectric Transducer and Improved AIC Algorithm
by Weijie Li, Jintao Zhu, Kaicheng Mu, Wenwei Yang, Xue Zhang and Xuefeng Zhao
Buildings 2024, 14(12), 3939; https://doi.org/10.3390/buildings14123939 - 11 Dec 2024
Cited by 4 | Viewed by 2248
Abstract
Ultrasonic pulse velocity (UPV) has shown effectiveness in determining the depth of surface-open cracks in concrete structures. The type of transducer and the algorithm for extracting the arrival time of the ultrasonic signal significantly impact the accuracy of crack depth detection. To reduce [...] Read more.
Ultrasonic pulse velocity (UPV) has shown effectiveness in determining the depth of surface-open cracks in concrete structures. The type of transducer and the algorithm for extracting the arrival time of the ultrasonic signal significantly impact the accuracy of crack depth detection. To reduce the energy loss in piezoceramic-based sensors, a high-performance piezoceramic-enabled smart aggregate (SA) was employed as the ultrasonic transducer. For the extraction of ultrasonic signal arrival time in concrete, a novel characteristic equation was proposed, utilizing the slope of the signal within a shifting window. This equation was subsequently applied to modify Maeda’s function, with the arrival time of ultrasonic waves defined as the moment corresponding to the minimum Akaike information criterion (AIC) value. Six plain concrete specimens with artificial cracks were prepared and one reinforced concrete beam with a load-induced crack was used for validation. The average deviation of the testing of 492 points on 12 human-made cracks was around 5%. The detection results of 11 measurement points of a crack in a reinforced concrete beam show that three measurement points have a deviation of about 17%. The experimental results demonstrated that the novel piezoelectric transducer and improved AIC algorithm exhibit high accuracy in detecting the depth of concrete cracks. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 11738 KB  
Article
Active Vibration Control of a Cantilever Beam Structure Using Pure Deep Learning and PID with Deep Learning-Based Tuning
by Abdul-Wahid A. Saif, Ahmed Abdulrahman Mohammed, Fouad AlSunni and Sami El Ferik
Appl. Sci. 2024, 14(24), 11520; https://doi.org/10.3390/app142411520 - 11 Dec 2024
Cited by 3 | Viewed by 2337
Abstract
Vibration is a major problem that can cause structures to wear out prematurely and even fail. Smart structures are a promising solution to this problem because they can be equipped with actuators, sensors, and controllers to reduce or eliminate vibration. The primary objective [...] Read more.
Vibration is a major problem that can cause structures to wear out prematurely and even fail. Smart structures are a promising solution to this problem because they can be equipped with actuators, sensors, and controllers to reduce or eliminate vibration. The primary objective of this paper is to explore and compare two deep learning-based approaches for vibration control in cantilever beams. The first approach involves the direct application of deep learning techniques, specifically multi-layer neural networks and RNNs, to control the beam’s dynamic behavior. The second approach integrates deep learning into the tuning process of a PID controller, optimizing its parameters for improved control performance. To activate the structure, two different input signals are used, an impulse signal at time zero and a random one. Through this comparative analysis, the paper aims to evaluate the effectiveness, strengths, and limitations of each method, offering insights into their potential applications in the field of smart structure control. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

25 pages, 11860 KB  
Review
Recent Advances in Piezoelectric Compliant Devices for Ultrahigh-Precision Engineering
by Zeyi Wu, Zehao Wu, I-Ming Chen and Qingsong Xu
Micromachines 2024, 15(12), 1456; https://doi.org/10.3390/mi15121456 - 29 Nov 2024
Cited by 4 | Viewed by 2103
Abstract
With advancements in small-scale research fields, precision manipulation has become crucial for interacting with small objects. As research progresses, the demand for higher precision in manipulation has led to the emergence of ultrahigh-precision engineering (UHPE), which exhibits significant potential for various applications. Traditional [...] Read more.
With advancements in small-scale research fields, precision manipulation has become crucial for interacting with small objects. As research progresses, the demand for higher precision in manipulation has led to the emergence of ultrahigh-precision engineering (UHPE), which exhibits significant potential for various applications. Traditional rigid-body manipulators suffer from issues like backlash and friction, limiting their effectiveness at smaller-scale applications. Smart materials, particularly piezoelectric materials, offer promising solutions with their rapid response and high resolution, making them ideal for creating efficient piezoelectric transducers. Meanwhile, compliant mechanisms, which use elastic deformation to transmit force and motion, eliminate inaccuracies induced by rigid-body mechanisms. Integrating piezoelectric transducers and compliant mechanisms into piezoelectric compliant devices enhances UHPE system performance. This paper reviews the recent advances in piezoelectric compliant devices. By focusing on the utilization of piezoelectric transducers and compliant mechanisms, their applications in perception, energy harvesting, and actuation have been surveyed, and future research suggestions are discussed. Full article
Show Figures

Figure 1

9 pages, 620 KB  
Proceeding Paper
Analyte-Responsive Metal–Organic Frameworks of Polymer-Stabilized Silver Nanoparticles for Gas Sensors: A Comparative Study Using Surface Plasmon Resonance and Quartz Crystal Microbalance Techniques
by Ivanna Kruglenko and Borys Snopok
Eng. Proc. 2024, 82(1), 64; https://doi.org/10.3390/ecsa-11-20458 - 26 Nov 2024
Viewed by 466
Abstract
Composite nanostructures stabilized by responsive polymers are of undoubted interest for chemical sensors. The combination of a heavy metal core with polymer functionality creates a smart nanobot in which the inertial mass of the nanoparticle enhances the initial adsorption effect of an analyte-sensitive [...] Read more.
Composite nanostructures stabilized by responsive polymers are of undoubted interest for chemical sensors. The combination of a heavy metal core with polymer functionality creates a smart nanobot in which the inertial mass of the nanoparticle enhances the initial adsorption effect of an analyte-sensitive organic nanoactuator. In this report, we discuss advanced QCM sensors in which the informative signal is due to a change in the structural organization, the triggering factor for activation of which is the adsorption of the analyte. Silver nanoparticles of a 60 nm diameter stabilized by a branched polyethyleneimine polymer (BPEI) and low-molecular-weight citric acid (CIT) were used as a sensing coating for SPR and QCM transducers (10 MHz) tested on water and ethyl alcohol vapor. SPR spectroscopy showed the behavior typical of organic sensing layers, whereas the BPEI-coated QCM sensor showed a response of the opposite sign for water and ethanol vapor. The anti-Sauerbrey behavior with an increasing loading of QCM sensors results from changes in the contacts of nanoparticles with the surface and with each other. The dynamic relaxations of the sensor architecture under alternating accelerations, initiated by adsorption on sensitive polymer nanoactuators and enhanced by the presence of “heavy” metal nanoparticles with a high inert mass open the possibility of formulating a fundamentally different approach to the detection of specific analytes than the traditional loading-based approach. Full article
Show Figures

Figure 1

21 pages, 4402 KB  
Article
Smart Compression Sock for Early Detection of Diabetic Foot Ulcers
by Julia Billings, Julia Gee, Zinah Ghulam and Hussein A. Abdullah
Sensors 2024, 24(21), 6928; https://doi.org/10.3390/s24216928 - 29 Oct 2024
Cited by 1 | Viewed by 8183
Abstract
The prevention of diabetic foot ulcers remains a critical challenge. This study evaluates a smart compression sock designed to address this issue by integrating temperature, plantar pressure, and blood oxygen sensors and monitoring data recorded by these sensors. The smart sock, developed with [...] Read more.
The prevention of diabetic foot ulcers remains a critical challenge. This study evaluates a smart compression sock designed to address this issue by integrating temperature, plantar pressure, and blood oxygen sensors and monitoring data recorded by these sensors. The smart sock, developed with input from a certified Pedorthist, was tested on 20 healthy adult participants aged 16 to 53. It includes four temperature sensors and pressure sensors at common ulcer sites (first and fifth metatarsal heads, calcaneus, and hallux), and a blood oxygen sensor on the hallux. The sensors are monitored, and their transduced data are collected and stored through an app installed on a personal cell phone. The mobile app interface is user-friendly, providing intuitive navigation and easy access to the sensors’ data. Using repeated measures ANOVA and post hoc tests, we analyzed the impact of various physical activities on physiological changes in the foot. The device effectively detected significant variations in blood oxygen, temperature, and pressure across six activities. Statistical analyses revealed significant differences based on activity type and sensor location. These results highlight the smart sock’s sensitivity and accuracy, suggesting its potential to prevent diabetic foot ulcers. Further clinical trials are needed to evaluate its efficacy in a larger, more diverse population. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

12 pages, 4701 KB  
Article
Response Properties of Electrorheological Composite Hydrophilic Elastomers Based on Different Morphologies of Magnesium-Doped Strontium Titanate
by Shu-Juan Gao, Lin-Zhi Li, Peng-Fei Han, Ling Wang, Feng Li, Tan-Lai Yu and Yan-Fang Li
Molecules 2024, 29(15), 3462; https://doi.org/10.3390/molecules29153462 - 24 Jul 2024
Viewed by 1546
Abstract
As smart materials, electrorheological elastomers (EREs) formed by pre-treating active electrorheological particles are attracting more and more attention. In this work, four Mg-doped strontium titanate (Mg-STO) particles with spherical, dendritic, flake-like, and pinecone-like morphologies were obtained via hydrothermal and low-temperature co-precipitation. XRD, SEM, [...] Read more.
As smart materials, electrorheological elastomers (EREs) formed by pre-treating active electrorheological particles are attracting more and more attention. In this work, four Mg-doped strontium titanate (Mg-STO) particles with spherical, dendritic, flake-like, and pinecone-like morphologies were obtained via hydrothermal and low-temperature co-precipitation. XRD, SEM, Raman, and FT-IR were used to characterize these products. The results showed that Mg-STOs are about 1.5–2.0 μm in size, and their phase structures are dominated by cubic crystals. These Mg-STOs were dispersed in a hydrogel composite elastic medium. Then, Mg-STO/glycerol/gelatin electrorheological composite hydrophilic elastomers were obtained with or without an electric field. The electric field response properties of Mg-doped strontium titanate composite elastomers were investigated. We concluded that dendritic Mg-STO composite elastomers are high-performance EREs, and the maximum value of their energy storage was 8.70 MPa. The significant electrorheological performance of these products is helpful for their applications in vibration control, force transducers, smart structures, dampers, and other fields. Full article
Show Figures

Graphical abstract

26 pages, 7019 KB  
Article
A Smart Wing Model: From Design to Testing in a Wind Tunnel with a Turbulence Generator
by Ioan Ursu, George Tecuceanu, Daniela Enciu, Adrian Toader, Ilinca Nastase, Minodor Arghir and Manuela Calcea
Aerospace 2024, 11(6), 493; https://doi.org/10.3390/aerospace11060493 - 19 Jun 2024
Cited by 4 | Viewed by 1662
Abstract
The paper concerns the technology of the design, realization, and testing of a flexible smart wing in a wind tunnel equipped with a turbulence generator. The system of smart wing, described in detail, consists mainly of: a physical model of the wing with [...] Read more.
The paper concerns the technology of the design, realization, and testing of a flexible smart wing in a wind tunnel equipped with a turbulence generator. The system of smart wing, described in detail, consists mainly of: a physical model of the wing with an aileron; an electric servomotor of broadband with a connecting rod-crank mechanism for converting the rectilinear motion of the servoactuator into the aileron deflection; two transducers: an encoder for measuring the deflection of the control aileron and an accelerometer mounted on the wing to measure its bending and torsional vibrations; a procedure for determining the mathematical model of the wing by experimental identification; a turbulence generator in the wind tunnel; implemented and LQG algorithms for active control of vibrations. The attenuation experimentally obtained for the aeroelastic vibrations of the wing, but also for those accentuated by the turbulence, reaches values of up to 50%. Full article
Show Figures

Figure 1

20 pages, 11866 KB  
Article
Smart Wireless Transducer Dedicated for Use in Aviation Laboratories
by Tomasz Kabala and Jerzy Weremczuk
Sensors 2024, 24(11), 3585; https://doi.org/10.3390/s24113585 - 2 Jun 2024
Cited by 1 | Viewed by 1451
Abstract
Reliable testing of aviation components depends on the quality and configuration flexibility of measurement systems. In a typical approach to test instrumentation, there are tens or hundreds of sensors on the test head and test facility, which are connected by wires to measurement [...] Read more.
Reliable testing of aviation components depends on the quality and configuration flexibility of measurement systems. In a typical approach to test instrumentation, there are tens or hundreds of sensors on the test head and test facility, which are connected by wires to measurement cards in control cabinets. The preparation of wiring and the setup of measurement systems are laborious tasks requiring diligence. The use of smart wireless transducers allows for a new approach to test preparation by reducing the number of wires. Moreover, additional functionalities like data processing, alarm-level monitoring, compensation, or self-diagnosis could improve the functionality and accuracy of measurement systems. A combination of low power consumption, wireless communication, and wireless power transfer could speed up the test-rig instrumentation process and bring new test possibilities, e.g., long-term testing of moving or rotating components. This paper presents the design of a wireless smart transducer dedicated for use with sensors typical of aviation laboratories such as thermocouples, RTDs (Resistance Temperature Detectors), strain gauges, and voltage output integrated sensors. The following sections present various design requirements, proposed technical solutions, a study of battery and wireless power supply possibilities, assembly, and test results. All presented tests were carried out in the Components Test Laboratory located at the Łukasiewicz Research Network–Institute of Aviation. Full article
(This article belongs to the Special Issue Feature Papers in Intelligent Sensors 2024)
Show Figures

Figure 1

13 pages, 2749 KB  
Article
A Laboratory-Scale Evaluation of Smart Pebble Sensors Embedded in Geomaterials
by Syed Faizan Husain, Mohammad Shoaib Abbas, Han Wang, Issam I. A. Qamhia, Erol Tutumluer, John Wallace and Matthew Hammond
Sensors 2024, 24(9), 2733; https://doi.org/10.3390/s24092733 - 25 Apr 2024
Viewed by 1406
Abstract
This paper introduces a novel approach to measure deformations in geomaterials using the recently developed ‘Smart Pebble’ sensors. Smart Pebbles were included in triaxial test specimens of unbound aggregates stabilized with geogrids. The sensors are equipped with an aggregate particle/position tracking algorithm that [...] Read more.
This paper introduces a novel approach to measure deformations in geomaterials using the recently developed ‘Smart Pebble’ sensors. Smart Pebbles were included in triaxial test specimens of unbound aggregates stabilized with geogrids. The sensors are equipped with an aggregate particle/position tracking algorithm that can manage uncertainty arising due to signal noise and random walk effects. Two Smart Pebbles were placed in each test specimen, one at specimen’s mid-height, where a geogrid was installed in the mechanically stabilized specimen, and one towards the top of the specimen. Even with simple raw data processing, the trends on linear vertical acceleration indicated the ability of Smart Pebbles to assess the geomaterial configuration and applied stress states. Employing a Kalman filter-based algorithm, the Smart Pebble position coordinates were tracked during testing. The specimen’s resilient deformations were simultaneously recorded. bender element shear wave transducer pairs were also installed on the specimens to further validate the Smart Pebble small-strain responses. The results indicate a close agreement between the BE sensors and Smart Pebbles estimates towards local stiffness enhancement quantification in the geogrid specimen. The study findings confirm the viability of using the Smart Pebbles in describing the resilient behavior of an aggregate material under repeated loading. Full article
Show Figures

Figure 1

Back to TopTop